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Abstract:

A hydraulic pitch-servo system is controlled us-

ing a nonlinear control law based on a port-

controlled Hamiltonian formulation of the pitch-

servo system. Not all systems can be formu-

lated as port-controlled Hamiltonian systems, but

hydraulic-mechanical systems similar to a pitch-

servo system are well suited and control laws

based on the presented method have previously

been implemented with success. The method is

implemented in a hydraulic-mechanic pitch-servo

and blade model which takes effects of bend-twist

couplings caused by large deformations into ac-

count.

Key words: pitch-servo system, port controlled

hamiltonian systems with dissipation (PCHD), in-

terconnection damping assignment - passivity-

based control (IDA-PBC)

1 Introduction

Hydraulic pitch-servo systems are nonlinear in

their physical behavior and control algorithms, that

seek to control the pitch angle of the wind turbine

blade actuated by a hydraulic pitch-servo, could

benefit from taking the nonlinearities into account.

The system to be controlled can be described

as a port-controlled Hamiltonian system with dis-

sipation (PCHD). The reformulation of a system to

a PCHD formulation can prove to be difficult and

often impossible but if the formulation is possible

it becomes possible to design a nonlinear control

law that in many cases shows good robustness

properties and good overall performance in a large

operation range, where linear controllers might fall

short due to the nonlinearities of the system.

Although advanced control methods applied to

hydraulic-mechanical systems in general are not a

novelty, the special field of pitch-servo systems for

wind turbine blades have not been investigated as

thoroughly. An investigation of a traditional propor-

tional controller applied to a hydraulic pitch-servo

for wind turbine blades have been presented in [1].

The wind turbine blade, which constitutes the

mechanical part of the model, is modeled as being

deformable and with bend-twist couplings [2]. The

structural properties of the blade are based on the

NREL 5MW Reference Wind Turbine [3].

PCHD-based control algorithms have already

been implemented on hydraulic-mechanical sys-

tems similar to the pitch-servo system of a wind

turbine blade [4]. Only the rotational symmetric

inertial mass is however included in the PCHD for-

mulation. Thus blade deformability and bend-twist

couplings act as disturbances on an otherwise ro-

tational symmetric inertial mass, which the blade

can be considered to be.

The novelty of the work presented is in this pa-

per is the specific application of the controller on

pitch-servo systems with deformable blades and

the implications of the disturbances occurring from

the fact the controlled blade model is more com-

plex than assumed by the controller.

The paper is organized in the following man-

ner: Hydraulic and structural blade models are

presented in the first section. Next the control

methods are explained. Thereafter, control meth-

ods are tested through simulation on the combined

blade and hydraulic model and the results are dis-

cussed.

Figure 1: The hydraulic pitch-servo in a wind tur-

bine rotor hub.



2 Models

In this section the different sub models and their

interconnection is introduced.

2.1 Hydraulic Piston

The volumetric flows Qa,b through a four way

spool valve can be described by a linear relation-

ship between the nominal volumetric flows Ξa,b

and the valve spool displacement xv

Qi(Pi, xv) = xvΞi(Pi, sign(xv)), i = a, b (1)

where

Ξa(Pa, sign(xv)) = kv

√

Ps − Pa, for xv ≥ 0

Ξb(Pb, sign(xv)) = −kv

√

Pb − Pt, for xv ≥ 0

Ξa(Pa, sign(xv)) = kv

√

Pa − Pt, for xv < 0

Ξb(Pb, sign(xv)) = −kv

√

Ps − Pb, for xv < 0

and kv is the valve coefficient, Pa,b are the pres-

sures of the two hydraulic chambers in the piston

cylinder, Ps and Pt are the supply and tank pres-

sure of the, respectively. The rates of change of

pressure in the two hydraulic chambers are given

by

Ṗa = βe

Va
(Qa − Aavh) (2a)

Ṗb = βe

Vb
(Qb + Abvh) (2b)

which can be derived from the mass continuity

equation for a control volume (cv) ṁcv = ṁin −
ṁout and the bulk modulus βe = −V ∂P

∂V
of a com-

pressible fluid.

The resulting force of the hydraulic piston is

Fh = AaPa − AbPb (3)

where Aa,b are the areas of the piston in the two

hydraulic chambers.

2.2 Structural Blade Model

The blade model [2] has been linearized at a

wind speed of 12 m/s assuming nominal rotational

speed of the rotor and steady state deformation of

the blade due to aerodynamic loading. No aero-

dynamic damping have however been included in

the model.

2.2.1 1 Degree of Freedom

In this simplified model, only the blade pitch DOF

θ have been included. The blade is assumed rota-

tional symmetric, rigid with a moment of inertia m

and a damping d

[

θ̇

θ̈

]

=

[

0 1
0 − d

m

] [

θ

θ̇

]

+

[

0
1

m

]

T (4)

The blade is affected by the resulting torque T =
Th+Tl, where Th is the torque exerted at blade the

blade root by the pitch-servo and Tl is the external

loading torque stemming from e.g. aerodynamic

loading.

2.2.2 4 Degrees of Freedom

The 4 DOF blade model includes, apart from the

pitch θ, also the edgewise qe, flapwise qf and

torsional qt displacements of the blade w.r.t. the

steady state deformed blade. The coordinates of

the blade model are given as

q = [qe qf qt θ]T

The governing equations of the structural blade

model are given by

Mq̈ + [G + C]q̇ + Kq = F, F = [0 0 0 T ]T

(5)

where the matrices M, G, and K are the mass,

gyroscopic and stiffness matrices respectively.

The moment of inertia of the 1 DOF model is given

by m = M44. The damping matrix C is not given

by the model but have been chosen to be a diago-

nal matrix where Cii = 2ζi

√
KiiMii for i = 1, 2, 3

where ζ = [0.02
2π

0.02
2π

0.04
2π

]T and C44 = d. This

gives a blade model with the damped frequencies

1.06 Hz, 0.72 Hz, 8.10 Hz, of the first 3 DOF re-

spectively.

The pitch DOF has a stable and an unstable

pole. The instability comes from the fact that the

blade is not rotational symmetric and if the de-

formed blade is pitched the loading forces will be

change.

2.3 Geometric Interconnection

The blade root and the hydraulic piston are con-

nected as shown in figure 2.

xh =
√

L2 + r2 − 2Lr sin(φ − θ) − l (6)

The piston velocity is given by vh = dxh

dθ
θ̇. The

torque applied by the hydraulic piston force on the

blade root is Th = dxh

dθ
Fh. The external loading

force given by the external loading torque is Fl =
(dxh

dθ
)−1Tl.

In this paper the geometric length l is identical

to the piston chamber length l. The two lengths
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Figure 2: Geometry of pitch actuator mechanics.

could however be different in order to obtain a ge-

ometric interconnection similar to the one seen in

Figure 1 where the rotation of the piston is not cen-

tered at the end of the piston but somewhere in the

middle of the piston.

3 Control Methodologies

In this section the two different control methodoli-

gies are presented. The two types of controllers

are tuned with their control parameters to give a

similar response when tracking a reference.

3.1 IDA-PBC of a PCHD

Interconnection damping assignment and

passivity-based control (IDA-PBC) of a port-

controlled Hamiltonian system with dissipation

(PCHD) is presented in this section. As men-

tioned in the introduction of this paper, this heavily

inspired by [4]. The resulting control laws are

identical but they are constructed using different

Hamiltonians and different interconnection as-

signment matrices. The disturbance observer

used in [4] is also different from the one presented

in this paper.

3.1.1 Port-controlled Hamiltonian system with

Dissipation

A port-controlled Hamiltonian system with dissipa-

tion can be formulated as [5]

ẋ = [J −R]∇H + Gu (7a)

y = GT∇H (7b)

where the Hamiltonian H is traditionally the sum

of potential and kinetic energy in the system. The

input and output port vectors are denoted u and

y, respectively. The matrices J , R and G are

called the interconnection, dissipation and port

matrix, respectively. All of the matrices and the

Hamiltonian are functions of the system state vari-

able x but the functional argument notation f(x)
has been omitted to ease notation, instead f is

used and the reader is expected to include the

functional argument on his own, when applica-

ble. The differential operator ∇ indicates ∇f =
[ df

dx1

. . . df

dxn
]T . The following definition is intro-

duced to ease notation

F ≡ J −R

The power conservation property of PCHD sys-

tems is described by the power-balance equation

Ḣ = uT y − (∇H)TR∇H

A Casimir function C w.r.t. F is a function which is

the solution of the following PDE

(∇C)TF = 0 (8)

and is dynamic invariant when there is no input to

the system

Ċ = 0 for u = 0 (9)

this is a usefull tool to transform the coordinates of

the system as seen in the next section.

3.1.2 Application to the Pitch-Servo

The 1DOF blade-pitch-servo system has the coor-

dinates x = [q p Pa Pb]
T where the generalized

position and momentum coordinates are q = θ

and p = θ̇m, respectively.

The mechanical subsystem (q, p) has the

Hamiltonian Hm = Km + Vm where Km = 1

2

p2

m
is

the kinectic and Vm is the potential energy of the

system.

If the servo-valve is closed, i.e. xv = 0, the

hydraulic subsystem (Pa, Pb) will act as nonlinear

spring with the potential energy and thus Hamilto-

nian

Hh =

∫ xh

x∗

h

Fhdxh (10)

where x∗

h is the equilibrium point. The Hamilto-

nian of the total system is H = Hm + Hh. The

open-loop system has the combined interconnec-

tion and dissipation matrix and port matrix

F =









0 1 0 0
−1 −d αa −αb

0 −αa 0 0
0 αb 0 0









, G =









0 0
0 0
βe

Va
0

0 βe

Vb









where αi = βe
Ai

Vi
, for i = a, b. The port matrix of

the system is u = [Qa Qb]
T = [Ξa Ξb]

T xv.



The combined interconnection and dissipation

matrix F has rank of 2 which suggest that a coor-

dinate transformation to canonical coordinates is

possible. Such a transformation might ease the

synthesis of an appropiate control law. The exis-

tence of dynamic invariant functions enables the

transformation. Two functions which are solutions

to (8) and thus dynamic invariant are

zha = AaPa + Aaβe ln
(

Va

Va0

)

zhb = AbPb + Abβe ln
(

Vb

Vb0

)

The difference between the two functions give an-

other Casimir function

zh = Fh + Aaβe ln
(

Va

Va0

)

− Abβe ln
(

Vb

Vb0

)

(11)

this gives inspiration to a coordinate transforma-

tion and the new coordinates are x = [q p zh]T

with the combined interconnection and dissipation

matrix and port matrix

F =





0 1 0
−1 −d 0
0 0 0



 , G =





0
0
1





and the input u =
(

βeAa

Va
Ξa − βeAb

Vb
Ξb

)

xv.

Next a controller using interconnection and

damping assignment passivity-based control is to

be designed. The aim is to shape the desired

Hamiltonian of the closed-loop system by assign-

ing an additional Hamiltonian to the original sys-

tem Hd = H + Ha such that Hd has a minimum

at q∗d given by the set

{

x∗

d ∈ X |p∗d = 0, AaP ∗

a,d − AbP
∗

b,d = −Fl

}

(12)

where the loading force is the sum of the conser-

vative and nonconservative forces acting on the

system Fl = ∇qVm,d + Fex. The desired Hamilto-

nian for the hydraulic system is

Hh,d =

∫ xh

x∗

h,d

Fhdxh (13)

giving a desired Hamiltonian for the total system

Hd = Hf,d+Vm,d+Km. The desired combined in-

terconnection and dissipation matrix, which is ob-

tained by assigning an additional interconnection

and dissipation matrix Fd = F + Fa, is

Fd =





0 1 −kp

−1 −d kd

kp −kd 0





The control law is given by [6]

u = [GTG]−1GT [Fd∇Ha + Fa∇H] (14)

where Ha is the solution the PDE

G⊥Fd∇Ha = G⊥Fa∇H

and where G⊥ is the left annihilator of G, i.e.

G⊥G = 0.

The control law is finally seen the be

u = −kpz̄h − kdvh, z̄h = zh − z∗h,d (15)

xv =
(

βeAa

Va
Ξa − βeAb

Vb
Ξb

)−1

u (16)

The control law requires accurate knowledge

of F ∗

h,d = −Fl as seen by (12) which might

not be possible due to external disturbances and

modelling errors. A disturbance observer is con-

structed to estimate the unknown disturbance Fl.

The observer coordinates are ξ = [q p Tl]
T ,

yξ = [q q̇]T , uξ = Th with the system matrices

A =

[

0 1 0

0 −
d
m

1

0 0 0

]

, B =
[

0
1
0

]

, C =
[

1 0 0

0
1

m
0

]

If the velocity measurement is not available, the

second rows of yξ and C should be omitted. The

observer dynamics are given by

˙̂
ξ = Aξ̂ + Buξ + L[yξ − Cξ̂] (17)

where the observer gain L can be determined by

the continuous time algebraic Ricatti equation, if

the observer is linear quadratic in its penalty of the

estimation errors e = ξ̂ − ξ,

LCP = AP + PAT + Q, L = PCT R−1

the estimation error weights are tuned by three pa-

rameters rx, rd and ry

Q =

[

r2

x 0 0

0 r2

x 0

0 0 r2

d

]

, R =
[

r2

y 0

0 r2

y

]

It could be noted that the Hamiltonian of the ob-

server is Ho = 1

2
eT Pe. No further analysis of

the observer will however be performed and the

reader is asked to see [4] for a detailed analysis of

a similar, but not identical, observer.

3.2 Proportial-derivative Controller

A proportinal-derivative controller is given by

xv = −(kds + kp)x̄h = −kpx̄h − kdvh (18)



where x̄h = xh(θ) − xh(θd) and s is the Laplace

domain variable.

If no velocity measurement is available the con-

troller is implemented as a lead compensator to

reduce noise amplification.

xv = − kds + kp

αkd

kp
s + 1

x̄h, α < 1 (19)

The difference between the PD controller and the

lead compensator is the addition of a low pass fil-

ter with a cut off frequency fα = kd

2πkpα
Hz.

4 Results

Simulations have been carried out with both the 1

DOF and the 4 DOF blade model. Figures 3 and

4 on page 6 show the results for the two cases,

respectively.

In both cases 4 different controllers have been

created and tested: IDA-PBC and the lead com-

pensator which does not have a velocity measure-

ment. The IDA-PBC v and the PD controller which

both utilize a velocity measurement.

A constant steady state torque of 1.68 kNm is

applied to the blade acting as a external distur-

bance. Additional disturbance torques are added

to the steady state torque and the resulting distur-

bance torque Tl can be seen in Figure 6.

The controllers are all tuned to have similar a

reference tracing response as seen in Figures 3(a)

and 4(a). The disturbances are also successfully

rejected by all of the controllers as seen in the

before mentioned figures. The IDA-PBC(v) con-

trollers display better damping properties than the

PD/lead controllers when as seen when zoomed

in as in Figures 3(b), 4(b), 3(c), 4(c), 3(d) and 4(d).

The 3 extra DOF from the 4 DOF blade model

are shown in Figure 5. The generalized coordi-

nates have been translated to the corresponding

coordinates in the blade tip. It can be seen that the

edgewise and torsional DOF are coupled which

also couples to the pitch DOF as seen in the esti-

mated loading forces Tl in Figure 6.

Figure 6 shows, as just mentioned, the load-

ing forces estimated by the IDA-PBC (v) observer.

The observer for the 1 DOF simulations estimates

F̂ ∗

h to be −Fl whereas in the 4 DOF simulations

the bend-twist coupling etc. have a much larger

influence than the external loading. Furthermore

the steady state loading forces have an offset w.r.t.

regards to the actual external loading force this is

caused by the unstable pole in the 4 DOF blade

model as mentioned in section 2.2.2.
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5 Conclusion

The two control methods have been tested on both

a 1 DOF and a 4 DOF linearized blade model and

the IDA-PBC achieves better damping than the

lead compensator when both methods are tuned

to give a similar response

The IDA-PBC offers a nonlinear control method

suited for the non-linearity of hydraulic dynam-

ics in the pitch-servo system. The method does

however require knowledge of the pressure in the

two hydraulic chamber to calculate the hydraulic

force and thus estimate the external loading force

exerted on the pitch-servo system. If pressure

measurements are not available, the short coming

could perhaps be remedied by an estimate of the

pressures via a modification of the implemented

observer.

It is expected that the PD/lead controllers would

show better damping if a feedback from the pres-

sures of the hydraulic chambers where somehow

implemented in the controllers. This has however

not been explored in this paper.

Some of the physical parameters used in this

paper have been chosen rather arbitrarily e.g. are

the surface areas of the hydraulic piston are rather
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large but the conclusions and results w.r.t to the

controllers are expected to be valid also for a more

realistic dimensioning of the pitch-servo system.
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m3s-1 Pa-1/2 mm-1 and βe = 1.6e9 Pa. |xv,abs| = 1

mm.

The linearized matrices for the 4 DOF blade

model are

M = 1e4

[

0.1464 0 −0.0016 −0.4480
0 0.0785 −0.0228 0.0056

−0.0016 −0.0228 0.0567 0.1949
−0.4480 0.0056 0.1949 4.5823

]

K = 1e6

[

0.0648 −0.0038 0.0361 0.0071
−0.0038 0.0167 −0.0047 0.0008
0.0360 −0.0066 1.2830 −0.0003
0.0071 0.0053 0.0011 −0.0219

]

C = 1e6

[

0.0001 0 0 0
0 0.0000 0 0
0 0 0.0003 0
0 0 0 5.7296

]

G =

[

0 0 0 −56.6019
0 0 0 3.5808
0 0 0 0
0 0 0 0

]

The geomtric parameters are chosen to be L =

2.3 m, l = 1.5 m and r = 1 m.

The control parameters for the IDA-PBC con-

troller are kp = 500, kd = 0.2 βe, rx = 1e-6, rd =

1e6 and ry = 1e-6.

The control parameters for the lead compen-

sator are kp = 0.75, kd = 0.05 and α = 0.001.

The control parameters for the PD controller are

kp = 5 and kd = 0.05.


