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Synopsis 

The motion of a sphere accelerating from rest along the center line of a cylindrical tube filled 
with a polyisobutylene (PIB) Boger fluid is examined both experimentally, using a digital 
imaging system, and numerically via a Lagrangian finite element method for single and 
multimode Oldroyd models including inertia. Spheres of diameter 2.54 cm and varying densities 
are released in a tube of radius 5.23 cm. Deborah numbers in the range 0.4 < De ( 11.7 are 
obtained, and the experimental results show transient velocity overshoots of up to 50% before 
the spheres approach their final constant settling velocity. Independent measurements of this 
settling velocity indicate significant drag increases at high De. The numerical calculations are 
compared with the experimental data, and markedly improved agreement is obtained for 
multimode simulations. 

I. INTRODUCTION 

The motion of a sphere through a quiescent fluid is one of the classic problems in 
Newtonian fluid mechanics, and the corresponding behavior in non-Newtonian liquids 
is the focus of much current research. The fluid motion near the sphere is inhomoge- 
neous, with strong extensional velocity gradients near the fore and aft stagnation 
points, and large shearing components near the equator of the sphere. For such rea- 
sons, the falling ball viscometer has frequently been suggested as an instrument for 
obtaining information about the material functions of a non-Newtonian fluid in a 
nonhomogeneous flow (see, e.g., Cygan and Caswell, 1971; Cho et al., 1984). The 
steady motion of a sphere in a cylindrical tube containing viscoelastic fluid has also 
been selected as a benchmark problem for the evaluation of numerical codes (Has- 
sager, 1988 ) . A large body of experimental and numerical data concerning the steady 
motion of spheres in viscoelastic fluids has been published over the past 15 years, and 
detailed reviews have been published elsewhere (Walters and Tanner, 1992; Chbabra, 
1992). 

In this work, we study the time-dependent motion of a sphere along the center line 
of a cylindrical tube containing viscoelastic fluid as it accelerates from rest under the 
influence of gravity. Early theoretical work for such transient motion of a sphere in an 
unbounded domain was performed by King and Waters ( 1972) using the linear vis- 
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coelastic Jeffreys model coupled with the time-dependent form of the equations of 
motion for creeping flow. Analytic solutions for the time-dependent velocity of the 
sphere were obtained, and the results showed velocity overshoots together with the 
possibility of damped oscillations about the ultimate steady-state settling velocity U, 
depending upon the value of two dimensionless groups. These groups can be inter- 
preted as the elasticity number 

and the ratio of the retardation time to the relaxation time 

(2) 

where a is the radius of the sphere, pf is the fluid density, 70 is the zero-shear-rate 
viscosity of the fluid, and vS is the solvent viscosity. The elasticity number E is usually 
interpreted in steady flows as the ratio of elastic stresses ( - ;ll~7&,,/a~) to inertial 
stresses ( - p& ) in the fluid. In transient motions, however, it is more useful to 
consider E as the ratio of the elastic time scale ( - 11) for growth of viscoelastic 
stresses in the flow to the viscous time scale ( - ~/cz~/~o) for diffusion of vorticity 
information from the accelerating sphere into the surrounding fluid. 

Lai (1974, 1978) solved the same problem for the time-dependent drag on the 
sphere given a prescribed velocity profile. More recently, Ramkissoon and Shifang 
(1993) determined analytically the flow field in the surrounding fluid due to the 
unsteady motion of a sphere through a second-order fluid. 

This problem has also been adopted recently as a model geometry for testing 
transient numerical algorithms. Zheng and Phan-Thien ( 1992) used a boundary ele- 
ment method to generate numerical solutions for the transient motion of a sphere in an 
upper-convected Maxwell model, including the presence of the cylindrical tube walls, 
but ignoring the inertia of the fluid. They found that increasing the dimensionless 
geometric ratio 

a 

where a is the radius of the sphere and R is the radius of the tube, led to a decrease in 
amplitude of the velocity overshoots, and to an increase in frequency of the oscillations 
at a fixed Deborah number. 

Bodart and Crochet (1993) provide similar computations using the Oldroyd-B 
model including the effects of fluid inertia and the constraining presence of the tube 
walls. In this work, they show that for a sphere of fixed radius and density, increasing 
K leads to an increase in the relative magnitude of the velocity overshoot with respect 
to the ultimate asymptotic settling velocity U, . 

However, on the experimental side, almost no data are available for this transient 
problem. A qualitative strobe photograph is given by Walters and Tanner ( 1992) for 
a 3.2 cm diameter sphere accelerating from rest in a narrow tube containing Boger 
fluid. The photograph indicates that the sphere overshoots its ultimate steady settling 
velocity by about 300%. The present study uses a digital imaging system to provide 
quantitative measurements of the transient velocity of a sphere with high spatial and 
temporal resolution, and these results are compared with Lagrangian finite element 
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FIG. 1. (a) Schematic diagram of the experimental apparatus for measuring transient and steady motion of 
a sphere falling through a viscoelastic fluid. (b) Detail of the sphere and attached wire release mechanism. 

calculations using both single and multimode formulations of the Oldroyd-B model, 
incorporating both inertia and the presence of the tube walls. 

II. EXPERIMENTAL TECHNIQUE 

A. Overview 

The overall experiment is shown in Fig. 1 (a). A 90 cm long plexiglass cylinder of 
internal radius R = 5.23 cm is filled with Boger fluid, and its axis is carefully aligned 
parallel with gravity. Although not shown in Fig. 1 (a), the entire cylinder is enclosed 
in a rectangular box filled with refractive-index matched fluid to eliminate refraction 
effects at the curved air-cylinder interface. The infrared photodiodes are used to 
obtain an independent estimate of the ultimate steady-state settling velocity U, of 
each sphere by measuring the transient time through a 40 cm section of the tube. This 
section was located 30 cm (24~) below the free surface and 20 cm ( 16a) above the 
closed end of the cylindrical tube, in order to ensure that initial transients and end 
effects do not affect the measurements. 



380 BECKER ET AL. 

TABLE I. The densities pr of the spheres used in the experimental measurements, and the nominal values 
of the Deborah number and Reynolds number estimated a priori using the settling velocity U, expected in 
a Newtonian fluid of equivalent viscosity. 

Material p,Wd Us (cm/s) De Re 

Delrin 1.38 0.649 0.406 0.011 
Teflon 2.18 1.71 1.07 0.028 
Ceramic 3.85 3.91 2.45 0.064 
Bronze 7.57 8.84 5.53 0.145 
Chrome steel 7.81 9.16 5.73 0.150 
Tungsten carbide 15.0 18.7 11.7 0.307 

Since we are interested in resolving the initial transient acceleration of the sphere 
from rest, great attention was paid to the design of the release mechanism of the 
sphere. In our numerical simulations, gravity is essentially turned on instantaneously 
at time t = 0; however, such a system is not realizable experimentally. Preliminary 
experiments showed that the presence of any solid bounding surface (e.g., electromag- 
nets, tweezers, clamps, etc.) near the stationary sphere resulted in a delayed initial 
acceleration of the sphere due to the high lubrication forces that develop in the thin 
layer of viscous fluid entering the gap between the sphere and its mounting device. 
These effects were eliminated by using the configuration shown in Fig. 1 (b). A 1.27 
cm piece of 100 pm diameter wire is attached to a high tolerance 2.54 cm diameter 
sphere, and the free end of the wire is then gripped by a pair of long, thin tweezers. The 
tweezers are partially immersed in the fluid and carefully aligned with the center line 
of the tube, with the center of the sphere being 5 sphere radii below the free surface. 
The steady creeping motion of a Newtonian fluid past a sphere attached to a slender 
body was studied by DeMestre and Katz (1974) for an unbounded domain, and based 
on that analysis, the additional drag arising from the thin wire is calculated to reduce 
our measurements of the ultimate steady-state settling velocity of the sphere by no 
more than 2%-3%. This correction is of approximately the same size as our experi- 
mental error. Comparisons of the drag enhancement experimentally observed in the 
viscoelastic fluid using spheres with and without the string attached also showed no 
statistically significant difference in the calculated drag coefficients. The wire is not 
included in the simulations presented here. However, the simulations do show very 
strong gradients in polymer configuration near the aft stagnation point, and the wire 
may need to be included in future simulations, especially if the stability of the flow is 
to be considered. 

The various spheres used in these experiments were commercially available ball 
bearings of diameter 2.54 cm and sphericity tolerances of less than 2.5 pm. The density 
ps of these spheres is shown in Table I, together with the steady Newtonian settling 
velocity U, expected for each sphere in a tube of equal radius filled with a viscous 
Newtonian solvent of equivalent viscosity 70. This velocity is calculated by equating 
the gravitational body force on the sphere with the viscous drag exerted on a sphere in 
a tube as 

us = 
(4/3)~a3(ps-pf)g 

6vOaKN ’ 
(4) 

where g is the gravitational acceleration and KN( K) is the Faxen wall correction factor 
[Happel and Brenner (1983)] describing the reduction in velocity resulting from the 
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presence of walls. For K = 0.243, the correction factor is KN = 1.93. As the radius of 
the tube increases and the constraining effect of the wall decreases, K + 0 and KN ---f 1, 
so that Eq. (4) reduces to the well-known Stokes settling velocity. 

We also wish to compare our results with transient numerical simulations; however, 
the relevant dimensionless quantities measuring the importance of viscous, inertial, 
and elastic effects in the steady flow ultimately achieved are unknown apriori. For this 
reason, we choose to define nominal Reynolds numbers and Deborah numbers in 
terms of the settling velocity U, expected for such a sphere as 

2QPf Us 
Re = - 

IlO 
(5) 

and 

4us 
De = - 

a ’ 
(6) 

respectively. It should be noted that the elasticity number E defined in Eq. ( 1) is 
simply the ratio of De to Re, and is independent of the flow kinematics, depending 
only upon the geometry and the material functions of the fluid. For the PIB Boger 
fluid used in this work, with the viscometric properties given in Sec. II B, the elasticity 
number E = 38.1, indicating that the viscoelastic stresses acting on the sphere grow 
on a time scale much longer than that required for diffusion of vorticity information. 

The values of De and Re shown in Table I thus represent the range of parameters 
expected if the viscosity of the non-Newtonian fluid is not a function of the velocity 
gradients in the flow, and if the wall correction factor K is not a function of De or Re. 
This former assumption is valid over a wide range of shear rates for the Boger fluid, 
however, in general the second assumption is incorrect. 

Numerous experimental investigations, most recently those of Mena er al. ( 1987) 
and Chhabra and Uhlherr ( 1988), have investigated the steady motion of spheres in 
Boger fluids. Most of these investigations refer to Reynolds and Deborah numbers 
baaed on the steady sphere velocity Uo, . We refer to these as the actual Reynolds and 
Deborah numbers, and denote them Del and Rel , respectively. Also for steady motion 
it is customary to defme a drag correction factor K (K, Del) as follows: 

F drag K=-= (4/3)na3(ps-pf)g 
6rqaU, 6rrqaU, ’ (7) 

Then the nominal and actual Reynolds and Deborah numbers are related to one 
another as follows: 

Rel = 
~PfUco 
~ = Re 

&q(K) 

TO K(K,Del) ’ 

4 ucc Del = - = De 
&q(K) 

a K(K,Dq) ’ 

(8) 

(9) 

In general, for values of K < 0.3, the correction factor is only weakly dependent on 
fluid elasticity, and K varies by less than 20%. The values of De and Re in Table I thus 
provide reasonable a priori estimates of the large Deborah numbers that can be 
achieved in this flow. 
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B. Fluid rheology 

The test fluid used in these experiments is a Boger fluid composed of 0.3 1 wt.% 
polyisobutylene (PIB), 4.83 wt.% tetradecane (C14), and 94.86 wt.% polybutene 
(PB), and it has been extensively characterized over a range of temperatures in steady 
and transient shear flows (see Quinzani et al., 1990). The zero-shear-rate viscometric 
properties have been determined as r]u = 13.76 Pa s, qs = 8.12 Pa s, and v’lu = 8.96 
Pa s2, where Y to is the first normal stress coefficient in the limit of zero shear rate. 
Fitting these values to the predictions of the Oldroyd-B model in steady shear flow 
yields a relaxation time Al = 0.794 s and a viscosity ratio p = 0.59. Due to its sim- 
plicity, the Oldroyd-B constitutive equation is frequently used as a model for Boger 
fluids. Hence we present numerical simulations for the transient sphere motion using 
an Oldroyd-B single mode model with the above parameters. Although the Oldroyd-B 
model provides a reasonable description of the material functions for a Boger fluid in 
steady shearing flows, it is widely appreciated that the presence of a single relaxation 
time ;1t renders the model incapable of quantitatively describing transient phenomena 
of real polymeric fluids even in the linear viscoelastic limit (Bird et al., 1987). Hence 
numerical simulations were also performed with a multimode formulation of the 
Oldroyd-B constitutive equation using a four-mode spectrum of time constants for the 
Boger fluid, obtained from linear viscoelastic measurements (Quinzani et al., 1990). 
The relaxation times for modes i = { 1 ,..., 4) are given by /li = C2.7550.7361, 0.1094, 
0.0098) s, and the respective viscosities for each mode are Ti = { 1.108, 1.677, 1.657, 
1.211) Pa s. The material properties of Boger fluids are highly temperature-dependent, 
and are accurately described for this fluid by an Arrhenius equation with a Bow 
activation energy of AH = 6 1.2 kJ. All of the results presented in this paper have been 
corrected to 25 “C, using a shift factor evaluated at the appropriate fluid temperature 
of each experiment. 

C. Image analysis 

Video images of the Lagrangian displacement of the sphere are obtained using a 
high-resolution monochrome CCD camera (COHU 49 lo), and recorded on a Super- 
VHS video recorder (Panasonic AG1960). Eight-bit gray-scale images are also ob- 
tained in real time using a frame-grabber data acquisition board (Dipix P360) resident 
on an Intel 486 personal computer. The Dipix board contains a 32 MHz Texas 
Instruments Digital Signal Processing Chip (TMS32Oc30), along with 4 Mb of RAM, 
which allows us to avoid the bus limitations in the PC and to rapidly analyze the 
images of the sphere as described below. 

A typical digitized image consisting of 160 x 480 pixels is shown in Fig. 2 (a), and 
the corresponding histogram showing the number of pixels with a given gray-scale 
intensity is given in Fig. 2(b). The gray level varies from 0 (black) to 255 (white), 
and hence the image is composed of dark background pixels and bright pixels corre- 
sponding to the sphere. All the spheres were painted white for improved contrast. 
Each digital image is then binarized by selecting the threshold value which best 
separates the sphere from the background, resulting in the image shown in Fig. 2(c). 
Finally, the centroid of the circular image of the sphere is calculated via the following 
algorithm: 

I;iXiIi 
z = - 

ZiZiIi 

BiZj ' 
&Y= -. 

ZjIi ' 
1~cAl1, 
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FIG. 2. (a) A typical &bit gray-scale image of a 2.54 cm diameter sphere in the tube of Boger fluid. The 
thin suspending wire is just discernible above the sphere. (b) Histogram of gray-scale intensities for the 
76 800 pixels shown in image (a). The sphere corresponds to the large peak with intensities of greater than 
250. (c) Binary image of sphere after thrcsholding image at an intensity of 2 = 160. 

where x and z are the coordinates perpendicular to and along the center line of the 
tube, respectively, and Ii is either 0 or 1 depending on whether pixel i is below or above 
the threshold, respectively. 

Images can be digitized and stored in memory with this system at the NTSC video 
rate of 30 frames per second. This procedure is used to capture most of the initial 
transient motion of the released sphere, the images being stored for later post- 
processing. However, once the memory buffer has been filled to capacity, each new 
incoming frame is analyzed and subsequently discarded before the next frame is ac- 
quired. The time per frame for this process depends on image size; a typical image of 
approximately 75 000 pixels takes about 0.13 s. This slower process is continued until 
the sphere leaves the field of view of the camera. 
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FIG. 3. Calibration curve for determining the accuracy and spatial resolution of the centroid algorithm. 

To evaluate the spatial accuracy of our imaging system, the calibration curve shown 
in Fig. 3 was prepared. A sphere was mounted on a computer-controlled microposi- 
tioning stage capable of an absolute positioning accuracy of f 1 pm, and then dis- 
placed by exact spatial increments spanning three orders of magnitude. The centroid 
of the sphere as obtained via the digital imaging technique is shown on a logarithmic 
scale against the stage displacement, along with error bars that quickly shrink to a 
single bar for larger motions. This calibration curve is linear over the entire domain for 
displacements in the range of 50 pm ( N 0.004~) to 100 mm ( u 8~). Calculation of 
the slope of this curve yields the pixel scale factor for the apparatus. 

The overall accuracy of our transient measurements depends on lighting conditions, 
image distance from the camera, and settling velocity of the sphere. The camera is 
electronically shuttered to give an exposure time of 2 ms, in order to reduce the blur 
in the image caused by the motion of the sphere while the shutter is open. At the 
maximum sphere velocity of U, E 19 cm/s shown in Table I, a shutter speed of 2 ms 
gives a particle displacement of only 0.38 mm = 0.03~. The maximum experimental 
error in the results including repeatability is -A4 %. 

The Lagrangian coordinates xi( ti) and zi( ti) of the centroid for a typical experi- 
ment are shown in Fig. 4. The abrupt change in the slope of the axial coordinate at 
r = 0 corresponds to the release of the sphere. The dashed line shows the displacement 
of the sphere expected in a Newtonian fluid obtained by solving the quasisteady Stokes 
equations and using the Faxen drag correction factor KN = 1.93. It is immediately 
evident that the slope of the experimental data is initially much steeper than the 
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FIG. 4. Centroid coordinates {x(fi),z(ri)) of a 2.54 cm chrome steel sphere accelerating from rest at time 
I = 0 in the viscoelastic Boger fluid. Solid symbols (0) show the vertical (z) displacement, hollow symbols 
(A) show the lateral (x) displacement. The dashed line indicates the approximate theoretical Stokes profile. 

Newtonian prediction before decreasing at longer times, indicating the presence of an 
initial velocity overshoot. Careful inspection of the experimental data at long times 
also shows the ultimate slope is slightly lower than that of the Newtonian prediction, 
indicating the presence of a drag increase at long times. 

Quantitative measurements of the sphere velocity v,(t) can be obtained by differ- 
entiating the position data shown in Fig. 4. In general, differentiation of closely spaced 
experimental data can lead to the amplification of experimental noise; in this work, we 
use three-point and five-point centered difference formulas based on Gramm polyno- 
mials, as suggested by Whitaker and Pigford ( 1960). These formulas are given by 

lJjpt(fj) = 
zi+l-zi-l 

2At 

“;pf(tj) = 22,+2+zj+1-Zj-11-i-2 
10At 

I 

(11) 

(12) 

respectively, where Zj = z( ti) is the centroid position at time ti and At is the time 
increment between successive frames. The x coordinate varies only slightly over the 
course of the experiment, and has a negligible effect on the axial velocities. These 
formulas minimize the amplification of noise without introducing the excessive 
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FIG. 5. Transient velocity profile for a ceramic sphere (p, = 3.85 g/cm’) in a viscous Newtonian solvent. 
(0) Velocity calculated using a five-point difference method: (0) velocity calculated using a three-point 
difference method. 

smoothing associated with spline techniques. However, the formulas do smooth dis- 
continuities in discrete data, such as the physically real discontinuous change in the 
velocity of the sphere at time t = 0. For the first point in the velocity time series where 
the axial position differs from its initial rest value, a regular two-point forward differ- 
ence must be used, and the following point at ti = 2At is estimated by the three-point 
formula. At subsequent times, both the three-point and five-point methods are appli- 
cable. It was consistently found that while the five-point formula damps out random 
experimental noise at the expense of temporal resolution, the density of our position- 
time data was sufficiently high so that real transient phenomena were accurately 
resolved. Hence, our experimental results have been generated using a five-point dif- 
ference formula for all but the initial two points. It should also be noted that, with 
discretely spaced observations of the sphere’s position, we can only resolve the initial 
onset of motion to within f $ At, and our velocity time series should thus be associ- 
ated with appropriate horizontal error bars. 

The results for a test case performed with a 2.54 cm ceramic sphere in a Newtonian 
solvent of polybutene (~0 = 22.1 Pa s) are shown in Fig. 5. As expected, the velocity 
rises monotonically towards the steady-state value U, = 2.43 cm/s to within the 
indicated error bars of *2.5%. The inertial time scale associated with acceleration of 
the sphere is given by psa2/v0 = 26 ms, and hence the initial transient is barely 
resolvable with our video camera. Velocity calculations with both three-point and 
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five-point formulas are shown in the figure, and while their initial estimates differ 
slightly when velocity gradients are large, they agree well at longer times. 

III. NUMERICAL METHOD 

In this work, we use a time-dependent Galerkin finite element method based on the 
Lagrangian kinematic description. A detailed discussion of the basic idea in the 
method may be found in Rasmussen and Hassager ( 1993). In the following we present 
a brief summary of the method, and in particular we demonstrate how inertia and 
buoyancy are described, since that is not included in Rasmussen and Hassager ( 1993). 
In addition, the equation of motion for the sphere is derived, and a refinement with 
respect to the time integration is presented. 

A. Model equations 

We use the Lagrangian kinematic specification in a cylindrical coordinate system 
and let some initial particle positions (‘0, ZO) of the particles at time to be independent 
variables. The dependent variables are then particle positions (r, z) at the present time 
t. 

The idea is then to follow the flow in time t by solving for the functions r( ro,zo,t) 
and z( ro,zo,t) given the initial positions and appropriate boundary conditions for 
t>t,. 

The r and z components of the equations of motion in the Lagrangian form (Lamb, 
1932) may be formulated as follows: 

(13) 

a% a.f7 lah,)+a7, _ o 
Pf2+Z+T ar at -' ( ) 

(14) 

The notation for the stresses is that of Bird et al. (1987). We let the z axis point 
upwards, and use the modified pressure 9 related to the physical pressure, p by 
9 =p+pfgz. 

We use a constitutive relation in which the stress is explicitly split into a (New- 
tonian) solvent contribution rS and a polymer contribution TV. The polymer contri- 
bution is given by a memory integral over the finite strain tensor y[ol(r,z,t,t’) (Bird et al., 1987). Thus we have 

J- t 
dr,z,f) = rJr,z,t) +Tp(r,z,t) = -rl,j(r,z,t) + M(t-t’)qoj(r,z,t,t’)dt’. 

--m 
(15) 

The memory function is given by 

N 

M(s) = , Cl 5 exp(--s/A&, 
I 

(16) 

where s = t--t’, and N = 1 or 4 for the single-mode and multimode models, respec- 
tively, as described in Sec. II B. 

For later use we also note that the trace of the polymer contribution to the stress is 
given by 
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s t tr( -rP) = M(t-f’)[z~(r,z,t,t’)-3lldt’, 
-CC 

(17) 

where II is the first scalar invariant of the Finger strain tensor. We note that Zr > 3 for 
all deformations, and that II = 3 if and only if there is no deformation. Hence 
tr( - rP) as defined here must be positive or zero, and in fact tr( - rP) = 0 implies that 
( -rP) is identically equal to zero. Therefore, we can use tr( -rP) as a local measure 
of the importance of the “elastic effects” in the flow. From a structural point of view, 
tr( -r,,) may be related to the local deviation from the equilibrium configuration of 
the polymer molecules. Thus if we take the single-mode Oldroyd-B model to represent 
a solution of Hookean elastic dumbbells, 

tr(--7$ = 3 (g-1) I,” M(s)& (18) 

where <Q? ad <&> eq represent the mean square end-to-end distance of the dumb- 
bells during flow and at equilibrium, respectively. 

6. Discretizatlon 

We use the following finite element discretization for the particle positions at time 
f: 

(19) 

Z= j4, zj4'* (20) 

Here the (rj ,zj) for Z = 1,2,...,N are the coordinates of node i at time t. The total 
number of nodes is N, and the 4 J’ are bilinear shape functions defined on a quadri- 
lateral parent element. The shape functions are independent of time, so that the 
motion of all particles is specified by the vector functions [ri( t),zj(t)]. The velocity 
field at time t is then approximated as 

z(t) -z(t-At) 
u, = 

At ’ 

r(t)-r(t-At) 
v, = 

At ’ 

and the acceleration field at time t as follows: 

u,(t)-u,(r-At) 
a, = 

At ’ 

u,(f)-r+(t-At) 
a, = 

At ’ 
The pressure field is approximated as 

(21) 
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where the .9’k are nodal values, 4 shape functions, and M the number of pressure 
nodes. 

The Galerkin forms of Eqs. ( 13) and ( 14) with 4’ as weight functions may be 
written 

#rdrdzd9 = 0, (22) 

2~ ia 

pfg+;z (,)+$ (P+T& &drdzdEJ = 0. 1 (23) 

Here Y is the domain of the fluid. By an integration with respect to 0 followed by 
the use of the Gauss-Gstrogradskii theorem we find 

+7&i dr dz = 0, 

- s r (~z+pfgzn,)&ds+ drdz = 0. 

(25) 

Here A is the area of the fluid in the (r,z) plane, r designates the boundary, and s is 
an arc length along the boundary curve. Also ( ?T~,‘IT~) are the components of the force 
per unit area exerted by the fluid on the surroundings. Similarly (n,,n,) are the 
components of a unit vector normal to the boundary directed outwardly from the 
fluid. 

C. Equation of motion for the sphere 

We imagine an axisymmetric body located on the z axis. The force exerted by the 
fluid on this body may be evaluated by integrating the pressure and stresses over the 
body. Certainly the stress components may be obtained from Eq. ( 15). However, it is 
more accurate to invoke the z component of the equation of motion as follows. Note 
first that by definition the force in the axial direction F exerted by the fluid on the body 
is given by 

F= s-=dA = 2rr rrZr ds 

Here A, is the surface of the body, while rs is the boundary of the body in the (r,z) 
plane. The 4’ are global shape functions associated with the nodes i = 1,2,..., L on r,. 
Thus from Eq. (25) we obtain 
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pfgzn#‘r ds. (27) 

The domain of mtegration A consists of the elements adjacent to the axisymmetric 
body since the 4’ are zero outside that domain. The final term in E!q. (27) describes the 
buoyancy of the axisymmetric body. To show this we rewrite part of the term as an 
integral over the surface of the body, 

zn&‘r ds = zn,2?rr ds = 
f 

zn, dA, (28) 
A 

where A is the surface of the body. We now introduce the unit vector n, which is 
outward normal to the body. Then the integral may be evaluated as follows: 

z = --a,* m,dA = -S,* 
J- 

VzdV= - dV= -V, (2% 
V 

where V is the volume of the body. Hence the force exerted by the fluid on the body 
is given by 

By using a discretization of the modified pressure 9 rather than the physical 
pressure p we obtain an exact determination of the buoyancy, which gives better 
accuracy in the determination of F. 

The final equation of motion for the sphere becomes 

d2zs 
P~JQZF = F- PH. (31) 

Here z, is a z coordinate of the sphere. 

D. Time discretizatlon 

We have used two different schemes for discretization of the time integrals. The two 
methods differ in their time convergence where method 1 [described in Rasmussen and 
Hassager (1993) and used in the computations for the single-mode Oldroyd model 
here] has At convergence while method 2 (used in the computations for the multimode 
model here) has A? convergence. 

Both methods can use variable time steps. For the heavy spheres (De> 2.45) the 
initial At is 0.001 s which is gradually increased to 0.005 s. For the lighter spheres the 
initial At is 0.0005 s (due to the steep gradient in velocity) and the time step is 
gradually increased to 0.01 s, since the overall deformation in the fluid is small. 
Convergence tests have been performed to check the convergence of the two schemes. 
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FIG. 6. Configuration of the finite element mesh with 1605 elements at time t = 0. Motion of the sphere is 
from left to right. 

E. Geometry and boundary conditions 

The simulations have been performed on the same geometry that is used in the 
experimental work and described in Sec. II B [see also Figs. l(a) and l(b)]. Thus the 
tluid is contained in a closed tube of length 90 cm and radius 5.23 cm. A centered 
sphere is released (from rest) at time t = 0 in a quiescent fluid with the center of the 
sphere 10 cm from the top of the tube. 

The finest mesh used in the simulations has 1605 elements. The configuration of the 
mesh at time t = 0 is seen in Fig. 6. The mesh is deformed as a result of the motion 
of the sphere, and it is therefore necessary to introduce new meshes as described in 
Rasmussen and Hassager ( 1993 ) . 

In previous simulations (Rasmussen and Hassager, 1993) the spatial convergence 
of the method has been shown to be at least first order in the numbers of elements. 
Furthermore, it was demonstrated that a mesh with 1017 elements gave a maximum 
error in the determination of the relative force of 5.5 X 10K3. Based on this investiga- 

tion we expect the spatial discretization used here to give a maximum error in the 
determination of the relative force of 3.5 X 10V3. 

IV. RESULTS 

The experimental transient velocity profile for a Delrin sphere at a Deborah number 
of De = 0.406 is shown in Fig. 7. The data shows a small overshoot followed by a 
monotonic approach at longer times to a steady-state value, denoted 7J, . This final 
velocity U, is higher than the calculated value U,, indicating a reduction in the drag 
compared to that expected in a Newtonian fluid. The gap in the data around time 
t = 1.5 s is a result of switching from the initial strategy of loading frames directly into 
memory to processing each individual frame before acquiring the subsequent frame, as 
described in Sec. II C. There is an unknown time delay associated with switching from 
one algorithm to the other, and so velocities cannot be calculated accurately in this 
transition region. 

The velocity time series for each of the 2.54 cm diameter spheres are shown in Fig. 
8. As the sphere density (and the Deborah number) increases, the ultimate steady- 
state velocity V, of the sphere increases, as does the magnitude of the velocity 
overshoot. The same data are shown in normalized form in Fig. 9. The time is non- 
dimensionalized by the single-mode Oldroyd-B relaxation time 21 for the fluid, and the 
velocity is scaled by the equivalent Newtonian settling velocity U,. This figure clearly 
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FIG. 7. Experimentally determined velocity profile for the Dehin sphere at a nominal Deborah number of 
De = 0.406. The broken line indicates the equivalent settling velocity US for an identical sphere in a tube 
of Newtonian fluid. 

shows that U, is a function of De; at low De the measurements indicate a drag 
decrease, followed by a drag increase at higher De. The relative size of the maximum 
velocity overshoot with respect to U, also increases with De, reaching nearly 50% at 
our highest Deborah number of De = 11.7. Teflon spheres (De = 1.07) show small 
decaying oscillations following the overshoot, whereas all other cases indicate a mono- 
tonic decrease towards U, . Finally, it can also be discerned from a careful inspection 
of Fig. 9 that the temporal position of the maximum velocity also shifts to slightly 
longer times as the density and inertia of the sphere increases. 

Transient numerical results from a l-mode Oldroyd-B simulation for four values of 
De up to 3.347 are shown in Fig. 10. The results show the same qualitative behavior 
as obtained in the experiments, but with a much larger relative overshoot followed by 
a monotonic decay to steady state. While the inertia of the sphere and fluid is included 
in the simulations, it has in fact very little influence on the transient sphere velocity, 
except for very small times, due to the high value of the elasticity number. This means 
that the overshoot is a purely viscoelastic effect that may be considered as an analog 
of overshoot in creep experiments. The fluid simply needs a certain overall deforma- 
tion, or equivalently a certain length of time at a given deformation rate, before the 
elastic stresses build up. In fact, for the single-mode Oldroyd-B model the maximum 
velocity Urn,, may be estimated by assuming that the elastic term does not contribute 
anything to the stress, and that at short times, p~a*/nc < t < ill, the sphere is in 
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FIG. 10. Normalized results of numerical simulations with the Oldroyd-B model for the transient motion 
of a sphere in a tube as the Deborah number is increased from De = 0.402 to De = 3.81. The dashed line 
indicates the Newtonian settling velocity UJ. 

free-fall through a fluid with an instantaneous viscosity 7.1~ arising from the solvent 
only. This gives the following estimate at large values of the elasticity number: 

umax/“O Z5 q,,/qs = 1.69. 

Figure 10 shows that Eq. (32) gives a reasonable estimate of the maximum velocity for 
all Deborah numbers investigated. Note also that the dependence on Deborah number 
is not very strong, when the data are reduced as in Fig. 10. In fact, as we note in Sec. 
V, for De -+ 0 the curves approach a limiting behavior that corresponds to linear 
viscoelasticity. 

The steady-state drag behavior is given in Fig. 11, where we plot the dimensionless 
drag coefficient defined in Eq. (7) as a function of the actual Deborah number Del 
based on the ultimate velocity U, in the viscoelastic test fluid. This allows more 
convenient comparison between numerical solutions and experimental data at steady- 
state conditions. The solid line represents the numerical results, while the individual 
squares are experimental steady-state data (with error bars) obtained from the exper- 
imental technique described above, as well as via visually timing the fall speed. The 
experiments and the simulations show the same qualitative dependence on the Debo- 
rah number: At low Deborah numbers a small decrease in the drag coefficient, fol- 
lowed by a larger increase at high Deborah numbers. Furthermore, the simulations do 
seem to fall roughly within the uncertainty estimated for the experiments, thus indi- 
cating that the Oldroyd-B model gives a reasonable prediction of the steady drag up to 
an actual Deborah number of about 3.3. The simulations could not be carried through 
to steady state for Del > 3.347 due to loss of numerical convergence. 
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FIG. 11. The dimensionless drag correction factor K( K,De) as a function of the actual Deborah number in 
the Row, Del, based on the Oldroyd-B relaxation time Al, and the actual steady settling velocity U, . (I) 
Experimental measurements with error bars ( f 2~); (- -) Oldroyd-B numerical simulations. 

At our highest Deborah number of Del = 9.3, the dimensionless drag is K = 2.4, 
representing a 24% drag increase. The steady-state drag force for a sphere in creeping 
motion has previously been measured experimentally by Tirtaatmadja et al. ( 1990) in 
the Ml Boger fluid and by Chmielewski et al. (1990) in corn syrup-based and 
polybutene-based Boger fluids. Both give the dimensionless drag coefficient X, for 
spheres settling in unbounded domains, the former showing a drag increase of nearly 
30% at a Deborah number De - 2, while the latter found a drag increase of about 
15% at De - 0.7 in a PIB fluid, but a drag reduction of about 25% in corn syrup- 
based fluids. 

An appreciation of the numerical difficulties in the simulations of the steady motion 
in the Oldroyd-B fluid may be obtained from Figs. 12 (a) and 12 (b), where we plot 
tr( --7$, normalized by ~~M(s)ds = (qu-~)/Ll, for Del = 2.31 (De = 2.45) at 
t/At = 5.0. In Fig. 12(a), a large wake of stretched polymers extending more than 
eight sphere radii downstream is clearly visible. The qualitative features of this plot are 
very similar to those found by Chilcott and Rallison ( 1988). We believe the calculated 
drag increase results from the increase in the effective size of the sphere due to this 
highly extended polymer region. The maximum is located approximately 0.5a behind 
the aft stagnation point of the sphere. The normalized values of tr( -rp) at the two 
stagnation points are below 0.1. We believe this indicates a value of 0 (within numer- 
ical accuracy) at the stagnation points in agreement with Chilcott and Rallison. The 
numerical difficulties are probably related to the very steep gradient in tr ( - rp) where 
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FIG. 12. (a) Contours of the dimensionless trace of the polymeric contribution to the stress tensor 
tr[-r&,/(qo- v,)] representing the total extension of the polymer molecules in the fluid at De = 2.45 and 
t/12, = 5.0. (b) Magnification of the steep boundary layers in tr( -rP) near the forward and aft stagnation 
points of the sphere. 

we have simulated an increase by a factor of lo3 over half a radius. Clearly a very high 
mesh resolution is required to resolve such gradients. Similar stress boundary layers 
and numerical convergence limits have recently been discussed by Lunsmann et al. 
(1993). 

A better appreciation of the details near the sphere is obtained from Fig. 12(b). In 
particular, the low values near the actual stagnation points are more clearly visible. In 
addition we may identify three regions with different contributions to tr( -rP): a 
region near the front stagnation point with biaxial stretching, a region with shearing 
over most of the sphere, and a region of uniaxial stretching in the wake near the aft 
stagnation point, as first discussed by Chilcott and Rallison. 

In Figs. 13(a) through 13 (c), we compare the experimental results with results 
obtained from numerical simulations using both one-mode and four-mode Oldroyd-B 
models for Deborah numbers of De = 0.407, 5.73, and 11.7, respectively. In these 
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figures, we show both the dimensional velocity and time on the left-hand and lower 
axes, and the equivalent dimensionless quantities v,/U, and t/ill on the right-hand and 
upper axes, respectively. The results show that the multimode model provides greatly 
improved quantitative agreement with experimental data over the single-mode calcu- 
lations, reducing the magnitude of the overshoot and modifying long time scale be- 
havior. In the multimode models, the decay in velocity following the overshoot is 
initially dominated by the shorter of the time constants in the spectrum Ai, resulting 
in a steeper slope and faster decay to the asymptotic value than for the single-mode 
Oldroyd-B model. However, at longer times, the effects of the shorter time constants 
die away, leaving only the largest time constant to influence the long-time asymptote 
towards steady state. This results in a decreased slope and slower decay than for the 
single-mode Oldroyd-B predictions. 

The agreement between the experimental data and the multimode simulations is 
best at high De, and worst at low De. In the numerical calculations, as the Deborah 
number goes to zero, there will still be an overshoot in velocity corresponding to the 
linear viscoelastic limit. The experimental data, however, seem to suggest that the 
amplitude of the overshoot almost disappears at lower De. We are not able to resolve 
the discrepancy at low De at the present time. However, the lightest spheres fall away 
from the release mechanism far more slowly than the dense spheres, and the initial 
experimental conditions therefore more closely represent the numerical initial condi- 
tions at high De. 

V. DISCUSSIONS AND CONCLUSIONS 

A digital imaging system has been used to obtain the first quantitative experimental 
data on the transient behavior of a sphere falling from rest through a PIB Boger fluid 
along the center line of a cylindrical tube. Velocity overshoots of up to 50% have been 
observed at high De confirming earlier theoretical and numerical predictions. Our 
numerical simulations with the Oldroyd-B constitutive model demonstrate the correct 
qualitative behavior, but fail to accurately describe the magnitude of the overshoot or 
the slow approach to steady state at long times. An almost quantitative agreement 
between experiments and computations has been achieved by extending the calcula- 
tions to a multimode formulation of the Oldroyd-B model which captures, at least 
approximately, the spectrum of relaxation times present in a real Boger fluid. Con- 
verged numerical solutions were obtained using the Lagrangian finite element tech- 
nique up to De = 3.35. At higher Deborah numbers, we were not able to obtain values 
of the ultimate steady-state settling velocity U, , due to the loss of spatial numerical 
convergence in the large viscoelastic stresses and velocity gradients that develop. 
However, we were able to obtain temporally converged solutions of the initial transient 
velocity of the sphere at high De. 

Our measurements of the wall correction factor K for steady viscoelastic flow of a 
sphere in a tube corroborate the earlier findings of Tirtaatmadja et al. ( 1990) and 
Chmielewski et al. ( 1990) of a pronounced drag increase in PIB-based Boger fluids at 
high De. By obtaining measurements of U, in tubes of differing cross section, it is 
possible to calculate the viscoelastic drag correction factor X, in the absence of bound- 
ing walls. These measurements will be reported on at a later date, but show the same 
general trend as the data in Fig. 11. The predictions of the Oldroyd-B model provide 
good agreement with the experimental values of K up to the maximum Deborah 
number before loss of numerical convergence. At higher De, it appears that the actual 
drag increase is less than that predicted by the Oldroyd-B model. This more gradual 
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carbide spheres at flow conditions of De = 11.7, Re = 0.31. 
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FIG. 13. (Continued. ) 

increase in K with De is due to the pronounced shear thinning in the elastic property 
\yl (p) observed for real Boger fluids (Quinzani et al, 1990). The large values of 
Deborah number shown in the experimental data of Fig. 11 arise because our defini- 
tions of De and Det are based on the zero-shear-rate relaxation time At. The actual 
magnitudes of elastic effects in a flow at high shear rates are better estimated by the use 
of a shear-rate-dependent relaxation time At(y), calculated from the actual viscomet- 
ric data for the Boger fluid. Using this definition and the highest nominal shear rate 
( U,/u) for the tungsten carbide sphere yields a relaxation time of Al ( i/) = 0.35 s at 
a shear rate of 12.0 s- ’ corresponding to a shear-rate-dependent Deborah number 
Del(p) = 4.25. Although this is a more realistic estimate of elastic effects in the flow, 
it makes comparison with numerical calculations difficult, and it is better to use /21 to 
define the Deborah number, and to introduce a constitutive equation capable of ex- 
plicitly capturing shear thinning in Y 1 (i/). 

Recent steady-state calculations by Lunsmann et al. (1993) for spheres settling in 
tubes with radius ratios of K = 0.5 and K = 0.125 have been able to model this phe- 
nomenon by using single-mode constitutive models which capture the nonlinear fluid 
rheology of Boger fluids at high shear rates. In this work, the authors used the 
nonlinear model of Chilcott and Rallison ( 1988), and varied the extensibility param- 
eter L, which controls the shear thinning in W,(p) and the increase in extensional 
viscosity ?j (g) predicted by the model. For low values of L ( 5, the authors predicted 
a monotonic decrease in the wall correction factor K with De in accordance with 
experimental observations with polyacrylamide Boger fluids (Chhabra et al, 1980). 
For larger values of L, the calculations predicted an increase in the wall factor at high 
De with the curve asymptotically approaching the predictions of the Oldroyd-B model 
as L -+ 00, Recent attempts to use the Chilcott-Rallison model to compute steady 
viscoelastic flow of this 0.31 wt. % PIB Boger fluid past a cylinder in a channel 
(McKinley et al., 1993) have suggested that the fluid is modeled by a value of L = 12. 
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From the computations of Lunsmann et al. we should thus expect an increase in K at 
high De, but of a magnitude lower than that predicted with the Oldroyd-B model, just 
as observed in our experiments. Lunsmann et al. also report related benefits of using a 
model with finite extensibility are that the severity of the velocity gradients near the 
sphere is greatly reduced, and that the computations can be carried out without 
apparent upper limit in De. Calculations of K with the Chilcott-Rallison model for 
this fluid are currently underway. Of course, it is worth noting that quantitative 
simulations of both the transient velocity of the sphere at intermediate times and its 
asymptotic drag increase at high De and long times really require incorporation of 
both a spectrum of time constants and nonlinear fluid rheology. 

The early theoretical work by King and Waters ( 1972) and later numerical work 
of Zheng and Phan-Thien (1992) showed that by observing the transient velocity of a 
sphere in a viscoelastic fluid, it is possible to obtain information about the rheological 
response of a viscoelastic fluid in a nonhomogeneous shear flow. In particular, both 
sets of authors showed that the magnitude of the maximum velocity U,,, and the 
temporal location of this overshoot both scale closely with A. For a series of 
experiments with spheres of differing density ps in a single fluid with a fixed elasticity 
number, it is not possible to verify this prediction. However, it is still possible to use 
our data to obtain insight into the nonlinear viscoelastic effects in this nonhomoge- 
neous flow. In Sec. IV, we have already remarked on the similarity of this nonhomo- 
geneous flow to a simple creep experiment in linear viscoelasticity, at least for short 
times and small strains. At longer times and larger strains, nonlinear elastic effects 
become important, and curves of sphere displacement vs time resemble nonlinear 
viscoelastic creep curves. In Fig. 14(a) we show a plot of the experimental position vs 
time data for chrome steel and tungsten carbide spheres. The two dashed lines are 
drawn tangent to each position profile at long times, with slopes based on the corre- 
sponding measured value of U, . The intercept of these dashed lines with the abscissa 
is -0.52 s for chrome steel and -0.49 s for tungsten carbide. This offset will in 
general depend on the spectrum of time constants as well as the relative inertia of the 
sphere to the fluid, but it gives some measure of the retardation processes in this 
inhomogeneous Sow, and is remarkably close to the estimate of 12 = PAt = 0.48 s 
calculated from the Oldroyd-B model. 

Second, it is possible to get an estimate of the longest relaxation processes in the 
Auid by observing the decay in the velocity overshoot at long times. In Fig. 14(b), we 
plot on a semilogarithmic scale the deviation [u,( ti) - U,] from the ultimate steady- 
state value for chrome steel and tungsten carbide spheres, and the data approaches a 
straight line of slope -0.839 s-l for chrome steel and -0.630 s- ’ for tungsten 
carbide. This represents an exponential decay at long times with time constants for 
each case given by the negative of the inverses of the above slopes, yielding values of 
1.19 and 1.59 s for chrome steel and tungsten carbide, respectively. 

The most pronounced discrepancy between our experimental observations and nu- 
merical calculations occurs with our least dense spheres at the lowest Deborah num- 
bers. The numerical calculations presented in Fig. 10 show that the magnitude of the 
predicted velocity overshoot does not decrease with decreasing De. In fact, for a fixed 
value of the elasticity number E ) 1, the large unvarying transient response as De -. 0 
represents the linear viscoelastic response of the Oldroyd-B model to an instanta- 
neously applied constant gravitational body force on the sphere. The velocity over- 
shoot only decreases to zero as the elasticity number, representing the ratio of the 
elastic to the viscous time scales in the flow, decreases to E ( 1. The simplest one- 
dimensional calculations of startup of steady shearing flow under imposition of a 
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constant stress show a similar effect, and, as noted earlier, the magnitude of the initial 
overshoot in shear rate for such a calculation is in good agreement with our calcula- 
tions shown in Fig. 10. Although the influence of our release mechanism and associ- 
ated experimental errors will be largest for the slowest moving spheres, our experi- 
mental measurements at low De not show even the same qualitative behavior as the 
Oldroyd-B computations, and it appears clear that the relatively large value of the 
elastic contribution Q in the Oldroyd-B model fit does not accurately represent the 
predominantly viscous transient response of our Boger fluid at low De. The situation 
is substantially improved by using a multimode model, which better represents the 
more rapid increase in the total viscous stresses acting on the sphere. 

It is clear from these results that this relatively simple inhomogeneous Bow is an 
excellent benchmark problem for probing transient phenomena in viscoelastic liquids, 
and for rigorously verifying the predictions of numerical simulations. In particular, 
our results highlight the inadequacies of the single-mode Oldroyd-B model in predict- 
ing transient flows of Boger fluids even at low De. 
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