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On quantuin mechanical phase-space wave functions 
Joactiim J. Wlodarz 
Department of Chemical Physics, Technical University of Denmark, DTH-301, DK-2800 Lyngby, Denmark 
and Department of Theoretical Chemistry, Silesian University, Szkolna 9, PL-40006 Katowice, Poland a) 

(Received 4 October 1993; accepted 27 January 1994) 

An approach to quantum mechanics based on the notion of a phase-space wave function is proposed 
within the Weyl-Wigner-Moyal representation. It is shown that the Schrodinger equation for the 
phase-space wave function is equivalent to the quantum Liouville equation for the Wigner 
distribution function. The relationship to the recent results by Torres-Vega and Frederick [J. Chem. 
Phys. 98, 3103 (1993)] is also discussed. 

I. INTRODUCTION 

Recently, a new phase-space representation of quantum 
mechanics has been proposed by Torres-Vega and Frederick.’ 
This representation is based on an abstract Hilbert space 
structure defined on the phase space in close analogy to the 
well-known Dirac formulation;’ The basic obje:ts in this rep- 
resentation, the momentum P and position Q phase-space 
operators are chosen in the form 

P%Pd’( YPfitia-$hd 
and 

6&m= %T+ifiiP f i 1 @ (P4), 
where CY, p, y, and 6 are some real constants. Taking into 
account the commutation zelatioq between the position and 
momentum operators [Q,P] = itil and the various forms of 
the Liouville equation, the best values of these constants 
found in Ref. 1 were CY= y= l/2 and p= - S= 1. Other phase- 
space operators representing observable quantities were con- 
sidered to be certain functions of these two basic operators. 
To avoid ordering Broblems, operators depending simulta- 
neously on Q and P were not discussed. The quantum states 
are represented in this model by phase-space wave functions, 
evolving in time according to the phase-space Schrijdinger 
equation. 

In this paper we propose a similar approach, but based 
on the Weyl-Wigner-Moyal phase-space representation of 
quantum mechanics3-’ We introduce a notion of phase-space 
wave function 1// (p,q) which is directly related to the 
Wigner distribution function, and we show that the phase- 
space Schriidinger equation governing the time evolution of 
this wave function is equivalent to the quantum Liouville 
equation for the Wigner distribution function. The usage of 
the Weyl-Wigner-Moyal representation solves at the same 
time the operator ordering problems not addressed in Ref. 1. 
We show then that the quantity I+ (p,q) 12, a phase-space 
probability density, may be interpreted in some sense as the 
classical part of the Wigner distribution function. Comparing 

a)Pem-mnent address. 

our approach with that introduced in Ref. 1 we find that after 
suitable transformation of the momentum and position vari- 
ables these both approaches coincide. 

II. THE WEYL-WIGNER-MOYAL FORMALISM 

The Weyl-Wigner-Moyal formulation of quantum me- 
chanics is the first introduced and probably also the best 
known phase-space representation of quantum mechanics. In 
this approach the states of the system under consideration as 
well as the dynamical variables are represented through the 
appropriate phase-space functions according to the relation 

a”(p,ql=h+f dNT expj f PT] (q+$(q-S) (2 1) 
known as the Weyl transfonn6 Together with the * product 
of phase-space functions defined as follows:7 

(a*b)(p,q)= ; 2N/ dNPl dNP2 dNQl dNQ2 
0 

Xa(Pl+p,Ql+q)b(P2+p,e2+4> (2.2) 

it establishes an isomorphism between the algebra of opera- 
tors of the standard quantum mechanics and the algebra of 
phase-space functions. Sometimes the * product is expressed 
in the differential form 

ISa’ ;a’ 
(~*b)(m7)=4kw)exp - - -dq ap 

3P dq 
bb>q)> 

(2.3) 

where the arrows indicate the function to be processed. It 
should be emphasized that these two forms are equivalent 
only when a(p,q) and b(p,q) are sufficiently regular phase- 
space functions. In general Eq. (2.3) is only an asymptotic 
expansion with respect to fi of of the rhs of Eq. (2.2) (cf. 
Refs. 8-10 for more details). 
- The following relations involving the * product will be 
useful throughout this paper: 
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(a+b)*=b**a* 

I /p &(a*b)b,q)= I /p 4hw)bb~q)~ 

I dp dq 4p>q)(b*ckw) r 

(2.4) 

(2.5) 

= 
I 

/p dq b(p,q)(c*a)hq) 

= I /p dv(p,q)(a*b)b,q). (2.6) 

The states of a system are represented in the Weyl- 
Wigner-Moyal representation through the famous Wigner 
distribution function4 

P"(Pd)'h -9 dNT ew[ i pT}( q+$lr-5) ,~ ~, 

which is the Weyl transform of the density operator 6. 
It is known” that the Weyl transform maps Hilbert- 

Schmidt operators onto square-integrable phase-space func- 
tions and vice versa. Because density operators are positive 
trace class operators which are also in the Hilbert-Schmidt 
class, the Wigner distribution functions are square integrable, 
too. Equipped with the scalar product in the usual form 

cf&) =I, dp dq f”(p,qk(p,q) (2.8) 

the space L2(r) of square-integrable phase-space functions 
becomes a Hilbert space. 

Integration of a function over the whole phase space 
corresponds to taking a trace in the standard picture of quan- 
tum mechanics, and therefore the expectation value fimc- 
tional has here the following, classical-looking form 

(2.9) 

There are many other known phase-space representa- 
tions of quantum mechanics, but the Weyl-Wigner-Moyal 
representation occupies a unique position among them (see, 
e.g., Ref. 12 and references therein). Moreover, all of them 
are related to the Weyl-Wigner-Moyal representation.13 

Ill. WIGNER PHASE-SPACE WAVE FUNCTIONS 

It is well known (cf., e.g., Ref. 14) that any Herm@n 
trace class operator could be expressed as a product AAt, 
where i is an operator from the Hilbert-Schmidt class. As a 
corollary, any Wigner distribution function could be written 
in the form 

P'y(P,4)=(9*g*)(Plq), (3.1) 

where @L2(l?). The rsle played by fip,q) could be clearly 
seen after inserting the product +ty” in the expectation 
value functional Eq. (2.9) instead of the Wigner distribution 
function pIV(p,q) and rearranging the subintegral expression 
according to Eq. (2.6): 

(A> =I$ dp 

= I /p dp 

7477 

(3.2) 

Introducing formally a (left) *-product operator 

a'"cll(PJ?)=(~"*ti)(P~q) (3.3) 

we could write this expectation value functional in the famil- 
iar form 

(J@=(!GW~~. (3.4) 

We see then that $fp,q) plays exactly the same kle as the 
ordinary wave function does in the standard formulation of 
quantum mechanics. Moreover, due to the properties of the * 
product [cf. Eq. (2.6)], all *-product operators corresponding 
to physical observables are Hermitian. 

All properties of ordinary wave functions in the position 
or momentum representation are valid also for these phase- 
space wave functions. For example, every phase-space wave 
function may be expressed as a linear combination of some 
mutually orthogonal basis elements, which could be fur- 
nished, e.g., by the set of eigenfunctions of a Hermitian 
phase-space operator 

i”i)=X& (3.5) 

Multiplying both sides of this equation by *@ from the right 
and using Eq. (3.1) we get the eigenvalue equation for the 
Wigner distribution function 

,-Wp” = )g (3.6) 

which has exactly the same form. However, Wigner distribu- 
tion functions are real-valued while the phase-space wave 
functions are in general complex valued. Hence, when solv- 
ing phase-space eigenvalue problems without imposing ad- 
ditional conditions we get always phase-space wave func- 
tions rather than Wigner distribution functions. 

In the case of the phase-space Hamiltonian operator, i.e., 
when c?=I%~, we obtain the time-independent Schriidinger 
equation in its familiar form. This equation could be also 
easily derived from the general time-dependent Schrodinger 
equation (see next section). 

Due to the definition of the * product these eigenvalue 
equations are in fact pseudodifferential equations (cf, e.g., 
Ref. 15) which are generally difficult to handle. As in the 
standard formulation of quantum mechanics, analytical solu- 
tions are possible only for the simplest systems, e.g., for the 
harmonica1 oscillator. To deal with other cases, appropriate 
approximative methods should be applied. Promising results 
were obtained recently by convertion of the eigenvalue prob- 
lem Eq. (3.6) to a variational form.t6*i7 

IV. THE PHASE-SPACE SCHRijDlNGER AND 
LIOUVILLE EQUATIONS 

Guided by the similarity to the standard approach to 
quantum mechanics, let us assume the time-dependent 
phase-space Schrodinger equation in the form 
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wt ih dt =hvw~t=hW*t,b~. 

Using the properties of the * product it could be easily 
shown that this phase-space Schrodinger equation’ is equiva- 
lent to the Liouville equation for the Wigner distribution 
function. 

Let us write the complex conjugate of Eq. (4.1) 

ifi 
a*,* - 3 - ,+hW. 

dt 

Multiplying Eq. (4.1) by *I@ from the right and the Eq. 
(4.2) by &* from the left and adding the results side-by-side 
we get r . 

a*:: 
**:+!A* dt =hW*Wt*@) 

--(~t*~3*hw (4.3) 

which, after insertion of py for $t+ I@ gives the well-known 
quantum Liouville equation for the Wigner distribution func- 
tion 

aP; 
ifi dt =hW*p;-p;*hW. 

The time-independent phase-space Schrijdinger equation 
mentioned, in the previous section could be also derived as- 
suming the stationary phase-space wave function in the form 

MP,4)=exp i I -i f G(P74). (4.5) 

Notice that the time-dependent phase factor will not appear 
in the corresponding. Wigner distribution function. 

V. INTERPRiTATlON OF THE WIGNER PHASE-SPACE 
WAVE FUNCTION 

It is well known that the Wigner distribution function, 
unlike the classical phase-space distribution functions, can- 
not be directly interpreted as a probability density. Various 
attempts have been undertaken to “smooth” the Wigner dis- 
tribution function to get a probability density. Now it is 
known that the often postulated “coarse graining” approach 
by using phase-space cells of a finite size is impossible.‘8*19 
Due to the Wigner theorem?’ we would sacrifice some use- 
ful properties when insisting on the positiveness of the quan- 
tum distribution function. Furthermore, using, e.g., the Hu- 
simi distribution functionzl we even introduce some arbitrary 
parameters into the theory. 

The phase-space wave function introduced above offers 
an additional possibility of getting phase-space probability 
densities, indicated also in Ref. 1. Namely, the quantity 
1 fip,q) 1’ as a real and everywhere nonegative phase-space 
function is a perfect candidate here. Moreover, as it will be 
shown below, it could be interpreted in some sense as the 
classical limit or, under certain limitations, even as a “clas- 
sical part” of the Wigner distribution function. 

Using the differential form of the ‘si product [cf. Eq. 
(2.3)] we may write 
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pw= l#b*+*= @g*+@(n). (5.1) 

In the classical limit, when h-+0, the term O(6) vanishes 
and pw(p,q) becomes equal to IIc,(p.q)(‘. In the case when 
the respective &expansion converges, we could split 
uniquely the * product into two parts 

(a*b)(Psq)=4Pvq)b(PIq)+(a 0 b)(p,q). (5.2) 

The first term a(p,q)b(p,q) is the ordinary point-wise prod- 
uct of phase-space functions, while the remainder collecting 
all i&depending terms forms the “diamond” product 
(aOb)(p,q). As before, in the limit when fi+O we have 
that (a+b)(p,q)-a(p,q)b(p,q), and therefore we may 
consider a(p,q)b(p,q) as the “classical part” of the 
*-product and (a 0 b)(p,q) as the “quantum part.” Accord- 
ing to Eq. (5.2) we may then write the Wigner distribution 
function as 

p”=~**‘“=+**++o $” (5.3) 

and in this meaning &I? becomes the “classical part” of the 
Wigner distribution function. Moreover, we get then a one- 
one correspondence between the Wigner distribution func- 
tion p”(p) q) and the respective phase-space probability den- 
sity Itip,q) 1’. According to Eq. (2.5) we have that 

I dP dq PW(P*q)= 
r I /P dq(cCI*$“)(p,q) 

and also that 

&l~(P4>12’ 1 (5.4) 

I /p &(W fl*)(zw)=O. (5.5) 

Hence, I tip ,q) I2 is also always properly normalized to unity. 
Applying Eq. (5.2) to the rhs of Eq. (4.4) we find that the 

“classical” terms cancels each other and therefore the quan- 
tum Liouville equation may be also expressed in the “dia- 
mond” product form 

iii g =hWOpW-pWOhW. (5.6) 

It is interesting that t,bfp,q) describes the state of a quantum 
system while at the same time I &p,q) 1’ seems to describe its 
classical limit. This makes plausible to write the phase-space 
wave function in the factorized form 

(5.7) 

where &(p,q) = JI t,b(p,q)l’ is the “classical part” of the 
phase-space wave function and the “quantum part” appears 
as a complex phase factor. 

Like in the approach introduced in Ref. 1, integration of 
the phase-space probability density ( (Ir (p , q) 1’ over one of the 
variables, p or q. does not lead to the proper marginal den- 
sities in the position or momentum representations. However, 
an indirect link with these marginal densities is always pro- 
vided by the respective Wigner distribution function, which 
integrated over p or q gives the correct marginal densities 
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I dp P’(p,q> = 1 44d12, r (5.8) 

I dq p’“bd=b(p)12~ r (5.9) 

VI. RELATION TO THE TORRES-VEGA AND 
FREDERICK APPROACH 

Now we will show that our approach and that proposed 
by Torres-Vega and Frederick are essentially the same when 
neglecting the operator ordering problems. This could be 
most conveniently done through comparing the phase-space 
Schrodinger equations introduced in both approaches. 

The phase-space Schrodinger equation introduced in 
Ref. 1 has the form 

ifi i (p,4l+Jt)=H [ ( w+ifia $( w+ifiP g)] 

which, after some algebra, could be rewritten 
(2.25) in Ref. l] 

ifi i 1 
2 a’ (p,ql~J=~(w,~qhp %a------ 4YP) Jq 

2; 
+ifi/3 -- 

&%7) dP I (Pd?4/t). 

(6.1) 
type integral transform form in the “asymmetric” Torres- 
Vega and Frederick approach [cf. Ref. 11, Eq. (4.19) and Eq. 

to [cf. Eq. (4.23)]. Within our “‘symmetric” approach the appropriate 
inter-twinning operators lose the Fourier-type character due to 
additional resealings of the variables which need to be ap- 
plied to the phase-space wave functions. In the “asymmet- 
ric” approach these resealings are already included in the 
form of the phase space operators. 

(6.2) 
VII. SUMMARY 

Notice that the momentum and position variables appearing 
in the Hamiltonian function are different from those appear- 
ing in the phase-space wave function. The differentiation op- 
erations are also performed in different ways for these two 
quantities. 

In our approach, based on the Weyl-Wigner-Moyal 
phase-space representation, the observables and the states are 
treated exactly on the same footing and there is no difference 
in handling, e.g., the Hamiltonian function and the phase- 
space wave function. 

Setting fi= yp and @= aq as the common phase-space 
variables we see that Eq. (6.2) takes exactZy the same form as 
Eq. (4.1) for a= F l/2 and p= - 6= 1, the values chosen as 
canonical in Ref. 1 and assuming that the * product is ex- 
pressed in the differTntia1 fcrm. 

The operators P and Q [see Eq. (1.1) and Eq. (1.2)] 
expressed in these common variables take in this case also 
the form of the Wigner operators introduced by Bopp” and 
KuboU 

(6.3) 

(6.4) 

The “asymmetrical” treatment of observables and states 
may sometimes be more convenient than the “symmetrical” 
one. An important example is furnished here by the Fourier 
projection of phase-space wave functions onto the ordinary 
position or momentum wave functions introduced in Ref. 1. 
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The idea of sufh proj:ction consists in finding an inter- 
twinning operator Tq (or Tp) acting from L’(r) to L’(q) [or 
L’(p)] and such that 

~&= @Fq (6.5) 

and 

?&= F;fq (6.6) 

holds for all n EN. The momentum and position operators 
are labeled here according to the respective functional 
spaces. This inter-twinning operator enables us to convert the 
phase-space Schriidinger equation to its position (or momen- 
tum) equivalent, provided that all quantities appearing in this 
equation are analytic functions of position and/or momen- 
tum. The respective position (or momentum) wave function 
takes then simply the form 

A(d=~*~t(Pd. (6.7) 

These intertwinning operators have a simple, Fourier- 

The approach presented in this paper enables us to deal 
with quantum systems within the Weyl-Wigner-Moyal 
phase-space representation of quantum mechanics in the 
same manner as it is done in the standard picture of quantum 
mechanics. The phase-space S&r&linger equation being, as 
we have shown, equivalent to the quantum Liouville equa- 
tion for the Wigner distribution function, is at the same time 
easier to handle from the applicational point of view. Al- 
though it is impossible to transform directly the phase-space 
wave functions to the appropriate wave functions in the po- 
sition or momentum representation in the meaning of the 
Dirac transformation theory, all these wave functions and 
also the respective Wigner distribution function contain still 
the same information about the state of a system. It is so 
because the underlying algebraic structures are in all these 
approaches isomorphic. The quantity l+(p,q)12 could be in- 
terpreted as phase-space probability density and we show 
that it may be also regarded as the classical limit of the 
respective Wigner distribution function. 

When limiting the considerations to the cases where op- 
erator orderings are not explicitly involved, the approach to 
the phase-space quantum mechanics proposed by Torres- 
Vega and Frederick’ differs from our only in the “asymmet- 
ric” treatment of observables and states. This asymmetry, 
although sometimes more useful on the quantum level, may 
cause difficulties in the classical limit. Our approach, being 
based on the Weyl-Wigner-Moyal formalism is free from 
this problem. 
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