

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Exploration of a digital audio processing platform using a compositional system level
performance estimation framework

Tranberg-Hansen, Anders Sejer; Madsen, Jan

Published in:
2009 IEEE International Symposium on Industrial Embedded Systems

Link to article, DOI:
10.1109/SIES.2009.5196193

Publication date:
2009

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Tranberg-Hansen, A. S., & Madsen, J. (2009). Exploration of a digital audio processing platform using a
compositional system level performance estimation framework. In 2009 IEEE International Symposium on
Industrial Embedded Systems (pp. 54-57). IEEE. DOI: 10.1109/SIES.2009.5196193

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13721739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/SIES.2009.5196193
http://orbit.dtu.dk/en/publications/exploration-of-a-digital-audio-processing-platform-using-a-compositional-system-level-performance-estimation-framework(332d3126-2e5c-4ad4-a389-54068101d9ac).html

Exploration of a Digital Audio Processing Platform
Using a Compositional System Level Performance

Estimation Framework
Anders Sejer Tranberg-Hansen and Jan Madsen

Technical University of Denmark
DK-2800 Kgs. Lyngby, Denmark
e-mail: {asthjanj tsiimm.dtu.dk

Abstract-This paper presents the application of a compo-
sitional simulation based system-level performance estimation
framework [1], [2] on a non-trivial industrial case study. The
case study is provided by the Danish company Bang & Olufsen
ICEpower als and focuses on the exploration of a digital mobile
audio processing platform. A short overview of the compositional
performance estimation framework used is given followed by a
presentation of how it is used for performance estimation using
an iterative refinement process towards the final implementation.
Finally, an evaluation in terms of accuracy and speed of simula-
tions is discussed based on the presented design flow applied to
the case study in question.

I. INTRODUCTION

The mixture of tight time-to-market constraints and an
increasing design complexity often associated with the design
of embedded systems of today makes the risk of sub-optimal
implementations inherently evident. A major reason for this
is the difficulty of getting feedback of the consequences of a
design choice before the system has been realized physically or
at least described at a very low level of abstraction. This makes
the experience of the designers of the system a key element
in the early design-phases of a system and at the same time
severely limits the possibilities of exploring the design space.
In this paper, a compositional framework for performance
estimation of embedded systems [1], [2] is applied to a non-
trivial industrial case provided by the Danish company Bang
& Olufsen ICEpower als. The case study illustrates how the
framework can be used for quantitative performance estimation
using a simulation based approach and a successive refinement
of models.

The framework is component based and quantitative perfor-
mance estimation is done through simulations. The framework
allows performance estimation to be carried out throughout all
design phases ranging from early functional to cycle accurate
and bit true descriptions of the system. The key strengths of the
framework are the obtainable accuracy, the high flexibility and
the great compositional refinement possibilities achieved by al-
lowing components described at different levels of abstraction
to co-exist and communicate within the same model instance.
This is possible because a separation of the specification of
functionality, communication, cost and implementation is used
(this somewhat resembles the ideas of [3]) combined with the
use of an interface based approach.

II. RELATED WORK

A number of modelling methods and frameworks related to
performance estimation and exploration of embedded systems
have been seen within recent years.

Artemis [4], and the sub-project Sesame [5], focus on per-
formance estimation of stream based applications. Application
models generate traces of events as input to the architecture
model in an approach slightly similar to the approach taken
in this framework. However, the functionality of an appli-
cation is modelled in the application model and only the
resource access, latencies, and communication constraints etc.
are modelled in the architecture model. In our case, both the
functionality of applications, resource access, communication
channels, etc. can be modelled within the architecture model,
implying that the execution of the application model reflects
the actual implementation without any modifications simply
by changing the architecture model.

MILAN [6] and Metropolis [7] both aim to provide a
framework in which models can be described at multiple
levels of abstraction and gradually refined. They both allow
multiple models of computations to co-exist within the frame-
work. However, the means are different. MILAN requires
that the different simulators are integrated into a common
generic modelling framework whereas Metropolis focuses on
defining common communication semantics which allow the
different models to communicate. In contrast to these generic
approaches, our method aims at providing support for models
described at different levels of abstraction and a gradual
refinement of these using a unified model of computation in
order to reduce the communication overhead and simplify the
required control logic during simulations.

III. SYSTEM LEVEL PERFORMANCE ESTIMATION

This section gives a brief overview of the performance
estimation framework and presents its major elements. The
details of the framework will be discussed more thoroughly
as the case study is presented in the next section.

The framework, illustrated in figure 1, is related to what is
known as the Y-chart approach [8]. However, in this case the
application model is refined in its own iteration branch as step
one, verifying the functionality of the application model only.
When this step has been performed, the application model is
left unchanged and only the mapping and platform model are
being refined in step two. If the application model needs to
be changed, it implies that the functionality of the application
has changed. Hence, a new iteration of step one is required
in order to verify the new functionality before repeating step
two.

System level performance estimation is carried out using
a system model composed of an application model mapped
explicitly to the processing elements of a platform model. The

978-1-4244-4110-5/09/$25.00 ©2009 IEEE 54 SIES 2009

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 28, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

SYSTEM~
MODEL~

Figure 1. Overview of the proposed framework.

simulation of the system model makes it possible to produce
quantitative performance estimates of the execution of the
specified application on the chosen platform.

A. Application Models
Application models capture the functionality of the ap-

plication only and should not rely on any implementation
specific details unless a specific desire to do so exists, e.g.
in some cases when the target platform is already fixed. The
application models are composed of an arbitrary number of
parallel, executable components referred to as tasks. Tasks
communicate through abstract buffers making communication
explicit and implementation independent.

The framework operates with three categories of tasks:
Functional tasks, mixed tasks and compiled tasks. The cate-
gories do not constrain the level of abstraction used to describe
the tasks but are used solely to express how the functionality
of the task is being modelled. Functional tasks are unmapped
tasks which model both the control flow and data operations
within the application model with no costs associated. Mixed
tasks model the control flow of the given task in the application
model and only the data manipulating operations of interest
in the platform model. Finally, compiled tasks model both
control flow and data operations in the component model of
the processing element onto which the task runs.

B. Platform Models
The platform model represents the target architecture and

is composed of one or more component models. The platform
model also specifies how the components are inter-connected
and, thus, how they are allowed to communicate. There are
no restrictions on how inter-component communication is
modelled nor on the level of abstraction that is used implying
that, in principle, all types of inter-component communication
methods are supported.

The components of a platform model are implemented as
service models [1], [2] and can represent both the virtual
elements of the target platform, such as operating systems
or middleware, and the actual physical hardware components
such as memories and processing elements.

c. System Models
When the tasks and abstract buffers of an application model

are mapped to the component models of a platform model, a
system model is obtained which, by means of simulations,
allows performance metrics to be extracted enabling a quan-
titative analysis of the system. It is not a requirement that all

tasks of an application model are mapped to the processing
elements of a platform model. In the case where a task of an
application model is unmapped, only the functional behaviour
of the tasks is modelled and no performance estimates are
associated with that particular task.

IV. CASE-STUDY: EXPLORATION OF A DIGITAL AUDIO
PROCESSING PLATFORM

In this case study, a mobile audio processing platform is
considered. The case study is provided by the Danish company
Bang & Olufsen ICEpower a/s which is working within the
field of audio power conversion e.g. for the mobile market
segment. Currently, an existing version of the audio processing
platform exists in the market and is sold in very high volumes.

The mobile audio processing platform is comprised of a
digital front-end and a class D amplifier including the analogue
power stage on-chip. The platform offers stereo speaker and
stereo headphone audio processing resulting in a total of
four audio channels being processed. In this case study, the
focus will be on the digital audio processing part of the
platform only, in which all audio processing is done within a
single clock domain. The input interfaces, mixing and sample
rate conversion are considered one combined abstract entity
from which audio samples are being sourced at a fixed rate
determined by the sample rate of the system. Similarly, one
processed sample must be available at the outputs at each
sample rate period in order to ensure normal operation. The
ratio between the sample rate of the system and the clock-
frequency of the audio processing clock domain expresses the
real- time constraint of the application, i.e. how many clock
cycles can be used for audio processing per sample.

The objective of the exploration is to optimize the exe-
cution platform onto which the application runs in terms of
silicon area and power consumption, both of which need to
be minimized. Due to the very high production volumes of
the system, both the cost and performance of the system
are critical elements in order to obtain commercial success.
Traditionally, the choice of implementation has been between
a platform based on a DSP processor or a fully dedicated
hardware implementation. It seems obvious that both solutions
have severe drawbacks either with respect to efficiency or
with respect to the level of flexibility. Thus, a third option
has been considered at the company and an experimental
application specific processor referred to as the SVF-processor
has been developed. The SVF processor is optimized to
execute the type of algorithms needed in the application of
the current case-study, has a relatively small silicon footprint,
a very shallow pipeline and is programmable by offering 37
different instructions. The major problem with the three types
of solutions is that even though a number of conclusions
seems obvious based on experience and intuition, they cannot
be verified until a very late stage in the design process, and
so, answering the question, "What is the best suited platform
for the given application under the given constraints?" is not
straightforward in the early design phases.

In the following, it will be explained how the presented
framework was used in order to help answer the question based
on early quantitative performance estimates produced by the
framework.

55 SIES 2009

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 28, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

Table I
RELATIVE AREA OF THE INVESTIGATED PLATFORMS.

In the exploration of the platforms, the first set of quan-
titative performance estimates were focusing on an execution
time analysis of the platforms only. At this point, the objective
was to investigate the utilization of the processing elements of
the platforms at different clock frequencies in order to find the
lowest clock frequency at which the platforms could be run
and still execute the application within the real-time constraint
of the application.

The first step in the quantitative performance estimation pro-
cess was to construct service models of the different types of
processing elements for use in the specified platform models.
In this case-study, the architecture of the processing elements
was already fixed; hence a detailed latency based model could
be constructed of each processing element. The latency models
do not include a modelling of the actual functionality but only
the resource access and latency of each service without any
modelling of data dependencies.

The application model was then manually mapped to the
platform models consisting of the latency based service mod-
els. The latency based service models do not model the actual

A. Application modelling
The first step in order to start the exploration of the

platform, using the proposed framework, is to construct an
application model. The application model is constructed from
a specification of the application in Matlab and captures
the functional behaviour of the application in a number of
tasks as well as specifies the communication requirements
of the individual tasks explicitly, without any assumptions
on the implementation, following the principle, on which
the framework is founded, of separating the specification of
functionality, communication, cost and implementation.

The audio processing consists of four different algorithms
and supports the processing of a total of four audio channels
allowing individual stereo speaker and stereo headphone pro-
cessing. The functional behaviour of the application model
was verified through simulations of the application model
consisting of functional tasks only. The results were compared
to the specification of the algorithms in Matlab and verified.
This high level functional application model serves as the
functional reference in the refinement steps towards the final
implementation.

B. Quantitative Performance Estimation
In order to generate quantitative performance estimates, the

tasks and buffers of the application model must be mapped to
the components of a platform model creating a system model.

In the current case-study, three different types of platforms
were considered based on either the DSP processor, the SVF
processor or a dedicated hardware implementation. Due to area
constraints of the system, the number of feasible platforms
were limited to the platforms shown in table I. For each of the
platforms listed in table I, a platform model was constructed.

.5OMHz

• 25MHz

• 12.5MHz

.6.25MHz

.3.125MHz

Figure 2. Platform utilization vs. clock-frequency.

~;F:~--
6000% t--
5000%--
~OO% J/-~

30,00% +-
20,00% 1

1~= if....~1
REF

The utilization ratios extracted from the six different plat-
forms are shown in figure 2 for the different clock frequencies
investigated. In the cases where the application is requiring
more computational cycles than those offered by the process-
ing elements, implying that the real-time constraint of the
application cannot be met, the utilization ratio has been set
to 100% in the figure. From the figure it can be seen that
the clock frequency of the dedicated hardware implantation
can be no lower than 25 MHz in order to fulfil the real-
time constraint of the application. The results of figure 2,
combined with the area estimates of the platforms, showed
that the SVF based platforms were particularly interesting in
the performance/flexibility trade-off, having the possibility of
achieving half the clock frequency of the hardwired imple-
mentation with only a minor increase in the silicon area in the
case of the SVFx2-platform. The results also indicated that the
clock frequency could even be reduced to one fourth of the
hardwired implementation in the case of the SVFx4-platform
at the expense, however, of a tripling of the area. The platform
based on the general audio DSP proved not to be attractive due
to a high area and medium performance compared to both the
hardwired and application specific platforms.

In order to verify the initial results, more detailed service
models of the SVF processor were constructed and used for
verifying the utilization ratios and the functional correctness of
the results. The detailed version includes a bit true modelling
of the functionality of each service and is cycle accurate.

The four SVF based platforms were refined to use the
new bit true and cycle accurate SVF service models utilizing
the compositional properties of the framework and the tasks
of the application models, which were mapped to the SVF
service model processing elements, were now modelled as
compiled-tasks. These system models are referred to as com-
piled system models. The compiled tasks are represented as
a service request image generated using the existing compiler
infrastructure associated with the SVF processor. In this way,
a one-to-one correspondence with the physical execution of
the application can be obtained. Furthermore, the platform
models were refined to include service models representing
FIFOs modelling direct point-to-point connections between the

functionality implying that the control flow of the application
must be handled in the application model and the tasks mapped
to the individual latency based service models must belong to
the category of mixed-tasks. This group of system models is
hence named mixed latency.

1.0
0.6
1.3
2.1
2.9
4.0

Relative Area
DedIcated hardware
1 SVF ASIP
2 SVF ASIP's
3 SVF ASIP's
4 SVF ASIP's
1 Audio DSP

DescriptionPlatform
RW
SVFxl
SVFx2
SVFx3
SVFx4
DSP

56 SIES 2009

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 28, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

Table II
ESTIMATED NUMBER OF CYCLES FOR THE PROCESSING OF 3000 SAMPLES

IN ONE AUDIO CHANNEL ATTHREELEVELS OF ABSTRACTION.

D. Simulation speed
Table III shows the measured simulation speeds expressed

as cycles per second for the individual system models investi-
gated. Simulations were performed on an 2.0 GHz Intel Core

The constructed RTL model was also used to make a
comparison of the functional results produced by the frame-
work using the compiled version of the SVFxl-platform.
The functional comparison showed that the audio streams
processed from the system model were 100% identical to the
processed audio streams from the RTL model. Furthermore,
the time required to describe the model using the presented
framework is much less than the time required to describe the
equivalent RTL model due to the higher level of abstraction
used. More importantly, it is significantly faster to modify a
model of the framework in case of bug fixes or functionality
extensions.

Mixed Latency Compiled RTL
HW 21,9M N/A N/A
SVFxl 21,7M 19,9M 15,324
SVFx2 18,6M 15,8M N/A
SVFx3 17,2M 13,8M N/A
SVFx4 15,9M 12,4M N/A
DSP 20,OM N/A N/A

[1] A. S. Tranberg-Hansen, J. Madsen, and B. S. Jensen, "A service based
estimation method for MPSoC performance modelling," International
Symposium on Industrial Embedded Systems, pp. 43-50, 2008.

[2] A. S. Tranberg-Hansen and J. Madsen, "A service based component
model for composing and exploring MPSoC platforms," International
Symposium on Applied Sciences in Bio-Medical and Communication
Technologies, 2008.

[3] K. Keutzer, A. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli,
"System-level design: Orthogonalization of concerns and platform-based
design," IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 19, no. 12, pp. 1523-1543, 2000.

[4] A. Pimentel, L. Hertzbetger, P. Lieverse, P. van der Wolf, and E. Depret-
tere, "Exploring embedded-systems architectures with Artemis," Com-
puter, vol. 34, no. 11, pp. 57-63, 2001.

[5] A. Pimentel, C. Erbas, and S. Polstra, "A systematic approach to exploring
embedded system architectures at multiple abstraction levels," IEEE
Transactions on Computers, vol. 55, no. 2, pp. 99-112, 2006.

[6] A. Bakshi, V. K. Prasanna, and A. Ledeczi, "MILAN: A model based
integrated simulation framework for design of embedded systems," SIG-
PLAN Not., vol. 36, no. 8, pp. 82-93,2001.

[7] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone, and
A. Sangiovanni-Vincentelli, "Metropolis: An integrated electronic system
design environment," Computer, vol. 36, no. 4, pp. 45-52+4, 2003.

[8] B. Kienhuis, E. Deprettere, K. Vissers, and P. Van Der Wolf, "An approach
for quantitative analysis of application-specific dataflow architectures,"
Proceedings IEEE International Conference on Application-Specific Sys-
tems, Architectures and Processors, pp. 338-349, 1997.

Table III
OBTAINABLE SIMULATION SPEEDOF THE INVESTIGATED SYSTEM

MODELS.

2 Duo processor with 2GB RAM. What is most interesting is
the big speed-up seen when comparing the simulation speed
of detailed bit true and cycle accurate version of the SVFxl-
system model as opposed to the equivalent RTL simulation.
The SVFxl-system model runs at approximately 20 million
cycles/second with all algorithms enabled, including data
logging, and the functionally equivalent RTL description runs
with approximately 15 thousand cycles/second resulting in a
speed-up of more than 1000x.

V. CONCLUSION

In this paper the usage of a compositional performance
estimation framework was illustrated through a non-trivial
industrial case study provided by the Danish company Bang &
Olufsen ICEpower als. The case-study illustrated the practical
usage of the proposed framework and how system models
can be composed of a mixture of cycle accurate models and
models described at higher levels of abstraction which is one
of the strengths of the proposed framework. Furthermore, it
was shown for the SVF based platforms that cycle accurate
and bit true descriptions of platforms can be constructed and
used as virtual platforms providing simulation speeds which
significantly outperform simulations at register transfer level
while still being functionally equivalent.

VI. ACKNOWLEDGEMENTS

This work was supported by DaNES (Danish National
Advanced Technology Foundation) and ArtistDesign.

REFERENCESRTLMixed Latency

processing elements.
The results showed that it was actually the case that the

SVFx2-platform makes it possible to lower the clock fre-
quency to one half of the hardwired version. The results make
the SVFx2-platform a promising alternative to a hardwired
implementation when the area estimates are also taken into
account. Even the SVFxl platform seems competitive with
an area equivalent to the hardwired platform. However, this
platform does not experience the benefit of halving the clock
frequency as was the case with the SVFx2 platform.

C. Accuracy
In order to relate the quality of the performance estimates

produced by the framework in the current case-study, an RTL
implementation of the SVFxl-platform was created in the
hardware description language Verilog referred to as the RTL
model in the following. The simulations performed, using the
RTL model, were then compared with the results obtained
from the performance estimation framework.

Table II shows the estimated number of cycles used to
process a stereo audio channel produced by the framework
for the mixed latency and the compiled SVFxl-system model
and estimates extracted from the RTL model simulations. The
table shows that the cycle estimates obtained from the mixed
latency model, in which only the latency based service models
are used, is not cycle accurate. The cycle estimates produced
by the mixed latency model, are in general, too optimistic.
This is caused by the fact that the latency based model does
not take data dependencies into account. In the other range
of the scale, in terms of accuracy, the table also shows the
cycle estimates of the refined compiled model in which a
cycle accurate and bit true modelling of the components was
used. In this case, the cycle estimates are identical with the
estimates obtained from the RTL model as can be seen from
the table.

57 SIES 2009

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 28, 2009 at 10:02 from IEEE Xplore. Restrictions apply.

