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Particle Filter Inference in an Articulatory Based
Speech Model

Thomas Beierholm (*), Student Member, IEEE, and Ole Winther

Abstract— A time-varying auto-regressive speech model pa-
rameterized by formant frequencies, formant bandwidths and
formant gains is proposed. Inference in the model is made by
particle filtering for the application of speech enhancement. The
advantage of the proposed parametrization over existing param-
eterizations based on AR coefficients or reflection coefficients is
the smooth time-varying behavior of the parameters and their
loose coupling. Experiments confirm this advantage both in terms
of parameter estimation and SNR improvement. Finally, further
modelling and inference improvements are outlined.

Index Terms— Particle filtering, time-varying auto-regressive
speech model, formant frequency.

I. INTRODUCTION

IN the application of speech enhancement, the speech
signal is commonly modelled as a time-varying Auto-

Regressive (AR) Gaussian process. In block-processing sys-
tems the speech signal is assumed quasi-stationary meaning
that the parameters of the AR process describing the speech
signal are assumed fixed in the duration of the block. As
described in Ref. [1] the articulators of speech, such as the
vocal tract, are continually moving, hence the assumption
of quasi-stationarity of speech can be improved upon. The
Time-Varying Auto-Regressive (TVAR) model used in Refs.
[1], [2] lets the parameters of the AR process describing the
speech signal vary from sample to sample and thus avoids the
assumption of quasi-stationarity of the speech signal.

The TVAR model facilitates a state-space formulation of
the observed noisy signal in which the problem of joint
estimation of the unknown parameters of the model and
the state sequence becomes a challenge. One approach is to
perform ML estimation using the EM algorithm. A different
approach was used in Refs. [1], [2], where sequential Bayesian
estimation of the unknown parameters and state sequence
was performed by particle filtering. Instead of using the AR
coefficients directly, then, in Ref. [2] the TVAR model was
reparameterized in terms of reflections coefficients as this lead
to a stronger physical interpretation of the model and stability
of the model could easily be verified.

In this paper a reparametrization of the TVAR model with
an even stronger physical interpretation is used [3]. The TVAR
model is parameterized in terms of formant frequencies, for-
mant bandwidths and formant gains, called the fbg parameters
in the following. It is intended that this new parametrization
can lead to improved particle filtering by way of exploiting
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known properties of the fbg parameters and thereby eventually
improve quality of the estimated speech signal. As stressed
in Ref. [3] the new parameters have a slow time variation
due to the inertia of the speech producing system in contrast
to the reflection coefficients which can have a rapid time
variation. The new parameters are also loosely coupled and
exhibit smooth trajectories and stability of the model is easily
ensured.

A common feature of the TVAR model [1] and the fbg
parameterized model introduced in this work is that condi-
tional on the unknown parameters of the model, the model
reduces to a linear Gaussian state-space system. In Ref. [1]
this feature was made use of in a variance reduction (Rao-
Blackwellization) step whereby the problem of sampling from
the joint posterior distribution of the states and the unknown
parameters of the model is reduced to that of sampling from
the posterior distribution of the unknown parameters only.

The main idea behind the work described in this paper is to
introduce a TVAR model with an even stronger physical inter-
pretation than the reflection coefficients [2] and obtain filtered
estimates of the clean speech signal with Rao-Blackwellized
particle filtering [1].

II. TIME-VARYING AUTO-REGRESSIVE MODEL

In the Time-Varying Auto-Regressive (TVAR) model a
speech signal is modelled as a non-stationary AR(p) process,
where p denotes the order of the AR process which is assumed
fixed in the following. The coefficients of the AR(p) process
and the variance of the process noise are allowed to change
from sample to sample, i.e.

x[n] =
p∑

i=1

ai[n]x[n− i] + σe[n]e[n] , e[n] ∼ N (0, 1) ,

where e[n] is the innovation sequence with variance σ2
e [n] and

N (µ,Σ) denotes a Gaussian distribution with mean µ and
covariance matrix Σ. It is assumed that the speech signal is
contaminated by non-stationary Gaussian noise

y[n] = x[n] + σd[n]d[n] , d[n] ∼ N (0, 1) ,

where d[n] denotes the observation noise with variance σ2
d[n].

The TVAR model is conveniently formulated as a state-space
model with the following state and observation equations

x[n] = A[n]x[n− 1] + B[n]v[n] , v[n] ∼ N (0p×1, Ip) (1)
y[n] = Cx[n] + D[n]w[n] , w[n] ∼ N (0, 1) , (2)

where a[n] = ( a1[n], · · · , ap[n] )T is the coefficient vector,
x[n] = ( x[n], · · · , x[n− p + 1] )T the state vector and

A[n] =
(

aT [n]
I(p−1) 0(p−1)×1

)
, B[n] =

(
σe[n]

0(p−1)×1

)
(3)
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C =
(
1 0 · · · 0

)
, D[n] = ( σd[n] ) . (4)

The state-space formulation of the TVAR model in eqs. (1)
and (2), with the parametrization eqs. (3) and (4), is used in
Ref. [1]. The unknown parameters of the model are the p AR
coefficients in a[n] and the innovation and observation noise
variances. The AR coefficients and the two noise variance
parameters represented by their logarithms were assumed inde-
pendent and taken as evolving according to first-order Markov
random walk processes. The variance of the random walk
processes for each of the AR coefficients and the variances of
the random walk processes for the logarithms to the variance
of the innovation sequence and observation noise are denoted
δa, δe, δd, respectively.

III. ARTICULATORY-BASED SPEECH MODEL

The formulation of a speech model based on the fbg
parameters, which are close to the articulators of speech [3],
is based on what in the area of speech synthesis, is referred
to as a Parallel Formant Synthesizer (PFS) and therefore the
model is called the PFS model in the following. A PFS
synthesizes speech by summing the outputs of a number of
parallel connected resonance circuits. The structure of a PFS
is illustrated in Fig. 1. The resonators are driven by a common
excitation signal which is taken to be white standard normal
distributed noise. Each resonance circuit models a formant
in the spectrum of the speech signal, in the sense that the
spectrum of the excitation signal is shaped to have a peak
at the resonance frequency and the bandwidth and gain of
the ‘bump’ is determined by the resonance circuit as well.
The resonators are taken as second-order IIR filters with z-
transforms

Hk(z) =
gk

1 + ak,1(fk, bk)z−1 + ak,2(bk)z−2
, (5)

where fk, bk and gk denotes the formant frequency, formant
bandwidth and formant gain, respectively, of the kth formant.
The mapping from these parameters to the coefficients of the
resonators is given by [4], [5]

ak,1(fk, bk) = 2 exp(−πbk/fs) cos(2πfk/fs) (6)
ak,2(bk) =− exp(−2πbk/fs) , (7)

where fs is the sampling frequency in Hz. By letting

Ak[n] =
(

ak,1(fk, bk) ak,2(bk)
1 0

)
(8)

then in state-space form, the PFS model is described by the
TVAR model in eqs. (1) and (2) with parametrization

A[n] = diag (A1, · · · ,AK) (9)

B[n] =
(

01×2K

g1[n] 0 · · · gK [n] 0

)T

(10)

C =
(
1 0 1 0 · · · 1 0

)
, D[n] = ( σd[n] ) , (11)

where x[n] = (x1[n], x1[n− 1], · · · , xK [n], xK [n− 1])T

is the state vector, K is the number of formants and v[n] ∼
N (02×1, I2). A formulation based on a cascade structure of
second-order sections can also be used. A description of the

pros and cons of the cascade and parallel structures in speech
synthesis can be found in Ref. [5]. The PFS model has 3K+1
parameters. The fk and bk parameters and the logarithm to the

Formant #1x

+

+

+

f1 b1
g1
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fK bK
gK

White 
noise gen.

e[n]

x1[n]

xK[n]

x[n]

Fig. 1. Block diagram of Parallel Formant Synthesizer.

gk parameters are assumed independent and taken as evolving
according to first-order Markov random walk processes with
variances δf , δb and δg, respectively.

IV. PARTICLE FILTER INFERENCE

We provide a brief summary of the particle filter method
used for inference in the PFS model as it is described in detail
elsewhere [1]. Filtering refers to the task of computing the
filtering distribution p(an, θn |y1:n) and the MMSE estimate
of the state vector and the parameter vector θn at time n using
observations y1:n = (y[1], · · · , y[n]) up to and including time
n. The joint distribution is decomposed using Bayes rule:

p(an, θ0:n |y1:n) = p(an |θ0:n,y1:n) p(θ0:n |y1:n) . (12)

For both models (TVAR and PFS) the state vector can be
integrated out analytically because p(an |θ0:n,y1:n) is Gaus-
sian. This so-called Rao-Blackwellization has the effect of
reducing the variance of the MMSE estimate of the state and
parameter vectors. The problem is then reduced to sampling
from the lower dimensional distribution p(θ0:n |y1:n) instead
of sampling from p(a0:n,θ0:n |y1:n). In particle filtering this
distribution is approximated by a weighted sum of δ-functions
(the particles). The importance weight of particle with state
space history θ0:n is given by

w(θ0:n) ∝ p(θ0:n | y1:n)
π(θ0:n | y1:n)

, (13)

where π(.) denotes the importance distribution where samples
are drawn from. Sequential importance sampling can be per-
formed if the importance distribution is restricted to be of the
general form

π(θ0:n | y1:n) = π(θ0:n−1 | y1:n−1)π(θn |θ0:n−1, y1:n) (14)

which facilitates recursive propagation of the importance
weights in time. The crucial restriction is that the time depen-
dence only goes to n−1 in the first term. Inserting eq. (14) in
eq. (13) and expanding the numerator using Bayes’ rule and
using the assumption that the parameters evolve according to
a first-order Markov process, i.e. p(θn|θ0:n−1)=p(θn|θn−1),
then the weights obey w(θ0:n)=w(θ0:n−1)wn with

wn ∝ p(yn|θ0:n, y1:n−1)p(θn|θn−1)
π(θn |θ0:n−1, y1:n)

. (15)
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This way sequential importance sampling avoids the need for
storing the paths θ0:n−1 of the particles. The complexity of
recursively computing the weights can be simplified if the
importance distribution at time n is set equal to the prior
distribution, i.e. π(θn |θ0:n−1, y1:n) = p(θn|θn−1) so that
(15) reduces to wn ∝ p(yn|θ0:n, y1:n−1). However, this step
contributes to a degeneracy whereby all weights except one
after a few iterations are very close to zero. This happens
because the importance distribution is different from the true
posterior distribution. As a remedy, a selection step is intro-
duced. The selection step duplicates particles in proportion to
their importance weights in such a way that all particles have
approximately the same weight after the selection step.

V. EXPERIMENTS

The performance of the PFS model is examined and com-
pared to the TVAR model examined by Vermaak et al. in
[1]. The starting point is the TIMIT speech sentences “In
simpler terms, it amounts to pointing the platform in the
proper direction.” (si1466) and “His sudden departure shocked
the cast.” (sx111) both downsampled to 16 kHz. From each
sentence a 0.38s (6000 samples) speech sound is extracted.
The waveforms of the extracted sounds are seen in Fig. 2.
Wide-band spectrograms of the two extracted sounds were
made with formant frequency tracks overlayed. From these
spectrograms the following observations were made. The
speech clip shown in the upper plot in Fig. 2 is voiced with
a distinct pitch contour and the formants are clearly marked
and changes smoothly over time. The speech clip shown in the
lower plot of Fig. 2 contains both voiced and unvoiced sounds,
the formants are less distinct and the formants changes less
smoothly. From the wide-band spectrogram of the waveform
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Fig. 2. Plot of the waveforms for extracted sounds from two TIMIT
sentences. Phonetic information is also shown in the plots.

shown in the upper plot of Fig. 2 it was evident that by low-
pass filtering F1 could be separated from the other formants.
A modified speech sound was created where frequencies above
1100 Hz were suppressed and only F1 existed in the modified
speech sound. In the same manner a speech sound with only

F1 and F2 was created. Those two modified sounds were
contaminated by zero-mean stationary white Gaussian noise at
0 dB SNR and subsequently used to manually tune the random
walk parameters for both the PFS and the TVAR model so
that the particle filtering gave as high SNR improvements as
possible. The particle filtering used by Ref. [1] was modified
in two respects; 1) so that it exploited that the variance of
the observation noise was known and constant and 2) it was
initialized using f and b parameters that were then mapped
to AR coefficients using eqs. (6) and (7). In this way the
initializations in the TVAR model and the PFS model were
alike. The first 800 samples were not used in the computation
of the SNR improvements in order to minimize initialization
effects. The manual tuning of the random walk parameters lead
to the following setting δa=2.5×10−5 and δe=5×10−3 in the
TVAR model and the setting δf=20, δb=7 and δg=5×10−3

in the PFS model. Both the performance of the TVAR model
and the PFS model was found to be relative insensitive to the
setting of the random walk parameters.

With these settings and using 100 particles the particle filter
was run on the sound where only F1 exists. The experiment
was repeated 7 times. The TVAR model was specified to use
2 AR coefficients and in the PFS model K=1. The mean
SNR improvement measured for the TVAR model was 6.27
dB and the SNR improvement measured for the PFS model
was 7.21 dB. The PFS model provided slightly higher but
consistent SNR improvements for this setup. Halving the value
of the random walk parameters δf and δb produced a mean
SNR improvement of 7.12 dB and doubling them produced
7.16 dB. The value of these parameters could be changed
at least an order of magnitude and still produce higher SNR
improvements than that of the TVAR model which favors the
PFS model as being a better speech model than the TVAR
model.

In the particle filter the unknown parameters are augmented
to the state vector. In this way the particle filter provides esti-
mates of the unknown parameters. Using Praat [6] the formant
frequency tracks were extracted from the clean speech. The
’true’ F1 formant frequency is illustrated in the upper plot of
Fig. 3 together with the estimated F1 formant frequency tracks
using the TVAR model and the PFS model. The estimated
formant frequency tracks were obtained by averaging the
estimates from 7 repeated experiments. By using the inverse
mapping in eqs. (6) and (7) the formant frequency track for
the TVAR model was computed from the estimated AR coef-
ficients. As is evident from Fig. 3a the PFS model provides a
much better estimate of the formant frequency than the TVAR
model. It is also seen from Fig. 3b that the PFS model provides
a more smooth and accurate estimate of the AR coefficients.
Next, performance was measured for the sound with F1 and
F2 using the same conditions as for the sound with F1 only.
The PFS model and the TVAR model gave 6.24 dB and 5.41
dB mean SNR improvements, respectively. The PFS model
provided slightly higher and consistent SNR improvements for
this setup also. The estimated formant frequency tracks using
the models are seen in Fig. 4. This experiment illustrated even
more the convenience of the PFS model over the TVAR model
in that it’s much more straight forward to use the properties of
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Fig. 3. (a) Estimated F1 formant frequency track using the TVAR and
PFS models and the ’true’ formant frequency extracted from clean speech.
(b) Estimated tracks of the a2 AR coefficient together with the ’true’ values.

the PFS model to ensure reasonable behavior of particle paths.
It is for instance more cumbersome to initialize the TVAR
model so that the formant frequencies of the particle paths get
in range with the formants of the sound. It is also significantly
more cumbersome to ensure that the particle paths of the
TVAR model remain within the limits of the range of F1 and
F2. If this is not ensured the estimated spectrum of the sound
using the TVAR model can have a low-pass characteristic or
a single peak instead of two peaks. Performance was then
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Fig. 4. Estimated F1 and F2 formant frequency tracks using the TVAR and
PFS models and the ’true’ formant frequencies extracted from clean speech.

measured for the two fullband waveforms shown in Fig. 2.
SNR improvements were measured for 4 different SNRs using
both models and same conditions as in previous experiments.
The results are seen in Table I. The PFS model produced
higher SNR improvements for both sounds and all 4 SNRs. It’s
also seen that there is a negative correlation between measured
dB SNR improvement and SNR. As a last experiment particle
filtering was performed on the full length TIMIT waveforms
in order to test the quality of the enhanced speech signals.
Only one run on each sound was made and the variance of

TABLE I
MEASURED DB SNR IMPROVEMENTS FOR THE TVAR AND PFS MODELS

FOR 4 DIFFERENT SNRS USING THE SI1466 AND SX111 TIMIT SOUNDS.

si1466 sx111
Model 0 5 10 20 0 5 10 20

TVAR 5.20 3.06 1.03 0.24 3.80 1.59 0.92 −0.02
PFS 5.69 4.54 3.07 1.43 4.82 2.92 1.62 0.42

the noise was made time-varying and the particle filtering
changed accordingly. The listening tests revealed that the
quality of the enhanced speech signals was rather poor for both
models and notable artifacts were introduced. It is believed that
an important factor contributing to the relative poor speech
quality for both models is their shortcoming in accurately
modelling the excitation source for voiced speech.

VI. CONCLUSION & OUTLOOK

We have proposed a new parametrization of a time-varying
auto-regressive speech model and used particle filtering for
inference in a noise reduction set-up. The performance of a
proposed speech model was compared to that of a speech
model parameterized by auto-regressive coefficients for the
application of speech enhancement [1]. The results from
a number of experiments showed that the proposed model
provided higher SNR estimates of the speech over a large
interval of the random walk parameters of the particle filter and
more accurate and smooth estimates of the model parameters
were obtained as well which favors the proposed model as a
better model for speech. Listening tests reveal that despite of
higher SNR improvements there is still room for substantial
improvement. Work is currently being made on both improving
the proposed model and the inference. Voiced speech is not
well modelled by a random excitation signal. We expect that
a harmonic excitation term would be beneficial. It is possible
to improve the inference by drawing samples from a proposal
distribution extending some finite time in the past. Setting this
time-horizon to be equal to a few time the auto-correlation
of the process will allow us to achieve smoothing (i.e. full
posterior rather than filtering) estimates with very little time
delay (Ferkinghoff-Borg, Lehn-Schiøler and Winther, personal
communication).
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