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ABSTRACT

This paper presents a novel approach for computing both the
minimum-phase filter and the associated all-pass filter in a
computationally efficient way using the fast QL-factorization.
A desirable property of this approach is that the complexityis
independent on the size of the matrix which is QL-factorized,
and thereby the complexity scales with the required precision
of the filters and the filter length.

Index Terms— Communications, prefiltering, minimum-
phase systems, fast QL-factorization.

1. INTRODUCTION

The minimum-phase filter has during the years gained much
attention and since it is applied in various fields, it is often
treated in general signal processing books, [1]. One place
where the minimum-phase filter plays an important role is
in communication systems when higher-order modulation
schemes over multipath channels are used. In such systems,
optimal sequence detection can be obtained using Maximum-
Likelihood Sequence Estimation (MLSE), but MLSE will
however require an unacceptable high complexity for chan-
nels with large delay spread (i.e. long impulse responses).
Therefore, other suboptimal techniques such as delayed de-
cision feedback, or reduced-state sequence estimation, will
often be used in such systems [2]. To obtain reliable detec-
tion using these techniques, both the minimum-phase and the
associated all-pass filter are used.
In this paper we describe a new approach for efficiently com-
puting the minimum-phase filter and the all-pass filter by
performing a fast QL-factorization of the channel matrix.
The paper is organized as follows; In Section 2 we present
the signal model, and Section 3 describes the connection
between the minimum-phase filter and the QL-factorization.
In Section 4 we illustrate how the fast QL-factoization can
be utilized for time-invariant channels, while the simula-
tion results are found in 5. Finally Section 6 contains some
concluding remarks.

2. SYSTEM MODEL

Consider a time-invariant Single-Input Single-Output (SISO)
system1, which can be described by the Finite Impulse Re-
sponse (FIR) filter,H, having the lengthL. The output signal
yk ∈ C at time indexk can be expressed as

yk =

L−1∑

l=0

hlxk−l , (1)

wherexk ∈ C is the input signal at time index
k = {1, 2, . . . , N + L − 1}, N is the length of the input se-
quence, andhl ∈ C denotes thel’th tap in the impulse re-
sponse. Using matrix notation, the system model in (1) can
be formulated as

y = Hx , (2)

wherey =
[

y1, y2, . . . , yN+L−1

]T
and

x =
[

x1, x2, . . . , xN

]T
. To ease the notation let

M , (N + L − 1), leading toy ∈ C
M . Due to the time-

invariant property of the filter,H ∈ C
M×N will be a banded

Toeplitz convolution matrix having the form

H ,





h0 0 · · · 0
... h0

. ..
...

hL−1
. . .

. .. 0

0
. . .

. .. h0

...
. . .

. ..
...

0 · · · 0 hL−1





.

In the analysis of the filter characteristic, it is often useful to
z-transform the channel impulse response [1], which leads to

H(z) =

L−1∑

l=0

hlz
−l . (3)

1Results presented in this paper may be directly extended to Multiple-
Input Multiple-Output (MIMO) systems, but this is outside the scope of this
paper.



A classical way of obtaining the minimum-phase filter,Hmin,
is by using the root method of spectral factorization, where
we first find roots in the polynomial given in (3), and reflect
the roots located outside the unit circle, into the circle, [1],
[3]. Based on the roots inside and on the unit circle, a new
polynomial can be computed in the z-domain, which repre-
sents the minimum-phase filter. There exists however several
other spectral factorization methods which among others is
described in [4]. In many applications (e.g. in communi-
cations) we also need the associated all-pass filter, which is
used to prefilter the input signal,x, such that output signal
matches the minimum-phase filter. As finding the minimum-
phase and all-pass filters can be computationally expensive,
approximative methods having lower complexity may be of
practical interest [2].

3. CONNECTION BETWEEN THE
MINIMUM-PHASE FILTER AND THE

QL-FACTORIZATION

Recently, it has been discovered that the minimum-phase filter
and its associated all-pass filter can be obtained by performing
a QL-factorization of the channel matrix,H, [5], [6]. When
we perform the factorization,

H = QL̃ = Q

[
0(M−N)×N

L

]
, (4)

we require that theN × N lower triangular matrix,L, cor-
responds to the Cholesky factor ofHHH, meaning thatL
is positive definite and contains real-valued positive diagonal
elements (assuming thatrank(H) = N ). Since we perform
a factorization of a banded Toeplitz matrix, each row inL

will be a shifted version of each other as{M,N} → ∞, and
each row is precisely given by the spectral factorization, [7].
Likewise, theM × M unitary matrixQ will be the matrix
equivalent of the all-pass filter and again each column ofQ

will be a shifted version of each other. Furthermore, it can be
seen that each of these columns will correspond to the all-pass
filter associated with the minimum-phase filter. For a detailed
description of this, see [5], [6].
In the finite length case, each row ofL (column ofQ) will not
be exactly the same, but as can be seen in [6], the values in
each row ofL will converge toward the true minimum-phase
filter as a function of the row number2, likewise the columns
of Q will converge toward the associated all-pass filter. Thus,
the accuracy of the estimated filter coefficients (compared to
the true filters) depends on where inL andQ we take out the
filter coefficients.

2Using the Householder method, elements of rows inL converge toward
the minimum-phase filter from the bottom and up due to elements in the lower
triangular matrix being computed from the bottom and up.

4. FAST QL-FACTORIZATION

When traditional methods are used to compute the QL-
factorization it requiresO

(
N3

)
operations, [8], but for

Toeplitz matrices there exist methods with lower compu-
tational complexity. Different methods have been proposed
for performing the fast QL-factorization3 [8], [9], [10], each
of which has different numerical properties and slightly dif-
ferent complexity as well. They do however all use the
shift-invariance property of Toeplitz matrices to partition it
in two ways, and it is this partitioning that leads to the low
complexity schemes. In [8], the QL-factorization can be per-
formed using13MN + 6N2 operations for generalM × N
Toeplitz matrices, while the method proposed in [10] require
13MN + 6.5N2. The methods described in [8], [9], and
[10] all deal with real-valued matrices, but the results canbe
extended to be valid over the complex field, [10]. Further-
more, the methods can be extended to handle block Toeplitz
matrices for the general MIMO case as well, [11].
The fast QL-factorization computes a single row ofL (or col-
umn ofQ) at a time, which turns out to be a great advantage
when the QL-factorization is used for prefilter computation.
This is due to the fact that each row ofL converges toward
the true minimum-phase filter, which implies that we can
stop the computation of the rows inL once we have obtained
the required precision of the filter coefficients. Likewise,we
only need to compute a certain fraction of the columns inQ

to obtain the required precision of the all-pass filter. Thus,
by using the fast QL-factorization to compute the filters, the
complexity no longer scales with the size of the matrix,H,
but depends on the required precision. The number of rows
in L (and thus columns inQ) which is used to obtain the
estimated minimum-phase and all-pass filters, is referred to
as the number of iterations,n.
The complexity of the fast QL-factorization can be reduced
even further, using the fact that the Toeplitz channel matrix,
H, contains at mostL non-zero elements in each row. Thus,
using the method described in [8], we can compute of each
row in L using4L + 7 complex operations and two square
root computations. On top of that we also need to take into
account the initialization step, which determines the bottom
row of L 4, requiring(L − 1)2 + 4L complex operations and
two square root computations. Thus, if the required preci-
sion of the minimum-phase estimate can be obtained usingn
iterations, the computational complexity will be

Omin = n · (4L + 7) + (L − 1)2 + 4L , (5)

complex operations plus2n + 2 square root operations. Each
of the lastLap − L columns ofQ require(L + i)(i + 1)
operations wherei = 0, . . . , Lap − L − 1. The complexity
of computing each of thej last columns ofQ is Lap(j + 1)

3Methods for QR-factorization may easily be converted to QL.
4The QL-factorization starts from the bottom row and works its way up

to the top, while the QR-factorization uses a top down approach.
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Fig. 1. Channel profiles of Typical Urban and Hilly Terrain
(including the transmit pulse shaping).

for j = Lap − L + 1, . . . , Lap. If the number of iterations
needed is higher than the length of the prefilter, we also need
Lap(Lap + 1) complex operations to calculate each of the
remaining columns (i.e. the columns fromLap + 1 to n).
Thus, the overall complexity of computing the prefilter, is

Oap =
∑min{(Lap−1);(n−1)}

k=0 min{(L + k);Lap} · (k + 1)
+max{0; (n − Lap)} · Lap(Lap + 1)

(6)
assuming thatn ≥ Lap − L + 1. Note that the last term in
(6) vanishes whenn ≤ Lap and that we will obtain the first
Lap filter coefficients after(Lap −L + 1) iterations. Thus, in
cases whereL is close toLap we only need a few iterations
if we are willing to sacrifice precision in favor of complexity.
Thus, for the Hilly Terrain (HT0) profile specified in [12], the
minimum-phase filter and the all-pass filters can be obtained
using 546 operations (whereL = 10 and usingLap = 14,
n = 5).
The approximate low complexity method proposed in [2],
which uses Linear Prediction (LP) to obtain an estimate of
the all-pass and minimum-phase filters, will approximately
require1/2·(L+1)(L+2)+L2

p+2Lp+(L+1)(Lp+1) oper-
ations (complex multiplications). HereLp denotes the order
of the prediction-error filter. WhenLp = 14 this method
requires 455 operations for the HT0 profile. Thus, for some
practical channel profiles the method proposed in this paper
will have a complexity which almost is in the same scale as
the low complexity LP-method.

5. SIMULATION RESULTS

In this section we present simulation results for 3 different
types of SISO channels. First we assume that we have com-
plex Gaussian distributed,CN (0, 1), channel coefficients.
Secondly, we consider two types of channels defined in the
GSM specifications [12], namely the Typical Urban (TU0)
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Fig. 2. Gaussian filter coefficients,L = 7. Mean and me-
dian value of the relative deviations,d (Hmin,true;HL,n) and
d(HL,n; ĤL,n) whenLap = 32.

and the Hilly Terrain (HT0) profiles, which can also be seen
in Fig. 1.
We compute the relative difference between the two filters,
Ha andHb, as a function of the iteration number,n, as

d (Ha,n;Hb,n) ,
‖Ha,n −Hb,n‖2

‖Ha,n‖2

, (7)

which is done in order to measure the convergence rate of
the filter coefficients. In the simulationsHmin,true denotes
the impulse response of the true minimum-phase filter, and
HL,n is the impulse response obtained fromL (at iteration
n). To measure how well the estimated all-pass filter,HQ,n,
match the estimated minimum-phase filterHL,n, we filter the
original impulse responseH with H∗

Q,n, which gives us the

outputĤL,n. In all the simulations presented below, we have
made 10000 realizations of the examined channel profile, and
computed the minimum-phase and the all-pass filter for each
realization. The filter length of the all-pass filter is in allsim-
ulationsLap = 32. Based on the result of the 10000 filter re-
alizations, we have computed the mean and median value of
the relative errors,d (Hmin,true;HL,n) andd(HL,n; ĤL,n).
The result for the Gaussian channel coefficients is shown in
Fig. 2, where we see that the convergence toward the true
minimum-phase filter is exponential. In Fig. 3 the result for
the TU0 profile is shown, and here we can see that the average
relative deviation between the true minimum-phase filter and
estimated solution is approximately10−2 after 7-8 iterations.
To obtain the same relative deviation between the estimated
minimum-phase filter and the estimated all-pass filter we need
approximately 14-15 iterations. We can see from the figure
that the median value of the relative error converges faster
than the mean value, which indicates that some of the real-
izations will bias the estimate of the mean value due to ”out-
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Fig. 3. TU0 profile,L = 6. Mean and median value of the
relative deviations,d (Hmin,true;HL,n) andd(HL,n; ĤL,n)
whenLap = 32.

liers” in the distribution of the relative error. By inspecting
the approximated PDF for different iterations, it is observed
that a few realizations converge slower than the majority, and
they will therefore in some sense bias the estimate. The re-
alizations which converge slowest are the ones which contain
roots located close to the unit circle. Fig. 4 show the result
for the HT0 profile, and in this case the convergence is slower
than the TU0 profile. This is not surprising, since the chan-
nel impulse response of HT profile is longer, which makes it
more likely that there are roots close to the unit circle. For
this profile we need 21 iterations to obtain an average preci-
sion of10−2 between the true and estimated minimum-phase
filter. In Fig. 2 to Fig. 4 we see that the relative difference
d(HL,n; ĤL,n) tends to be biased due to the usage of a fi-
nite length all-pass filter. This bias term can be decreased by
increasing the length of the all-pass filter,Lap.

6. CONCLUSION

In this paper we introduced a new approach for computing
the minimum-phase filter and its associated all-pass filter
in a computationally efficient manner using the fast QL-
factorization. The proposed method convergences asymto-
cally toward the true filters with the complexity depending on
the required precision.
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