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Small-Signal Stability Analysis of Full-Load
Converter Interfaced Wind Turbines

Thyge Knüppel, Vladislav Akhmatov, Jørgen N. Nielsen, Kim H.Jensen, Andrew Dixon, Jacob Østergaard

Abstract—Power system stability investigations of wind farms
often cover the tasks of low-voltage-fault-ride-through, voltage
and reactive power control, and power balancing, but not much
attention has yet been paid to the task of small-signal stability.
Small-signal stability analysis needs increasing focus since the
share of wind power increases substituting power generation
from conventional power plants. Here, a study based on modal
analysis is presented which investigate the effect of large scale
integration of full-load converter interfaced wind turbines on
inter-area oscillations in a three generator network. A detailed
aggregated wind turbine model is employed which includes all
necessary control functions. It is shown that the wind turbines
have very low participation in the inter-area power oscillation.

Index Terms—wind turbines, wind farms, power systems,
model, small-signal stability, modal analysis

I. I NTRODUCTION

T HE present and scheduled rapid increase of installed
capacity of wind energy conversion systems (WECS) and

in particular large wind farms (WF) are changing the role and
the impact of wind power on operation of power systems.
This development is already noted in the grid codes from
some transmission system operators, where large WFs are
termed power park modules and must comply with similar
requirements to those for other generation units.

One aspect of this is the system ancillary services, which
today in many countries are usually provided by conventional
units based on synchronous generators. However, as the pen-
etration of wind power increases, production from conven-
tional units is displaced and it may be necessary to secure
adequate system ancillary services from WECS. In a number
of publications the ability of wind power to provide primary
and secondary frequency reserves [1]–[4] are investigated, as
well as voltage and reactive power control [5], [6]. In some
countries, for instance Denmark, WFs are already applied for
ancillary services, e.g. frequency reserve.

Regarding power system stability investigations, consider-
able attention has been paid to low-voltage-fault-ride-through
capabilities of the wind turbines (WT), ie. the ability of the
WTs to stay connected during external disturbances in the grid
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and provide necessary voltage support [6]–[8]. With increasing
penetration of WECS and increasing size of each installed
WF new stability considerations arise. A topic of increasing
importance is the effect of WFs on power system small-signal
stability, including influence on power system oscillations.

In the literature a number of studies analyze the impact
of fixed- and variable-speed WTs on power system oscilla-
tions [9]–[13]. In [9]–[11] comparisons are presented of the
influence on power system oscillations of WFs based on fixed-
speed induction generators (FSIGs) and doubly fed induction
generators (DFIGs). The references found that FSIG increases
the damping of the power oscillations, [9], [11] also find a
positive contribution to the damping from the DFIG machine
while [10] note that the DFIG does not have any significant
effect on the damping. Reference [12] analyzes the influence
of the voltage/VAR control mode of a WF based on DFIGs
on inter-area oscillations. The study found that increasing the
penetration of wind power generally had a favorable effect,
with increased frequency and damping of the inter-area mode
between a weak and a stronger system. With the WF in
voltage control mode [12] finds that, for some parameter-set,
an adverse interaction is noticed; it is, however, noted that
these effects can be avoided with appropriate tuning of the
voltage controller.

Reference [14] develops a small-signal dynamic model of an
aggregated fixed-speed WF using a sensitivity approach based
on singular value decomposition. In [15] the same authors
extend the work from [14] to include variable-speed WECS,
namely DFIG and full-load converter interfaced WTs.

A few publications have investigated the possibility of
using variable-speed WFs actively to damp power system
oscillations [16]–[18].

In this paper the impact of full-load converter interfaced
wind turbines on small-signal stability, e.g. participation in
power system oscillations, is investigated. The analysis is
based on a three generator network, which illustrates some
aspects of the dynamic behavior of the UK power system,
namely inter-area oscillations between major areas of the
system.

The impact on the oscillatory inter-area mode is analyzed
by observing the movement of the system eigenvalues in the
complex plane, as wind power gradually displaces one of the
synchronous generators representing an area of the UK system.
Modern variable-speed wind turbines have several operation
regimes and to illustrate their impact on system oscillations,
the analysis is performed for each operation regime. The
eigenvalue analysis, which is by its nature a linear approach, is
supplemented with time domain simulations of the non-linear
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system.
Full-load converter interfaced WTs effectively decouple the

generator dynamics from the dynamics of the grid, and the
WT generators hence cannot contribute to power system os-
cillations. However, as the WTs and the WFs are controlled to
provide ancillary services with voltage- and frequency support,
it is likely that the control capability of the WTs and WFs can
interact with the system dynamics e.g. other generators in the
system. Participation factors are used to identify states,which
play a dominant part in the oscillatory modes.

The paper is organized as follows. In section II the basis for
the analysis is established with a description of modal analysis,
power system oscillations, and the analyzed WECS concept.
Section III presents the study case, the case studies performed,
and the results from the analysis. Finally, the discussion and
conclusion are found in sections V and VI, respectively.

II. M ETHOD

Power system oscillations are inherent in interconnected
power systems based on synchronous generators [19]. Power
system oscillations and the application of eigenvalue analysis
as means of analysis are well described in the literature, e.g.
[20], [21].

A. Eigenvalue Analysis

The analysis is based on the non-linear set of system
equations, dynamic relations as well as network equations,
which are linearized in an operating point to obtain a linear
system in the classical state space form

ẋ = Ax + Bu

y = Cx + Du
(1)

wherexn×1 is the state vector,ur×1 the input vector,ym×1

the output vector,An×n is the system state matrix,Bn×r

the input matrix,Cm×n the output matrix, andDm×r the
feed forward matrix. To analyze the dynamic performance of
the system in (1) it is often useful to perform a similarity
transformation to diagonalizeA, i.e. decouple the system
dynamics.

Aφφφi = λiφφφi, for i = 1, 2, . . . , n (2)

where the eigenvalue,λi, is found as the solution of

det(A − λiI) = 0 (3)

and whereI is the identity matrix andφφφn×1

i
the right eigen-

vector for theith eigenvalue, also commonly referred to as
the mode-shape for theith mode. Similar to the formulation
in (2), the left eigenvector is defined as

ψψψiA = λiψψψi, for i = 1, 2, . . . , n (4)

whereψψψ1×n

i
is the left eigenvector for theith eigenvalue.

In compact notation for alln eigenvalues, the right and left
eigenvector matrices are defined as

ΦΦΦ = [φφφ1 φφφ2 . . . φφφn] ΨΨΨ =
[

ψψψT

1
ψψψT

2
. . . ψψψT

n

]T

(5)

Further, for power system studies the eigenvector matricesare
usually scaled to satisfyΨΨΨΦΦΦ = I.

The right eigenvector,φφφi, describes how the activity of the
ith mode is distributed on then state variables, while the left
eigenvector,ψψψi, weighs the contribution of then state variables
on theith mode. The entrywise product ofφφφi andψψψT

i
is thus

a measure of the importance of the states within the individual
modes and is referred to as the participation factors

pi = [φφφ1iψψψi1 φφφ2iψψψi2 . . . φφφniψψψin]
T
, (6)

or in compact notation

P = ΦΦΦ ⊗ΨΨΨT (7)

where⊗ denotes the entrywise product of two equal sized
matrices.

The eigenvalues provide important information on the dy-
namics of the system, i.e. the frequency and damping of any
oscillations. If theith eigenvalue is given asλi = a ± jb,
the natural frequency,ωn, the damped frequency,ωd, and the
damping ratio,ζ, are defined as

ωn =
√

a2 + b2
[

rad
sec

]

, ωd= b

[

rad
sec

]

, ζ =
−a

ωn

[−]

From classical control theory of continuous time systems, it
is given that modeλi is asymptotically stable only ifa < 0.

It should be remembered that power systems in general
are non-linear while the modal analysis is based on a linear
approach. Thus, the results from the modal analysis are only
valid in proximity of the linearization point and should be
perceived as a snapshot of the dynamic system behavior. To
gain deeper insight into the dynamic behavior of the system,
a series of modal analysis is often conducted where certain
system parameter(s) are gradually changed. Analyzing the
movement of the eigenvalues in the complex plane reveals the
influence of the varied parameter to overall system dynamics
and small-signal stability.

B. Power System Oscillations

In an interconnected power system the speed of the syn-
chronous generators will constantly adjust according to the im-
balance between generation and demand, where a production
surplus will cause overspeeding of the generators; and vice-
versa. It must be noted that the applied governor control is to
keep the synchronous speed, i.e. the nominal grid frequency
within a required narrow range of operation.

Power system oscillations are typically divided into three
groups depending on its global (or local) scale.

• inter-area oscillations where a group of generators in one
area oscillates against a group of machines in another
area, typicallyf ∈ [0.1 0.3] Hz

• intra-area oscillations where a group of generators in one
area oscillates against a group of machines in the same
area, typicallyf ∈ [0.4 0.7] Hz

• local-area or intermachine oscillations involve genera-
tors which are located close to each other, typically
f ∈ [0.7 2.0] Hz. This includes adverse interaction be-
tween equipment control systems.

Many factors, beside the frequency of oscillation, do, however,
determine the nature of the oscillations, and the concepts
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of mode-shape and participation factor are used to correctly
identify the source, nature, and significance of a mode.

III. STUDY CASE

A. Characteristics of Case Network

The study is based on an eight node network which consists
of three synchronous generators, two loads, and an aggregated
WF; the single-line diagram of the network is depicted in
Fig. 1 and it represents a large network that has been reduced
to a small number of nodes. A similar network is applied
in [9] for the assessment of “Influence of Windfarms on
Power System Dynamic and Transient Stability”. Although
the network is very simple it does assist in the understanding
of power oscillations between major areas of the UK power
system. The parameters for the synchronous generators, the
network, and for load and generation are found as appendix
A. The system is tuned for a light load situation, where the
loads and the loading of each generator implies a southbound
active power flow of around2 200 MW.

G1

G2

G3

G

L1

L2

Wind farm

X11 X21

X31

XWF

Scotland

England/Wales

X12 X22

X32

 

Fig. 1. Single-line diagram of the analyzed case network.

The dominant dynamic behavior of the network is an inter-
area mode betweenG3 andG1+G2 the boundary of which
is marked in Fig. 1 by a dashed line. The inter-area mode is
initially unstable but is stabilized with a power system stabi-
lizer (PSS) connected atG1. The mode-shape for the inter-area
mode is plotted in Fig. 2. The dominant characteristic of the
system is summarized in Table I and the participation factors
in Table II.

In Fig. 3 a time domain simulation is presented where a
three-phase short-circuit of suitable duration is applied, and
then efficiently cleared, at the HV bus of the machine trans-
former of G1. The ordinate is scaled to enhance readability
of the power oscillations. Immediately after the fast transients
have decayedG1 is seen to oscillate againstG2 for 1-2 cycles.
This oscillation is followed by the dominant0.5 Hz inter-area
oscillation, noticed in both the inter-area active power flow
and in the active power production from the generators with
a 180o displacement betweenG1+G2 andG3.
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Fig. 2. Mode-shape for generator rotor angle states for the inter-area mode
with PSS atG1 enabled.
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Fig. 3. Generator active power production and inter-area active power flow
after three-phase short-circuit at HV terminals of transformer X11.

TABLE I
CHARACTERISTIC FOR INTER-AREA MODE

λ ωd ζ
[-] [Hz] [-]

−0.626 ± j3.18 0.503 0.194

TABLE II
NORMALIZED ROTOR ANGLE PARTICIPATION FACTORS FOR INTER-AREA

MODE

State variable |pij |
δ (G1) 0.34
δ (G2) 0.17
δ (G3) 0.30

Now, the WF is connected through a three-winding trans-
former atG2 with equivalent impedances forG2 and the WF.
This approach is chosen since it allows connection of the WF
without altering the topology of the network.

B. Wind Turbine Technology

The WT concept for this study is a variable-speed, pitch
controlled, full-load converter interfaced WT and is illustrated
in Fig. 4 and further described in [22].

• Aerodynamic model. A variable wind speed aerodynamic
model which includes power coefficient with pitch angle
and tip-speed ratio.
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Fig. 4. Wind turbine concept used in the analysis: full-loadconverter
interfaced WT.

• Shaft model. Implements a two-mass model of rotor,
gearbox, and generator.

• Converter system. The WT converter system comprises a
generator side and a network side converter including all
required control of the injected active and reactive power
as well as DC link voltage control.

• DC link. Implements the link, including the DC ca-
pacitance, between the machine and the network side
converter.

• Fault ride through. Monitors for system faults and shapes
the current injection into the grid upon detection.

In the study, an aggregated WT model is used and the
analysis thus only considers the main interaction between the
system and the WF, i.e. all dynamics internally in the WF as
well as any mutual interaction between the WTs are neglected.
The WTs are operated in voltage control mode, regulating for
1 p.u. at the WT terminal.

C. Generator Models

The synchronous generators are modeled as round rotor
machines using the standard RMS model. The generators are
aggregated machines, each representing several smaller and
larger generation units; the total capacity for each unit isgiven
in Table X.

GeneratorG1 andG2 are equipped with a static excitation
system with AVR control and is implemented as an IEEE
type ST1A excitation system. For generatorG3 an IEEE type
AC4A excitation system is employed. The system is stabilized
with a PSS connected atG1, here an IEEE PSS 4B type model
is implemented.

Generic models are employed for the steam turbines and
the associated governors.

IV. SELECTED CASES

The aim of the study is to analyze the influence of increased
wind power penetration on power oscillations in the system,
with emphasis on the previously mentioned inter-area mode.

Three cases with a varying penetration of wind power
are investigated and compared to the base case with only
synchronous generation

1) Psetp of G2 is reduced as penetration of wind power is
increased while the MVA rating is maintained

2) MVA rating of G2 is reduced as penetration of wind
power is increased while the loading ofG2 is maintained

3) As case2) but with the WF modeled as a constant
impedance model with power factor 1.

In all cases and for all wind power penetration levels, active
power production is shifted between onlyG2 and the WF and
the power flow in the system is thus unchanged.

In case 1 the introduction of wind power does not displace
any conventional units and only the active power set-point
is reduced to accommodate the power produced by the WF.
While in case 2, the wind power displaces conventional units
and the MVA rating ofG2 is reduced accordingly. Case 3 is
included to challenge the hypothesis of complete decoupling
by the converter between WT generator side and the grid. The
model in case 3 does not represent the complex dynamics of
the WF, however, it does illustrate the impact of the alternate
power injection point. In each case the size of the WF is varied
linearly from 36 to 1 000 MW in 10 steps.

To identify which effects the WF operating mode may have
on the eigenvalue movement, the study is repeated for the WT
operating at(a) rated power output,(b) in power tracking,
and in(c) speed tracking; the results are presented in sections
IV-A, IV-B, and IV-C, respectively. For(b) and (c) case 3 is
neglected as no control dynamics are included in the constant
impedance model.

A list of dominant eigenvalues for the system is given in
Table III; the inter-area oscillation is identified asλ1.

TABLE III
QUALITATIVE DESCRIPTION OF DOMINANT EIGENVALUES

λ1 Inter-area mode,G1, G2 againstG3

λ2 Primarily mech. syst. ofG1, G2 and PSS atG1

λ3 Excitation mode,G1, G2

λ4 Voltage controller common mode,G1, G2, WF
λ5 Voltage controller common mode,G1, G2, WF

A. WF Operated at Rated Power Output

A comparison of the inter-area mode in the last iteration
with 1 000 MW of wind power is given in Table IV. In all cases
the frequency of the inter-area oscillation is slightly decreased
as the penetration of wind power increases. When the rating
of G2 is reduced the inter-area mode damping is increased,
while the damping is reduced in case 1 where the MVA rating
is constant and the set-point reduced.

TABLE IV
CHARACTERISTICS FOR INTER-AREA MODE WITH 1 000 MW OF WIND

POWER

λ ωd ζ
[-] [Hz] [-]

Case 1 −0.519 ± j2.97 0.473 0.172
Case 2 −0.792 ± j3.05 0.485 0.252
Case 3 −0.861 ± j3.04 0.483 0.273

An overview of the complex plane with dominant system
eigenvalues is shown in Fig. 5 for case 2, where the MVA
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rating of G2 is reduced as the WF output increases. A
comparison of dominant eigenvalues is given in Fig. 6 where
the movement of the eigenvalues in Table III for each case are
plotted together.
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Fig. 5. Movement of system eigenvalues with increasing penetration of
wind power when the MVA ratingG2 is reduced accordingly. Red: WF size
of 36 MW. Green: WF size of1 000 MW.
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Fig. 6. Comparison of the three cases with the WF operating at rated power
output.

Table V shows a comparison of selected participation fac-
tors for the inter-area oscillation,λ1, for the three cases.
Participation factors for generator rotor angles are shownfor
the synchronous generators, while mechanical angle statesfor
generator, rotor, and shaft are shown for the WF. Furthermore,
the largest participation factor for the WF states is given; in
both cases this corresponds to the reactive current controller
in the WTs. In case 3, a simple constant impedance model
represents the WF and no dynamic control are included in the
model, hence the WF states are non-existing.

The WF participation in the inter-area oscillation is very
small with participation factors a hundred times smaller than
those of the synchronous generators, cf. Table V. This charac-

teristic is noticed for both case 1 and 2 and thus independent
of the size ofG2. Consider the movement of the eigenvalues,
λ1-λ2, in Fig. 6, it is interesting to notice the similarity
between case 2 and 3; this could imply that the dynamics of
the WF mechanical system do not interact with those of the
synchronous generators. However, one should be careful when
comparing case 2 and 3 since the complex dynamics of the WF
are not represented with the simple impedance model in case 3.
The similarities in the eigenvalue trajectories disappearwhen
the voltage controller modes are compared,λ3-λ5. In fact, in
case 3 after around700 MW an unstable mode appears in
which dq-axis fluxes ofG1 andG2 are the main participants
(not shown in Fig. 6).

TABLE V
COMPARISON OF SELECTED PARTICIPATION FACTORS FOR THE

INTER-AREA MODE, λ1 , FOR THE THREE CASES. FOR THE WF
PARTICIPATION FACTORS ARE SHOWN FOR MECHANICAL GENERATOR-,

ROTOR- AND SHAFT-ANGLE STATES, AND THE MAXIMUM PARTICIPATION

OVER ALL WF STATES.

State variables |p1| case 1 |p1| case 2 |p1| case 3
δ (G1) 0.25 0.36 0.35
δ (G2) 0.16 0.08 0.06
δ (G3) 0.27 0.26 0.25
δg (WF) < 10

−4 < 10
−4 -

δr (WF) < 10
−6 < 10

−5 -
δs (WF) < 10

−4 < 10
−4 -

max
x

(|p1|) (WF) 0.01 0.02 -

The mode-shapes of the inter-area mode with maximum
penetration of wind power are plotted in Fig. 7 and these
should be compared to the mode-shape in the base case
without wind power in Fig. 2. For case 2 and 3, where the
MVA rating of G2 is reduced, it is noted that the inter-area
characteristic with180o separation between the vectors is less
pronounced than in the base case or in case 1. This behavior
is also noticed from the participation factors in Table V with
reduced participation ofG2 in the mode.
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Fig. 7. Comparison of the three cases with the WF operating at rated power
output. The mode-shape is computed for the last iteration with1 000 MW of
wind power.
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B. WF operated at Power Tracking

As the available amount of wind changes, variable-speed
WTs change the operating mode to extract maximum power
from the wind. In power tracking mode, the mechanical
rotational speed is kept constant, and the blade pitch angle
is fixed for maximum power extraction. For this study the WF
active power output is0.69 p.u. on the WF base.

Table VI provides a comparison of the inter-area mode with
an installed WF capacity of1 000 MW. The Table reveals that
the oscillating frequency is reduced with more than 20 %,
while the damping is increased by app. 10 % and 35 % for
case 1 and 2, respectively.

TABLE VI
CHARACTERISTICS FOR INTER-AREA MODE WITH 1 000 MW OF WIND

POWER

λ ωd ζ
[-] [Hz] [-]

Case 1 −0.540 ± j2.44 0.388 0.217
Case 2 −0.686 ± j2.47 0.393 0.264

A comparison of the dominant eigenvalues are presented in
Fig. 8.
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Fig. 8. Comparison of the two cases with the WF operating at power tracking.

The participation factors for the generator rotor angles as
well as the WF mechanical states are shown in Table VII.
Again, the very low participation of the WF in the inter-area
oscillation is noted. The largest WF participation is found in
the reactive current controller.

C. WF operated at Speed Tracking

At lower wind speeds it proves advantageous to reduce the
tip-speed ratio from rated speed in order to maximize the
power extraction coefficient. This operating mode is applied
between cut-in wind speed and the rated rotational speed of
the machine. In this study an operating point is selected with
an active power output of0.31 p.u. on WF base.

The modal characteristics for the inter-area mode with
an installed WF capacity of1 000 MW are summarized in
Table VIII. For both cases the damping has increased as

TABLE VII
COMPARISON OF SELECTED PARTICIPATION FACTORS FOR THE

INTER-AREA MODE, λ1 , FOR CASE1 AND 2. FOR THE WF PARTICIPATION

FACTORS ARE SHOWN FOR MECHANICAL GENERATOR-, ROTOR- AND

SHAFT-ANGLE STATES, AND THE MAXIMUM PARTICIPATION OVER ALL WF
STATES.

State variables |p1| case 1 |p1| case 2
δ (G1) 0.22 0.28
δ (G2) 0.13 0.09
δ (G3) 0.27 0.27
δg (WF) < 10

−4 < 10
−4

δr (WF) < 10
−5 < 10

−5

δs (WF) < 10
−4 < 10

−4

max
x

(|p1|) (WF) 0.01 0.01

compared to the no-wind setup and the frequency of the inter-
area oscillation reduces.

TABLE VIII
CHARACTERISTICS FOR INTER-AREA MODE WITH 1 000 MW OF WIND

POWER

λ ωd ζ
[-] [Hz] [-]

Case 1 −0.614 ± j2.59 0.412 0.231
Case 2 −0.697 ± j2.59 0.423 0.260

Fig. 9 provides a comparison of the dominant eigenvalues.
Note how the predominant movement in case 1 of the inter-
area mode,λ1, is to reduce the frequency of the oscillation.
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Fig. 9. Comparison of the two cases with the WF operating at speed tracking.

The participation factors in Table IX show similar results
as presented in section IV-A and IV-B.

V. D ISCUSSION

In this paper a modal analysis of full-load converter inter-
faced WTs is presented. The work focuses on the impact of
increased wind power penetration on inter-area oscillations.
To this end, a three generator network is employed which is
designed to illustrate some overall dynamics between major
areas of the UK power system. The WTs are modeled as
an aggregated machine comprising all the grid significant
components [22].
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TABLE IX
COMPARISON OF SELECTED PARTICIPATION FACTORS FOR THE

INTER-AREA MODE, λ1 , FOR CASE1 AND 2. FOR THE WF PARTICIPATION

FACTORS ARE SHOWN FOR MECHANICAL GENERATOR-, ROTOR- AND

SHAFT-ANGLE STATES, AND THE MAXIMUM PARTICIPATION OVER ALL WF
STATES.

State variables |p1| case 1 |p1| case 2
δ (G1) 0.28 0.32
δ (G2) 0.17 0.13
δ (G3) 0.28 0.28
δg (WF) < 10

−6 < 10
−6

δr (WF) < 10
−5 < 10

−5

δs (WF) < 10
−5 < 10

−5

max
x

(|p1|) (WF) 0.01 0.02

The effect of increased penetration of wind power is an-
alyzed through two cases. In one case the WF does not
affect the number of on-line conventional units but only the
active power set-point for these units; where in the second
case, conventional units are disconnected to accommodate
the wind power. Modern variable-speed WTs have multiple
modes of operation and to analyze which effect these operation
regimes may have, the two cases are repeated for rated power
operation, speed tracking, and for power tracking.

In addition to the two aforementioned cases, a third is
studied where the WF is merely represented as a negative
impedance. For the modes dominated by synchronous genera-
tor rotor angle states, the response is somewhat similar to that
of the detailed model. However, the movement is quite differ-
ent for other dominant eigenvalues, such as those associated
with the voltage controllers. Furthermore, an unstable mode
appears after about700 MW of installed capacity, which is not
seen when the detailed WF model is employed. It is important
to realize that the negative impedance model does not represent
the full-load converter interfaced WT and it illustrates the
importance of using models of sufficient accuracy.

The interaction of the WF with the power system oscillation
is evaluated using participation factors and for all the studied
cases the pattern is the same, with very low participation
from the WF in the oscillatory system mode. These results
indicate that the WT mechanical system is decoupled from
the dynamics of the grid by the full-load converter.

As the installed capacity in the WF increases, a common
trend in the results is that the frequency of the inter-area
mode decreases; usually a sign of a reduction of the generator
synchronizing torque [20]; as given by

ωn =

√

KS

ω0

2H
(8)

whereKS is the synchronizing torque coefficient. The effect is
most pronounced when the WF is operating in speed or power
tracking, which could be explained by the higher reactive
power control capability the WT has in these operating modes.
Increased capacity of wind power generally had a favorable
effect on the inter-area mode damping. Further studies will
look into how much of these effects that can be ascribed to
the WT and how much is an indirect effect, i.e. changes in the
operation of the remaining system due to the power injection
from a unit not based on a synchronous generator.

Furthermore, it should be mentioned that the eigenvalue
movement in the modal analysis is influenced by several
parameters such as network impedance, exciter gain, PSS
design, operating point etc.; to mention just a few parameters,
whereas this study has only covered a part of the parameter
space.

VI. CONCLUSION

This paper presents a modal analysis of a full-load con-
verter interfaced WT to evaluate its influence on inter-area
oscillations. The analysis is repeated for various wind power
penetration levels and for different WT operating modes.

With increased installed capacity of wind power, the study
found that the general trend for the inter-area mode is in-
creased damping and a decreased frequency of oscillation.

The study found that the WT systems have a very low
participation in the inter-area oscillation of the system,and
hence, that the WT does not interact with this mode of
oscillation. These initial results could indicate that thefull-
load converter does in fact decouple the network dynamics
from the WT generator dynamics, however, this requires more
investigations.

APPENDIX A
SYSTEM PARAMETERS

TABLE X
GENERATOR RATINGS AND LOAD CHARACTERISTICS

Generators Loads
[MVA] [MVA]

G1 2 800 L1 2 500 + j830
G2 2 400 L2 20 000 + j6 600

G3 21 000

TABLE XI
MACHINE PARAMETERS FOR ALL SYNCHRONOUS GENERATORS.

T
′

do
6.0857 s T

′

qo 1.653 s

T
′′

do
0.0526 s T

′′

qo 0.3538 s
H 3.84 s D 0 s
Xd 2.13 pu Xq 2.07 pu
X

′

d
0.308 pu X

′

q 0.906 pu

X
′′

d
0.234 pu X

′′

q 0.234 pu
Xl 0.190 pu

Sat. (1.0) 0.150 pu Sat. (1.2) 0.7025 pu

TABLE XII
L INE REACTANCES ARE ON A100 MVA BASE WHILE TRANSFORMER

REACTANCES ARE ON RATED POWER BASE FOR EACH TRANSFORMER.

X11 2.1 % X12 0.25 %
X21 2.1 % X22 2.00 %
X31 2.1 % X32 2.83 %
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