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This paper treats the problem of locking a molecular bond at a length other than the equilib-
rium distance, with the help of optical electric fields. Locking conditions for single-color fields are
examined, and slowly decaying locked wave functions are sought. These wave functions are then
used as target functions in an optimal control procedure. The resultant solution is an optimal field
that creates a wave function as close as possible to the target function, followed by the application
of a locking single-color field that can keep a large part of this wave function at the given position.
An objective of the approach is to eventually extend the optimal control theory to the preparation
of molecules in quasistationary nonequilibrium states for further study by spectroscopic or other

means.
repulsive character.

PACS number(s): 42.50.Hz, 33.80.—b

I. INTRODUCTION

Optimal control of molecular processes with shaped
ultrashort laser pulses is the focus of much recent research
interest [1-44]. In these examples the quantum system
is initially in a given state or statistical mixture of states
and the timing of the dynamics is given by the laser pulse.
In other words, the system to be controlled is waiting for
the controller. The problems studied are typically the
creation of a specific final state or enhancing the yield of
a photochemical reaction.

The perspective taken in the present paper is distinct
from that of the previous work. Here we intend to demon-
strate the possibility of locking a molecular bond at a
length other than its natural equilibrium point. The abil-
ity to achieve such a goal in the laboratory could have
a number of applications. In particular, one could con-
sider performing vibronic spectroscopy on such a locked
molecule, and the resultant Franck-Condon transitions
could access interesting states, from the newly locked
initial state. Second, potentially a number of interest-
ing scattering processes might also become available for
study. This latter category of problems inherently in-
volves events whose timing is statistically distributed.
The ability to lock bonds opens up the dynamical study
of unusually prepared molecular configurations. The goal
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Results are reported for a model of Csl with two potential-energy surfaces, one with a

of this paper is to make one step in this direction by con-
sidering bond length locking in diatomic molecules. The
problem of influencing scattering cross sections is com-
plex since (i) it involves at least three-body interactions,
(ii) known Hamiltonians may be crude approximations,
(iii) locking may break down when scattering starts since
the effect of the field may be very different during scatter-
ing, (iv) scattering may involve an ensemble of molecules
with Doppler broadening and an energy distribution, in-
stead of a well defined quantum system, etc. Theoreti-
cal studies of scattering processes with locked molecules
thus can only provide approximations even with state-
of-the-art methods. However, laboratory optimization,
first suggested by Judson and Rabitz [23] and a subject
of recent interest [32,33,44] for optimal control of chemi-
cal processes, may prove to be viable for optimal control
of scattering processes too. Theoretical work can provide
the initial designs to gain insight for eventual experimen-
tal optimization. This is a goal of the present study.

II. GENERAL CONSIDERATIONS

The optimal control approach to design shaped laser
pulses is now firmly established; details can be found in
[6,9,11]; here only a brief description will be given.

The equation of motion in our system is the time-
dependent Schrédinger equation (8; = B%)

ihd,|T(t)) = ih| () = H|T(t)). (2.1)

Within the semiclassical radiation and adiabatic dynam-

2540 ©1994 The American Physical Society
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ical approximations, the Hamiltonian may be written as

s oL Hu@)  —p@E®)
N O T I
and
%(2)) = / dz|o)¥(z,t) = (}ﬁ;‘? ) (2.3)

The subscript g refers to the “ground” or initial state
potential energy surface and u correspondingly refers to
the “upper” or interacting state potential-energy surface.
H; = T + Vi(Z), where T = $2/2m is the kinetic-energy
operator and V; is the corresponding potential energy. u
is the projection of the transition dipole moment oper-
ator along the direction of the electric field polarization
and £(t) represents the amplitude of the classical electric
field.

The objective to be optimized for this problem may be
given as (see, for example, [6,9,13,18,31])

7 = ()Pl - [ 7 et
41 [' ((@find, - B|w) - c.c.) dt.

: (2.4)

The first term describes a final wave function ¥(ty), pro-
jected with the help of an operator P onto the targeted
state. The projection operator may be written in the
following form without loss of generality:

5 _ ( aulxu) (xul 0 )
P= 2.5
( 0 aglxe)(Xol (25)
with a; > 0,7 = u, g, and
ag +a, = 1. (2.6)

The second term in Eq. (2.4) is a penalty for the inte-
grated energy of the electric field. It limits the electric en-
ergy used in the optimization procedure in balance with
the targeted wave function. That balance may be tuned
with the help of )., with higher ). values correspond-
ing to a more “strict policy” on the electric field energy.
The third term represents the constraint that the sys-
tem should always satisfy the equation of motion (2.1).
This term contains the generalized Lagrange multiplier
®(z,t). In analogy with ¥, ® is a two-component func-
tion assuming the form

®=(f)

Application of the calculus of variation leads to
(see, e.g., [6,9,13,18]) a set of control equations: the
Schrédinger equation for the wave function as well as
the generalized Lagrange multiplier, including an initial
condition for the wave function and a final condition for

(2.7)
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the generalized Lagrange multiplier:
ik, |0 (t)) = H|¥(2)), (2.8)
ih9,|2(t)) = H|%(1)), (2.9)
¥ = (14,0 ) (2.10)
|®(t5)) = PI¥(t5))- (2.11)

Equations (2.8)—(2.11) are further linked by the equation
for the optimal electric field £,

£(t) = — 55l (Galulv) — Goluldu) . (212

The Krotov iterative scheme can be used for solving these
coupled equations for £(t) [39,26,9]. The iteration pro-
cedure has the following steps.

(1) Make an initial guess for the electric field.

(2) Integrate the Schrédinger equation for ¥ forward
up to time t; starting from the initial state of the system.

(3) Apply the projection operator P to the final time
wave function according to Eq. (2.11) to obtain ®(t¢).

(4) Propagate ® backward in time to obtain ®(to).

(5) Calculate £(to) according to Eq. (2.12) from ®(to)
and ¥(tp). Then calculate ®(to+dt) using the old electric
field generated in the previous iteration step and calcu-
late ¥(to + dt) using the newly generated electric field.
In this manner ¥ and ® are propagated forward up to
the final time calculating the new electric field at each
time step.

(6) Go back to (3) and repeat (3)—(5) until the speci-
fied convergence criterion is reached.

This procedure was used for the initial iterations. The
iteration procedure was found fast compared to the tra-
ditional gradient algorithms, but in some cases it be-
came unstable for our problem. In addition, the Kro-
tov method started to develop unreasonably large elec-
tric fields at some stage of the procedure for early times
of control.

The electric field was monitored and when the break-
down of the Krotov iterative scheme started to happen
it was replaced by a gradient method for further itera-
tions. In this way the Krotov method was used for finding
an initial guess for a local gradient search. For gradi-
ent methods it is easy to implement a time-dependent
penalty function (see, e.g., [6,31]). In this case the ob-
jective may be written as

Tu = (¥(t9)|PIT(ty)) — Ao / " w)e2(t)at

i [ ) -
+ﬁ/¢u ((<1>|zh6,—H|\1:)—c.c.)dt. (2.13)

The weight function W (t) was chosen high and quickly
decreasing at the edges of the time region and 1 in be-
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tween. This form of the objective leads to the following
gradient:

8w _ —2AW($)E(2)

8(£(2))

2
—3Im ((8glulu) = (gluldu)) . (2.14)
This gradient was then used in the Fletcher-Reeves ver-
sion of the conjugate gradient method [45] combined with
a line search as described in [31].

The ground and upper parts of the target wave func-
tion x, and x4 of the projection operator were found
through the locking procedure to be described in the next
section.

III. WAVE-FUNCTION LOCKING

All calculations were carried out using atomic units:
1E,=219474.64cm™', 15/ E,=0.024 1888 fs, 1 Ep/(eao)
=5.14221 x 10! V/m.

A simple model system was studied to get insight into
wave-function locking. The model consisted of two linear
Born-Oppenheimer (BO) curves of opposite slopes. In
treating the optical coupling between the BO surfaces we
assumed that the rotating-wave approximation is valid.
Notationally, we distinguish between the model of two
linear BO curves and the CsI BO curves by using the
subscripts 1 (for positive slope) and 2 (for negative slope)
for the linear BO curves and g (ground) and u (upper)
for the CsI BO curves.

The time-dependent Schrodinger equation was solved
numerically by a split operator method [46,47] or a Lanc-
zos method [46] that uses a spatial grid and fast Fourier
transformation (FFT) for computing the Laplacian oper-
ator on the grid. In order to allow the evaluation of the
Laplacian operator with the help of FFT methods (i.e.,
under periodic boundary conditions) parts of the wave
function that could escape from the “region of interest”

1
i

v — ( V(€ + ([)5(90 — )2

where £4 is the slope of the linear potentials and g is the
crossing point of the surfaces. The diagonalized poten-
tials are shown in Fig. 2. The upper potential well has
localized eigenfunctions. One can show that the beats
on the wave functions correspond to the frequency dif-
ferences between the ground state and the excited states
of the well. The initial state was made symmetric, i.e.,
it cannot develop antisymmetric components as a result
of propagation and the oscillation frequency was found
to correspond to the beat frequency between the ground
state and the second excited state. In another run the
“cleaned” wave function was slightly displaced, thus al-
lowing us to have an antisymmetric component. The
propagation is shown in Fig. 3. This propagation shows
oscillations of about half the frequency of Fig. 1.

The beat frequencies and frequency differences be-

T )
—/ ()2 +[b(z —z0)* )’

TAMAS SZAKACS e al. 50

were “absorbed” by adding an “optical” (i.e., imaginary)
potential [48] to the low energy parts of both linear poten-
tials. It may be worth noting that the optical potential
and the electric fields are not related.

The rotating-wave approach in effect shifts the BO sur-
faces by the amount corresponding to the applied fre-
quency of light. At the same time it removes the carrier
frequency from the exciting field and leaves only the en-
velope behind. If the envelope is smooth then efficient
mixing of the BO surfaces is possible in the neighbor-
hood of the crossing point of the shifted potentials. To
start the computation, the initial wave function on each
surface was made of identical Gaussian wave functions
and the centers placed to the crossing point of the sur-
faces. The wave functions oscillate heavily as a result
of the strong coupling between the surfaces and the ac-
celeration on each surface. Parts of the wave function
are leaking out quickly from the potential well created
by the two potentials and the interaction between them,
but there are parts that have a much longer lifetime.
To study the effect, the following procedure was intro-
duced: (a) the wave function was propagated and (b) it
was normalized to 1 after each time step. This method
was used since the wave function decays and normaliza-
tion at each time step can avoid this obstacle. Through
this method, short lifetime components of the wave func-
tion decay while long lifetime components survive. A true
propagation after this “cleaning procedure” are shown in
Fig. 1. In all cases of linear BO surfaces the wave function
of one of the potential surfaces is shown since the other
part of the wave function behaves in a similar fashion,
but opposite in phase.

The wave functions are oscillating and that is the result
of the interference between parts of the wave function. To
proceed we note that the Hamiltonian without the kinetic
terms may be diagonalized. The kinetic term couples
these potentials and they may be considered uncoupled
asymptotically in the high field limit. The diagonalized
potential is

(3.1)

1200
900

Ootime (fs)
3.75

5.0

FIG. 1. Evolution of the “cleaned” wave function on BO
surface 2. Evolution on BO surface 1 is similar, but opposite
in phase.
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0.010

0.005

0.000

—0.005

—-0.010

—0.015
0

z (a.u.)

FIG. 2. Diagonalized interacting linear potentials. The
slopes of the linear surfaces are +0.004 E,/ao. The interact-
ing electric fields are £ = 0.005a.u. for V.2 and £ = 0.03a.u.
for V;P, respectively.

tween the ground and the second excited states for dif-
ferent slopes and electric field amplitudes are shown in
Table I. The beat frequencies were computed by Fourier
transforming a time-dependent slice of the wave-function
amplitude at a given position. The power spectrum of
the Fourier transform of a slice (not shown) exhibits a
high peak corresponding to the Rabi flopping frequency.
A secondary peak is found corresponding to the beat fre-
quency between the ground state and the second excited
state. Table I shows good agreement between the fre-
quency w;3 determined from the bound state eigenvalues
and w;, determined from the Fourier frequency differences
above. From the correlation between beat frequencies
and the energy differences of the eigenfunctions of the up-
per part of the diagonalized potentials, the suggested way
to find the locked state is to start with the ground state
of the upper diagonalized potential and compute the cor-
responding state for the original potentials, i.e., use the
inverse of the diagonalization transformation. The trans-
formed wave function is shown in Fig. 4. The propagation
of this wave function on the linear BO surface 2 is given

1200

900

time (f
25 300 ime (fs)
u.)

FIG. 3. Evolution of displaced wave function on BO surface
2.
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TABLE 1. Beat frequencies (ws), frequency difference (w;3)
for different slopes (), and electric field amplitudes (&). All
values are in atomic units except for the corresponding oscil-
lation times (in parentheses), which are in femtoseconds.

) &o wp w13
0.004 0.005 563x107% (270fs)  5.47x10 7 (278fs)
0.004 0.03 2.53x107* (600fs)  2.43x10~* (625 fs)
0.020 0.03 11.4x107* (133fs)  11.8x107* (128fs)

in Fig. 5. The remaining oscillations are a consequence
of the approximation used (e.g., neglecting the kinetic
terms in the diagonalization procedure).

In another set of runs it was studied how long one can
keep the wave function locked or, in other words, what is
the leaking rate at constant field amplitude. Runs were
made for different slopes, different electric field strengths,
and with true Schrédinger propagation, i.e., without the
normalization in each step. Then the region without the
optical potential was evaluated and the probability of
finding the wave function within this region was com-
puted. In the time interval studied, the decay was fit-
ted by an exponential, the rate of which gives an upper
bound on the inverse of the longest lifetime, since the
longest lifetime state was not always reached in the com-
putations. The decay rates are shown in Fig. 6. The
parameters of the curves are the slopes. Decay rate in-
creases with increasing slope of the potentials and de-
creases with increasing amplitude of the electric field:
The higher the slope of the potentials the more rapid
the leakage from the locked region, and the stronger the
locking field the more efficiently it blocks the leaking. As
may be seen from the figure, reasonable electric fields
result in efficient locking. (The value —2 x 10~° of the
figure corresponds approximately to a 1 ps lifetime.) In
this work only BO “surfaces” of identical — but opposite
in sign — slope were investigated. The problem is, how-
ever, very much the same for the case of different slopes.
Locking becomes unstable if both BO surfaces are tilted
to the same direction or, in other words, if the slopes
have identical sign.

1.2+ g
|| —
] ==+
08t |
0.4+ 1
. A
L . . ‘ .
0 1 2 3 4 5 6

T (au.)

FIG. 4. Target wave functions. (At every point the wave
functions are of the same phase.)
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FIG. 5. Evolution of the ground state wave function of the
upper surface of the diagonalized potential. The evolution on
BO surface 2 is plotted.

IV. OPTIMAL CONTROL

Locking is envisioned as a two-step process consisting
of (1) transferring the initial ground state wave function
to the position where it is to be locked and then (2)
applying the constant amplitude locking field. To achieve
the transfer a target wave function needs to be chosen.
The parameters of Fig. 5 are such that the slope values
correspond to the diatomic molecule CsI at the point
where the BO surfaces have the same slope, but with
opposite sign. The upper CsI BO state is repulsive, as
seen from Table II. The locking point on the CsI BO
surface is at o = 6.52a.u. Parameters for the CsI BO
surfaces are given Table II.

The initial ground vibrational state for Csl was found
by the method of Kosloff and Tal-Ezer [50] through in-
tegration of the time-dependent Schrédinger equation in
imaginary time.

For the initial trial electric field we chose the chirped
electric field from an earlier optimization of CsI [32]. The
reason for this choice was that this chirped electric field
results in a wave function that overlaps with the target
wave function on both the lower as well as the upper
surfaces and this choice ensures that a gradient method
can start.

TAMAS SZAKACS et al. 50

6 =0.004
0F = — ]
E-2x 107 .
Gt x 107 F
—6x 10 °F T 5 = (.02 1
—S8 0TS 0.01 0.015
Electric field (a.)

FIG. 6. Decay rates of locked wave functions vs electric
field strengths. Parameters of the curves correspond to the
slopes of the linear potentials in atomic units.

In the first iterations the Krotov method was used with
the split operator (SPO) propagator [46,47]. The com-
bination gave quick convergence; however, at later steps
of the computation the method started to increase the
electric field values for small penalties on the electric field
energy and for the first few femtoseconds. Using a higher
penalty value the effect became smaller. The conjugate
gradient method (CGM) combined with a line search [31]
is very slow compared to the Krotov method, and a mixed
approach was tried by transferring the reasonable Krotov
results to the CGM method for the case of low penalty
and transferring the converged Krotov results to CGM
for the case of high penalty. CGM improved the results
for both cases, that is, the Krotov local maximum was
smaller than the CGM one for this computation. For
the final CGM runs, the weighted penalty function was
included. The results on the electric field for the low
penalty case is given in Fig. 7. The final time wave func-
tion for the low penalty case is displayed in Fig. 8. It is
interesting to note that in the high penalty case almost
the entire amplitude of the wave function is placed on
one of the potentials and not on both as the target was.
(The symmetry of the problem indicates that the actual
potential surface where the wave function is placed to
depends on the initial electric field.) The low penalty

TABLE II. Parameters of potentials and grid used in the simulation of CslI dynamics (as given

in [49]).

Ground potential

Excited potential

Vg = aexp(—pr) —1/(r — 1)
a = 131.569a.u.

B =1.37042a.u.

r1 = 0.893631 a.u.

Vu = exp[—d(r —re)] — Ce/(r — 72)® + Voo
d=2.57102a.u.

re = 4.20 a.u.

C¢ = 10.0a.u.

ro = 1.88972a.u.

Voo = —0.02939921 a.u.

Dipole moment

p=03a.u.
Masses

mcs = 132.909 amu m; = 126.904 amu
Grid

N = 256-512

Ar = 0.0165a.u.
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FIG. 7. field for

(Ae = 0.025).

Optimized electric low penalty

solution, on the other hand, is powerful enough to place
amplitudes to both BO surfaces as desired.

The resulting CslI wave packet of Fig. 8 was then locked
at the same point with a sinusoidal field of 0.01a.u. in
strength. The probability of finding the system in the
target state vs time is shown in Fig. 9. Close to 50%
of the CsI stays in the target state (see the time depen-
dence of the expectation value of the projector defined
by the target state (P) in Fig. 9). In fact, almost 100%
stays locked, but it oscillates around the target (see the
time dependence of the expectation value of the projec-
tion into the region 6.3-7.0a.u. given by P, and the
mean position values of the ground and upper state wave
functions (R)4 and (R),,, respectively in Fig. 9). Figure 9
also shows that the populations on the upper and ground
surfaces oscillate out of phase. The physical reason for
this can be seen in the schematic of Fig. 10, which illus-
trates the nature of locking to be a recycling of the wave
packet by the field between the upper and ground po-
tentials. The small amount of leakage found corresponds
to those portions of the wave packet that escape the re-
cycling process and exit to the right on the upper curve
and to the left on the ground curve.

2.0 aE T T — T
1.8
1.6
1.4
1.2
1.0
0.8
0.6
04} E
0.2 .

0'0 1 L i 1 1
5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0

R (a.u.)

y(R)? — |
e(R)I —

T

T

T
1

FIG. 8. Final time wave function around target position
for the low penalty case.
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-200 0 200 400 600 800
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1000

FIG. 9. Results of locking. The continuous curve of the
upper figure shows the time dependence of the probability
of finding the CsI system in the target state. The dashed
curve of the upper figure plots the time dependence of the
expectation value of finding the wave function in the region
between 6.3 and 7.0 a.u. Curves of the lower figure show the
position mean values of the ground ((R),) and upper potential
wave functions ((R).), respectively. Time zero corresponds to
the end of the optimal control procedure to create the target
wave function and to the start of sinusoidal locking field.

S

/

FIG. 10. Schematic of locking corresponding to
wave-packet recycling according to the indicated path be-
tween the two surfaces u and g. The dashed arrows corre-
spond to the small portions of the wave packet that escape
the locking process.
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V. CONCLUSION

The objective of this work is to extend optimal control
theory to prepare and hold molecules in quasistationary
nonequilibrium states, with the ultimate goal of subse-
quently studying the properties of such molecular con-
figurations. A variety of possible applications of locking
can be envisioned including to the scattering and spectro-
scopic properties of such molecules. In addition, the abil-
ity to locally lock molecular configurations at a sequence
of structures combined with laboratory feedback opti-
mal control [23,32,33,44] may open up a new approach
to potential surface determination. We have shown that
one can prepare a given state localized at a given bond
length with the help of the optimal control approach and
that tne resulting state can be successfully locked with
the help of a constant amplitude sinusoidal electric field.
Locking may be made efficient and long lasting with rea-
sonable strength electric fields. It is, however, clear that
control theory is not being fully utilized in this example.
Control is used here only to prepare the wave packet that
can be locked efficiently with a sinusoidal electric field.

TAMAS SZAKACS et al. 50

Control theory, however, could be used to optimize lock-
ing over the full time period. In this respect the work
may be considered as providing the initial guess for a full
optimal control study. On the other hand, we would like
to stress that the approach is viable from the experimen-
tal point of view when the process is to be optimized in
the laboratory and the number of optimizing parameters
should be kept low: The approach restricts the long time
control to the optimization of a few parameters, e.g., the
amplitude, the frequency, and possibly the chirp of the
electric field [32].
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