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Abstract: 
 
This work investigates the energy conversion 
mechanisms that vehicles driven by converting 
energy from two media moving relative to each 
other are based on. Specifically, focus is on using 
a horizontal axis wind turbine and/or a propeller 
on a vehicle to make it move relative to the 
media. A simple one point optimization method, 
based on the Blade Element Momentum theory, 
for both the wind turbine and propeller rotor is 
presented. Issues related to the practical 
implementation of making a wind turbine car go 
as fast as possible into the wind are illuminated, 
as well as a few related topics. Despite the 
obvious lack of commercial exploitability of wind 
turbine cars, the presentation will hopefully 
illuminate surprise and amuse the readers. 
 

Keywords: Wind turbine car, Unconventional use 
of wind energy. 

 

1 Introduction 

The initial reaction for many asked whether they 
think it would be possible to put a wind turbine on 
a car or a boat to make it go directly against the 
wind, could be doubt. If added, that no upper 
velocity limit exist, most people would probably 
disagree. Certainly, if the question was whether it 
is possible to build a car that can go faster than 
the free-stream velocity in the downwind 
direction, using a propeller to provide the 
propulsive force, generating the power for the 
propeller via the wheels, the answer would most 
likely be negative. Many such, seemingly 
“impossible” machines are in fact possible, and 
do not violate any physical laws. One of the aims 
of the present work is to show why and how 
vehicles such as these are in fact possible. 

Even though the idea of using a wind turbine to 
propel a car against the wind is not new, the 
theory that describes this, has, to the authors’ 
knowledge, not been expressed explicitly yet to 
the scientific community, even though it is merely 
application of previously known basic theory.  
Therefore, the present work outlines the explicit 
theory to describe the energy conversion 
mechanisms for vehicles driven, or powered, by 
media (solids or fluids) with a velocity relative to 
each other. The wind turbine cars, as seen in the 
recent Aeolus race in the Netherlands [1], are just 
one of the possible realizations of the vehicles in 
this category.  
Furthermore, a simple method, based on the 
Blade Element Momentum (BEM) theory [2], to 
optimize both propellers and wind turbines for 
these kinds of applications, are formulated.  
Due to the recent Aeolus race, special attention is 
given to cars propelled straight into the wind 
using wind turbines. 
The present work is a condensed version of [3], 
and will focus on the governing 
mechanisms/principles for this type of vehicles 
and highlight some paradoxical results that follow 
from the theory.  
Finally, the present presentation aims at inspiring 
more institutions or companies to participate in 
this year’s Aeolus race [1].  
 
2 Theory 

In this section the basic energy conversion 
considerations are outlined. From these the 
application to two interesting cases, the wind 
turbine car and the propeller car, will be treated 
subsequently. After this a general one point 
optimization method, based on the classical BEM 
theory [2], for the layout of rotors for both the 
generator case (wind turbine, as for the wind 
turbine car) and the propulsion case (propeller, as 
for the propeller car). We begin with the general 
basic energy conversion concepts. 



2.1 General energy conversion 
concept 
In order to keep things simple we consider only 
vehicles that travel in line with the direction of the 
velocity difference between two media: In either 
of the two directions. Both this case and the more 
general one where the traveling direction is 
arbitrary are treated in detail in [3]. Furthermore, 
we only treat the “high speed case” here, in which 
the relative velocity of both media has the same 
direction. This is the most interesting case if the 
objective is to build a vehicle that is capable of 
high velocities. Any readers interested in the 
general case are referred to [3] for a complete 
treatment of the problem.  
Figure 1 below show the notation used in the 
investigation of the general energy conversion 
processes at play for vehicle “powered” by a 
velocity difference between two media1. 

 
Figure 1: Notation used in investigation of energy 
conversion mechanisms for vehicles powered by 
a difference in velocity of two media. 
 
The figure show the forces and energy flow 
involved for vehicles of this kind in a schematic 
way. The media, with velocities VG and VP relative 
to the vehicle Control Volume (CV), are shown 
above and below the CV. The corresponding 
forces, FG and FP, and powers, PG and PP, from 
interaction with the media are also shown. It may 
be shown from basic considerations and 
application of the definition of work [3], that in 
order to make a vehicle of this type work, the 
generation of power (power gained from the 
medium) should occur at the fluid with the highest 
velocity relative to the vehicle, and the propulsion 
(power delivered to the medium) should occur at 

                                                                 
1 Note that the notation “two media” is only used to set 
the two regions with a velocity difference apart. The 
theory to be derived will also be applicable to a 
situation with two zones of the same type of medium, 
for instance air, having a velocity difference.  

the medium with the lowest velocity relative to the 
vehicle. This is the reason for the direction of the 
forces and energy flow in Figure 1. Keeping in 
mind that the relation between power, force and 
relative velocity in the ideal case is 
 FVP =  (1) 
we may define efficiencies for the interaction with 
the generation medium 
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A transmission loss is introduced to link the 
power generated and the power available for 
propulsion 
 TGP PP η=     (4) 
If we are interested in obtaining relations for the 
(constant) maximum speed, the forces from the 
two media should balance  
 PG FF =     (5) 
Combining Equations (2) to (5) yields the general 
relation between the efficiencies and the relative 
velocities 
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Equation (6) is a general expression applicable 
for any type of vehicle based on energy 
conversion between two media. In order for us to 
more easily see what this correspond to we will 
consider two cases below: A: All velocities 
measured relative to the propulsive media (as for 
instance in the wind turbine car case). B: All 
velocities measured relative to the generation 
media (as for instance in the propeller car case). 
Please note that the equations are generally 
valid, and therefore applicable to any system. 
This includes also the case where the energy 
transfer between both media is done using rotors, 
as would be the case for boats. We now proceed 
first to the first of the two cases mentioned above. 
 

2.2 Velocities measured relative to the 
propulsive medium (Example: Wind 
turbine car case) 
 
If we consider the velocities measured relative to 
the propulsive medium, and indicate vehicle 
velocity by V, and velocity difference between the 
media by V∞, the velocities relative to the vehicle 
are 
 ∞+= VVVG    (7) 
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 VVP =     (8) 
Therefore the general result of Equation (6) may 
be rewritten to  
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This is the general expression for determination 
of the maximum velocity of the vehicle measured 
relative to the propulsive medium. Note that this 
correspond to for instance the wind car case 
(wind driven car riding against the wind), see 
Figure 2 below. 
 

 
Figure 2: Example of a wind car: the 
WinDTUrbineracer [4] racing along the dike, 
against the wind at the 2008 Aeolus race in Den 
Helder, the Netherlands. 
 
It is seen from Equation (9), that the velocity of 
this type of vehicle tend to infinity for a given 
velocity difference between the media (= wind 
speed) as the product of the efficiencies tend to 
unity. In order to relate the generation efficiency 
to known wind turbine quantities and other 
aerodynamic losses (drag on the part of the car 
that is not rotor), we consider again the equation 
for the generation efficiencies, Equation (2), 
noting that the total force from the generation 
medium (air in the wind car case) is the sum of 
the thrust from the rotor and the aerodynamic 
drag on the rest of the car. This results in the 
following relation 
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Here, the usual non-dimensional thrust and 
power coefficients for a wind turbine are  
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Furthermore, the drag coefficient for the car 
excluding the rotor is 
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where, the subscript V refers to vehicle. Inserting 
the efficiency in this case (10) into the general 
equation for vehicle velocity, we get the following 
expression 
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Investigating the ideal case with no losses in 
transmission or propulsion systems, zero drag on 
the remainder of the car, and ideal rotor 
performance, from 1D momentum theory [5, 3], 
where the non-dimensional thrust and power 
coefficients only depend on the axial induction 
factor, a 
 )1(4 aaCT −=  (15) 

 2)1(4 aaCP −=  (16) 
We arrive at the following interesting relation 

 11 −=
∞ aV

V
 (17) 

From this is is seen that the axial induction that 
maximizes vehicle velocity in this case tends to 
zero. The vehicle velocity in this case tends to 
infinity. Albeit clearly not close to realizable in real 
life, it still shows that the rotor design for the 
these kinds of applications is generally different 
from the rotor design for maximizaton of power 
output for a conventional stationary wind turbine 
which is close to a=1/3 in order to have a high CP. 
A general expression for the optimal axial 
induction as function of CDAV /A can be computed 
from Equation (14). This is given in [3]. As losses 
ocurring in the real worl is included, the maximum 
velocity of the vehicle drops to values below 
infinity, but the intriguing result is that no definitive 
upper limit exist. As long as efficiencies are 
increased, the velocities of the vehicle will 
increase. As the losses increase above zero, the 
axial induction factor that maximizes the vehicle 
velocity increases asymptotatically to 1/3 (shown 
in [3]), so only for the case of a wind turbine car 
with very high losses should the rotor design be 
close to a conventional wind turbine rotor.  
It is noted that the standard 1D momentum theory 
results, Equation (15) and (16), are of course 
valid for these applications because the 



equations from which they are derived only 
require the rotor coordinate system to be an 
inertial system (that is: non-accelerating). The 
only thing one should be aware of is of course 
that the axial induction is defined relative to the 
free stream velocity as observed from the wind 
turbine, as given in Equation (7). Another ting to 
note is that the concept of using kinetic energy to 
analyze the energy conversion of a rotor stems 
from the energy equation (see basic textbooks on 
fluid mechanics, for instance [6]) applied in an 
inertial system (=non-accelerating) in which the 
rotor is stationary. Therefore argumentation using 
the concept of kinetic energy in the wake of the 
wind car as observed from the ground in case of 
a wind turbine car is nonsense. Using the energy 
equation in a ground-fixed coordinate system in 
this case introduces additional unsteady terms in 
the energy equation which must be taken into 
account when analyzing the performance of the 
rotor. When done correctly, the results are of 
course still identical to the results obtained using 
the much simpler analysis in the moving 
reference frame, as shown in [3].  
 

2.3 Velocities measured relative to the 
generation medium (Example: 
Propeller car case) 
 
Viewing the velocities as seen from the 
generation medium, the velocities are 
 VVG =     (18) 

 ∞−= VVVP    (19) 
Inserting these in the general relation between 
relative velocities and efficiencies, Equation (6), 
we arrive at   
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Analogous to the previous case, it is seen that the 
velocity of the vehicle also in this case tends to 
infinity as the product of the efficiencies tend to 
one. In case of a land-based vehicle using this 
way of harvesting the energy available due to the 
velocity difference between the two media, we 
note that this would correspond to driving along 
with the wind (faster than the wind), generating 
the power at the wheels and producing the thrust 
with a propeller in the air. This may at first sound 
impossible, but the energy conversion processes 
are in fact possible, and the mechanism is no 
different from the wind car case, where the same 
is in fact happening when taking the viewpoint of 
the air. Analogous to the generation case, we 
may introduce rotor (propeller) performance non-
dimensional numbers to express the efficiency of 

everything connected to the propulsive medium 
(in this case the air) as 
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In the derivation of this we have used that the 
total force from the propulsive medium (air for the 
propeller car case) is the thrust from the propeller 
minus the drag on the rest of the vehicle. The 
propeller thrust and power coefficients are 
defined as in Equations (11) and (12), noting that 
the positive direction for the power and thrust is 
opposite to that of the wind turbine case. Inserting 
the propulsive efficiency (21) in (20) results in 
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This is the general equation for the top speed of a 
propeller car. Simulations including realistic 
values for car drag and rotor performance show 
that this type of vehicle may in fact be faster than 
a corresponding wind turbine car [3]. The issue 
with such a vehicle is of course that it needs to be 
pushed up to velocities above the wind velocity 
for the energy conversion process to take over 
since a propeller does not work when the flow 
comes from “the wrong side”. This corresponds 
to a helicopter descending too fast. In analogy 
with the generation case we may consider an 
ideal vehicle of this type. Drag is zero and 
generation and transmission effocoencies are 
one, and 1D momentum theory is applied for the 
rotor aerodynamics. This corresponds in this 
case to 
 )1(4, PPPT aaC +=  (23) 

 2
, )1(4 PPPP aaC +=  (24) 

Note that the positive direction of the axial 
induction for the propeller case is changed to 
reflect the usual working state for this application. 
Inserting these values in the relation for the 
velocity, Equation (22) results in 

 11 +=
∞ PaV

V
   (25)  

As in the wind car case it is seen that this is 
maximised for aP tending to zero, for which the 
velocity ratio tends to infinity. So the conclusion in 
this case is as the prevoius case. The obtainable 
velocity is unbounded. As long as efficiencies are 
increased the velocity ratio increases. In analogy 
with the previous case a general expression for 
the optimal axial induction as function of CDAV /A 
can be computed from Equation (22). This 
expression can be found in [3].  



 
2.4 Net power out case 
Another interesting result pop out if we consider 
the case where only a part of the power produced 
from interaction with the generation medium is 
used for propulsion. Specifically, interest is on 
how the net production can be affected compared 
to the stationary reference case. In order to avoid 
unnecessarily complicated derivations and 
analysis, we consider motion of the vehicle in line 
with the relative velocity as was done in the 
previous sections. Here, in soft terms, we want to 
trade some speed in the previous sections for 
power production. The relations we derive also 
applies in the case extra power is put into the 
system by an engine. In that case the sign of the 
produced power is just negative. Consider the 
power equation in the case where an amount of 
mechanical energy, POUT, is taken out before the 
rest of the power is used for propulsion 
 ( ) 0=−− PTOUTG PPP η   (26) 
Using the definition of the efficiencies, Equations 
(2) and (3), and equilibrium of the forces at top 
velocity, Equation (5) and measure the velocities 
relative to the propulsive media, Equations (7) 
and (8) we arrive at  
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The usual non-dimensionalization used in the 
stationary generation case (wind turbine) uses V∞ 
as the reference velocity. The upper limit in the 
stationary case is given by 1D momentum theory, 
and is the well known Betz limit of 
CPmax,stat=16/27. Therefore, if the stationary case 
is to be used for comparison it will be convenient 
to non-dimensionalize the net power, POUT, the 
same way. This result, after some rearrangement 
(see [3] for details) in  
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Here, it is seen, that the equation holds the 
expected characteristics (Note that the CP value 
is defined in the vehicle reference frame, using 
the relative free-stream velocity for non-
dimensionalization). For zero vehicle velocity, 
CP,OUT and CP are identical because this is the 
stationary wind turbine case. For zero power out, 
Equation (28) can be reduced to the result in 
Equation (9). An interesting result pops out if the 
partial derivative of CP,OUT with respect to the 

velocity ratio V/V∞ is evaluated for V/V∞ =0. The 
result is  
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This shows that for non-zero CP the net power, 
CP,OUT, can be increased by moving the turbine in 
the upstream direction if the total efficiency is 
above 1/3. Further, it is possible to find the 
relative velocity that maximizes the output for a 
given total efficiency and CP. These derivations 
can be found in [3]. Employing again 1D 
momentum theory to determine the upper bound 
of what is obtainable, we obtain the results shown 
in Figure 3 below. 
 
 

 

 
Figure 3: Optimal axial induction (upper graph) 
and corresponding net output power coefficient 
(lower graph) as function of generator medium 
drag loss coefficient KD=CDAV/A for different 
values of the product of transmission and 
propulsion efficiencies.  
 
Note that for each of the points on the lines in 
Figure 3 the optimal velocity ratio is used. Further 
details on this may be found in [3]. From the 



figure we see that in theory it is possible to 
increase the net power output from a wind turbine 
substantially by using some of the produced 
power to propel it against the wind. In fact it can 
be shown that in the ideal case with 1D 
momentum theory results for rotor aerodynamics 
and also the rest of the system ideal, there is no 
upper bound for the obtainable net power 
coefficient. Please refer to details on this in [3]. 
The physical explanation for the increased power 
output is that energy is extracted from a longer 
stream-tube than for the corresponding stationary 
turbine in the same amount of time.  
Since this analysis is general, the same is of 
course possible also seen from the other 
medium, and therefore also theoretically possible 
to extract net output power from for instance the 
propeller car. The details of this can be shown in 
[3], where it is also shown that the power in this 
case can tend to infinity if the losses tend to zero.  
 
2.5 One point rotor design algorithm 
based on BEM theory 
So far, we have investigated several applications 
of wind turbines and propellers on vehicles 
moving relative to two media with a velocity 
difference. So far we have treated the problems 
using general relations, or, in some places, the 
rather crude 1D momentum theory for the rotor 
aerodynamics in order to provide a rough upper 
estimate. In this section a simple one point rotor 
optimization method, based on the Blade Element 
Momentum (BEM) method [2] will be derived for 
the generation (wind turbine) case for horizontal-
axis rotors. The corresponding optimization for 
the layout of the propulsion case is analogous to 
the generation case, and is given in [3]. 
Furthermore, a general optimization algorithm 
optimizing all involved rotors (up to two: one 
generation and one propulsion), is given in [3]. 
The most obvious starting point for rotor 
optimization in the generator case could be a 
simple maximization of the generator efficiency. 
For a given, fixed drag loss this can be done two 
ways. Either to maximize CP for each of a number 
of given CT values and choose the one that 
maximizes the efficiency. The other way could be 
to minimize CT for each of a number of given CP 
and choose the one that maximizes the 
efficiency. This approach, however, requires that 
an integral quantity is kept constant at a given 
value while another integral quantity is either 
maximized or minimized. Albeit not impossible, 
this approach requires some extra effort to keep 
the integral quantity constant while optimizing the 
other.  
In order to circumvent this we now derive an 
alternative method based on one of the most 
basic assumptions in BEM theory, the 

interdependence of the annular stream-tubes, 
which makes the optimization of rotors for the 
generation side for the type of vehicles treated in 
the present work straightforward and very 
efficient. The method is based on expressing the 
drag loss, CDAV/A, in terms of the rotor quantities. 
Isolating the drag loss factor from the generation 
efficiency, we get 
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Reorganizing this using Equation (9) results in  
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The right hand side of this relation can be viewed 
as the non-dimensional (using VG) total effective 
propulsive force stemming from the isolated rotor, 
and could also have been derived using that line 
of thought. This quantity is of course what we 
want to maximize, given values for the 
efficiencies2 and non-dimensional velocity. During 
the course of the optimization of a rotor for a 
vehicle, we may not know the final non-
dimensional velocity or even the correct values of 
the specific efficiencies if these depend on the 
solution of the generator side rotor. Therefore 
these will have to be updated in an iterative 
manner in such cases. Introducing the local 
generation thrust and power coefficients also 
used in the review of the BEM method in 
Appendix B of [3] 
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From these the local coefficients the 
corresponding integral coefficients can be 
integrated 
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2 Note that the product of the efficiencies in Equation 
(31) is the effective transmission efficiency for the part 
of the mechanical power produced on the generator 
rotor that is used ideally for propulsion. 



Equation (31) presents a convenient basis for 
optimization using the BEM method, because the 
introduction of Equations (34) and (35) results in 
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 (35) 
Since the cornerstone in BEM theory is the 
interdependence of the annular stream-tubes, it is 
seen, that the optimization of the rotor for the 
specified conditions in this case corresponds to 
maximizing the expression in the parenthesis in 
the equation above for each radial element of the 
rotor. Therefore: 
The BEM optimization of the generation rotor for 
a specified set of propulsion efficiency 
transmission efficiency and non-dimesional 
vehicle velocity is obtained by maximizing the 
radially local effective propulsive force coefficient  
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(36) 
for each of the radial elements on the rotor 
separately. 
Please note that the method above could have 
been applied to Equation (30), but the formulation 
shown above (Equation (36)) is preferred, since 
this involves also the performance of the other 
sub-parts of the wind vehicle. This makes an 
iterative optimization of the full vehicle including 
efficiencies that depend on parameters from a 
different part of the vehicle possible. 
It is seen from Equation (36) that as the velocity 
ratio tends to zero, the optimal solution for the 
rotor tends to the solution for a conventional wind 
turbine, since in this case the CP term is 
increasingly dominant. As the velocity ratio is 
increased, the design moves further away from a 
conventional wind turbine design, as the 
importance of the CT term is increased. 
The maximization of Equation (36) for each radial 
section is further simplified by realizing that in the 
BEM world, drag is always counterproductive for 
our purposes. Since the actual lift needed at any 
radial station on the rotor can be obtained by a 
simple scaling of the chord-length of the airfoil, 
the measure of the aerodynamic “goodness” of 
an airfoil section is the lift-to-drag ratio, which is 
identical to the ratio between the lift and drag 
coefficients, CL/CD. Therefore, if the goal is 
aerodynamic optimization of the rotor in one 
single design point, the airfoils should operate at 
the angle of attack where the maximum value of 
CL/CD occurs. This way, the quantity that should 
be adjusted so as to maximize CPROPF,loc for a 
given tip speed ratio and number of blades is only 

the non-dimensional chord-length, c/R. 
 
For a given number of blades, NB, tip speed ratio, 
and non-dimensional vehicle velocity, the 
aerodynamically optimal layout of the generation 
rotor is obtained by designing the blade such that 
the local angles of attack is where the lift to drag 
ratio, CL/CD, has it’s maximum value and scaling 
the nondimensional chord-length c/R to maximize 
the local propulsive force coefficient, CPROPF,loc, 
given by Equation (36).  
 
In [3] it is shown analytically that the optimization 
of a horizontal axis power generator (wind 
turbine) using Equation (36) corresponds to 
maximizing CP for a given CT, or conversely, that 
for the obtained CP, the corresponding CT has the 
minimally obtainable value. This has interesting 
applications in other areas as well, since this is 
the goal in for instance applications within 
emergency hydraulic or electricity generators 
from wind for emergency situations in airplanes. 
Another field where such designs are applicable 
in the tip rotor concept for wind turbines 
investigated at Risø DTU [7].  
 
An analogous one point optimization for the 
propulsion rotor (propeller) is possible, and in this 
case it can be shown that when optimizing the 
propulsion rotor using that method we have: For 
the obtained CP,P, the corresponding CT,P has the 
maximally obtainable value. Or conversely: For 
the obtained CT,P, the corresponding CP,P has the 
minimally obtainable value. The details of this, 
including the derivation of the algorithm and the 
results can be found in [3]. 
 
It should be noted that the results obtained using 
the BEM based algorithm includes the usual 
assumptions in BEM including neglecting the 
pressure difference due to rotation in the wake, 
and the corresponding added thrust. If, however, 
the tip speed ratios do not get too low (below 
approx 3), the assumption of negligibility is 
usually justified. 
 
3. Results 

In order to investigate the bounds of what is 
obtainable with realistic blade aerodynamic data 
for performance of a wind car rotor, we will here 
perform a general analysis of the trends of 
generation rotors optimized using the algorithm 
described in section 2.5 and investigate the 
consequences on . Subsequently, the maximum 
velocity obtainable for a well designed wind 
turbine car for the Aeolus race [1] is discussed. 
Finally, the obtainable 
 



3.1. Obtainable generator rotor 
performance  
 
As described earlier, the performance indicator of 
an airfoil section for use on a horizontal axis rotor 
is the maximum lift to drag ratio, which in real life 
to a first order depends on profile shape and 
Reynolds number. The general performance of 
rotor aerodynamics (for a horizontal axis rotor 
with a given airfoil in uniform, unyawed operation) 
is dictated by the tip speed ratio, number of 
blades and blade planform and twist. Since the 
last two quantities is what the outcome of the 
optimization, we will therefore present the integral 
performance of the obtained rotors for different 
variations of the following key numbers3.  

•  CLCDMAX=max(CL/CD) : Maximum lift to 
drag ratio for airfoil section 

•  λ=ΩR/V∞ : Tip speed ratio 
•  NB : Number of blades 

In stead of presenting the output of the 
optimization algorithm (here CP, CT and CPROPF) 
as function of the efficiencies, velocity ratios or 
optimization controller term (the term on CP,loc in 
Equation (36)), we condense results by showing 
CP as function of CT for different values of the 
above key numbers. For any given CT (which has 
a corresponding unambiguous value of the 
optimization controller term) it is the goal of this 
optimization to maximize CP, so using the 
described type of plot, it is easy to see what effect 
the different combinations of key numbers has on 
the performance of the rotor. For all shown cases 
the rotor extends from r/R=0.2 to r/R=1.0.  
 
 

 
Figure 4: CP versus CT for different values of the 
aerdynamic key numbers. 
 

                                                                 
3 In fact the optimization of the generation rotor can be 
given from CLCDMAX,λ,NB, and  the factor appearing 
on CP in Equation (36). However, the data are easier 
to interpret when presented as suggested. 

 
Figure 4 show that increases in lift to drag ratio 
and number of blades are beneficial for the rotor 
aerodynamic. Furthermore, an example of the lift-
to-drag dependent optimum of the tip speed ratio 
is shown. 
The maximum lift to drag value depends on the 
airfoil section shape and the Reynolds number. In 
general thick airfoil sections and a reduction in 
Reynolds number decrease the maximum lift to 
drag value. These effects combined with 
structural strength considerations limit the 
number of blades and, in some cases, the tip 
speed ratio which otherwise is indicated by the 
basic result having a positive effect on the 
performance of generation rotors for these 
applications. 
 
3.2. Example of maximum velocity 
for a wind car  
 
Using the generator rotor design algorithm, it is 
possible to estimate the maximum velocity for a 
well designed wind turbine car for the Aeolus race 
(A=3m2) on a plane track. The assumptions 
behind this estimate is car drag coefficient 
CD=0.25 and car area AV= 1m2. Rolling resistance 
is based on a rolling resistance factor fR=0.02 and 
a total vehicle mass of M=300 kg giving the rolling 
resistance force FR= fR Mg=59N. This is included 
in the computations in the propulsive efficiency as 
the only loss in that case 
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Here the power from the propulsion is obtained 
using Equation (4). The solution of this system 
requires iteration but is otherwise straightforward. 
The result of this with four blades, NB=4, 
CLCDMAX=100 and λ=5 is shown in Figure 5 
below.  



 

 
Figure 5: Vehicle velocity with V∞=10m/s free 
wind. Vehicle velocity is shown as a function of 
transmission efficiency. Note that each particular 
point on the curve corresponds to a specific 
generator rotor design given by the optimization 
algorithm.  
 
It is seen that it is imperative to limit transmission 
losses in order to get an otherwise well designed 
wind turbine car to co fast. For a transmission 
loss of 15%, which may be obtainable with careful 
design of the transmission system, it is seen that 
if the rotor is designed for these conditions, the 
velocity ratio of that vehicle is in excess of 98% of 
the free wind speed. Last years vehicles had top 
speeds just above 50% of the wind speed, so 
according to these estimates, there is still room 
for improvement. 
 
As a comment to the result could be mentioned 
that the solution for a transmission efficiency of 
85% correspond to a propulsive efficiency (losses 
due to rolling resistance only) of 87%. This figure 
increases with free wind speed, since in that case 
the transmitted power increases. 
 
It should also be mentioned that enhancement of 
the performance using ducts or shrouds around 
the rotors is possible. The art of estimating the 
effects of a shroud on the rotor performance is 
not trivial. This issue was investigated in [8] using 
a combination of BEM and CFD modeling. The 
conclusion was that a significant increase in the 
performance of the rotor/shroud combination may 
be achieved if it is well designed. There are, 
however, still many open ends to the effect of 
this, since for instance the effect on the shroud 
on the tip effect is not trivial to estimate.  
 
 
 
 

3.3. Obtainable maximum power 
output for a wind car turbine 
 
It can be shown that the optimization of a rotor 
using Equation (36) for a given set of efficiencies 
and velocity ratio also maximizes power output in 
the net power out case described in section 2.4, 
see [3] for details. Therefore the results shown in 
Section 3.1 also apply to this case. By 
considering the same setup (ηT=0.85, rolling 
resistance, free stream velocity, drag loss 
coefficient, areas, mass) as in the previous 
section, we obtain for a four bladed rotor, again 
with CLCDmax=100 and λ=5 the result shown in 
Figure 6 below using Equation (28). 
 

 
Figure 6: Net output power coefficient CP,NET as 
function of vehicle velocity ratio for a vehicle with 
the key numbers of the vehicle in Section 3.2 and 
rotor key numbers CLCDmax=100 and λ=5.  
 
It is seen that for this setup, the best velocity ratio 
at these conditions is V/V∞=0.19, where the 
corresponding net output power coefficient is 
CP,OUT=0.513, an increase of 8.3% compared to 
the corresponding stationary best design of 
CP=0.474. Even though probably not 
commercially exploitable, this result is at least 
intriguing from an academic point of view. 
It is noted that it is also possible to yield net 
power output from the propeller type wind car. 
Results from application of realistic rotor data in 
that case can be found in [3]. 
 



4. Conclusions 

By applying basic concepts from mechanics and 
fluid mechanics we have derived the equations 
applicable for the performance of vehicles 
“powered” by a difference in velocity between two 
media. A myriad of intriguing results emerge from 
these relations.  

•  It is theoretically and practically possible 
to build a wind driven car that can go 
directly upwind (using a generator/wind 
turbine in the air).  

•  The rotor design for this type of vehicle is 
generally substantially different than an 
ordinary wind turbine design. Only in the 
case of a car with a very low top speed 
will the rotor design tend to the usual 
wind turbine design case. 

•  It is theoretically possible to build a wind 
driven car that can go in the downwind 
direction faster than the free stream wind 
speed (using a propeller in the air) 

•  It is theoretically possible to build boats 
that will do the same as the two above 
vehicles. 

•  There does not exist a definitive upper 
limit for vehicles of this kind. As long as 
efficiencies are improved, the velocities 
will increase unasymptotically. 

•  Using a part of the power produced on a 
wind turbine to propel itself against the 
wind, it is theoretically possible to 
increase the net power output. Also in 
this case without an asymptotic upper 
limit. 

Furthermore a simple one-point design 
optimization algorithm for the design of 
horizontal-axis rotors for these kinds of 
applications is shown, and examples of the 
obtainable performance of a wind turbine car and 
wind turbine car for power production using 
realistic airfoil data are given. 
 
For a more in-depth treatment of everything 
treated in this paper including also several 
additional investigations and considerations, 
interested readers are referred to [3].  
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