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Calculated stacking-fault energies of elemental metals

N. M. Rosengaard and H. L. Skriver

Physics Department, Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 16 November 1992)

‘We have performed ab initio calculations of twin, intrinsic, and extrinsic face-centered-cubic stack-
ing faults for all the 3d, 4d, and 5d transition metals by means of a Green’s-function technique, based
on the linear-muffin-tin-orbitals method within the tight-binding and atomic-sphere approximations.
The results are in excellent agreement with recent layer Korringa-Kohn-Rostoker Green’s-function
calculations where stacking-fault energies for Ni, Cu, Rh, Pd, Ag, Ir, and Au were found by means
of the the so-called force theorem. We find that the self-consistent fault energies for all the metals
in the three transition series vary with atomic number essentially as the calculated structural energy
differences between the face-centered-cubic and the hexagonal-close-packed phases. In addition we
find that the simple relationships between the different types of fault energies predicted by models
based on the local atomic coordination are obeyed to a high degree of accuracy.

I. INTRODUCTION

The face-centered-cubic (fcc) and the hexagonal-close-
packed (hcp) crystal structures of metals may be re-
garded as the stacking of layers of hexagonally arranged
atoms. Symbolically these structures may be represented
by the stacking sequences ABCABC and ABABAB,
respectively, which indicate the position of the nearest
neighbors in adjacent layers. In real metals these perfect
stacking sequences may be broken locally by the intro-
duction of one of the three stacking faults shown in Fig.
1, and this effect is of great importance in determining
crystal growth, dislocation motion, and deformation pro-
cesses in general.

The intrinsic fault is the stacking fault most commonly
found in experiments on fcc metals and it may be repre-
sented by the stacking sequence CABC | BCAB, where
| denotes a symmetry plane of the resulting fault se-
quence. One may arrive at this fault by the removal

fec hep Twin Intrinsic Extrinsic

Stw
Slw
HCP tw
o o SHCP Stw
St’w
tw
S Stw
S!’w

FIG. 1. Stacking sequence of the fcc and hep crystal struc-
tures together with those of the twin, intrinsic, and extrinsic
stacking faults. The stacking sequences are represented by
lines between nearest neighbors in adjacent layers. Filled cir-
cles represent atoms in layers of the local hcp environment.
Interlayer structure constants are labeled according to the en-
vironment of the neighboring layer.

of a layer labeled A at the position of the symmetry
plane. A more physical operation which also produces
the intrinsic fault is the application of the shearing oper-
ation given by the vector £[211] to the part of the per-
fect crystal on the right-hand side of an arbitrary atomic
layer. This operation causes the transformations A — B,
B — C, and C — A and, hence, produces the intrinsic
sequence. The extrinsic fault may be formed by apply-
ing the same shearing operation to a crystal containing
an intrinsic fault. In this case the shearing of planes
more than one atomic layer to the right of the symme-
try plane of the intrinsic fault produces the extrinsic se-
quence ABCBABC. The twin fault may be assigned the
sequence ABCBA in the above notation and in contrast
to the intrinsic and extrinsic faults, which are planar de-
fects in a perfect crystal, the twin fault is simply the
plane boundary between two crystalline grains with fcc
stacking sequences of different orientation.

Experimentally, stacking faults are observed in connec-
tion with the splitting of dislocations into partials. In this
process the energy cost of forming the fault will oppose
the energy gained by moving the partials apart, leading
to an equilibrium distance of dissociation of the partials.
The stacking-fault energies obtained in the study of the
dissociation of dislocations as well as by other experi-
mental means are summarized by Hirth and Lothe.! Un-
fortunately, the precise determination of stacking-fault
energies is difficult, especially for materials with large
stacking-fault energies, because the separation between
partials is inversely proportional to the fault energy.
Therefore the experimentally determined fault energies
have errors of unknown magnitude.

From a theoretical point of view, twin and stacking
faults in close-packed metals represent well-defined pla-
nar defects, and the determination of their energy of for-
mation by ab initio calculations is an appropriate start-
ing point for macroscopic models of mechanical proper-
ties. In addition, comprehensive theoretical studies of
stacking faults may serve to establish simple trends in
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the energies and thereby be used to systematize the ex-
isting experimental data. The first ab initio calculations
of stacking-fault energies for most of the elemental fcc
metals were performed by Crampin et al.?> who found
that, although their calculated energies were generally
somewhat higher than the experimental values, they gave
a correct description of the trends observed experimen-
tally. Other local-density calculations on selected fcc
metals include those of Denteneer and Soler,® Xu, Lin,
and Freeman,? Schweizer et al.,® Fahnle et al.,® Wright,
Daw, and Young,” and Hammer et al.®

In the present paper, we report a series of ab initio cal-
culations of stacking-fault energies in elemental 3d, 4d,
and 5d transition and noble metals by means of a linear-
muffin-tin-orbitals (LMTO) Green’s-function technique®
within the atomic-spheres approximation (ASA). The
technique has recently been successfully applied in calcu-
lations of work functions and surface energies of a large
number of elemental metals'®!! including the magnetic
3d transition metals.!? In contrast to the formation of a
surface, the introduction of stacking faults conserves the
number of nearest-neighbor bonds. Hence, stacking-fault
energies are typically one order of magnitude smaller
than the corresponding surface energies and their cal-
culation requires a high numerical accuracy in terms of
dense k-vector and energy samplings. On the other hand,
the perturbations in the neighborhood of a stacking fault
are generally small and, in particular, the close pack-
ing of atoms is conserved. As a result, the errors of the
physical approximations in the ASA are minimal, and we
expect the Green’s-function technique to yield accurate
stacking-fault energies.

II. COMPUTATIONAL METHOD

Our tight-binding LMTO Green’s-function technique®
is based on the work by Andersen and co-workers.!3719
An essential aspect of the technique is the ability, within
the ASA and in the tight-binding representation, to
generate the Green’s-function matrices for a real, two-
dimensional interface by a simple and efficient procedure.
The details of the technique may be found in Ref. 9.
Here, we shall restrict ourselves to an outline of the ma-
jor steps, with special emphasis on the derivation of the
Green’s-function matrix for a stacking fault. In addition,
we shall discuss a development in which the linearized
Dyson equation is used to reduce the computer time in-
volved in the self-consistency procedure.

A. The LMTO Green’s-function formalism

The Green’s-function technique, which we use to solve
the one-electron problem, exploits the relation between
the eigenvalue equations defined by the LMTO-ASA
Hamiltonian H?” in the nearly orthogonal = represen-
tation and the solution of the Korringa-Kohn-Rostoker
(KKR)-ASA equations in the most localized tight-
binding B representation. To second order in (e — €,),
where €, is an arbitrary energy in the energy range of
interest, the Hamiltonian Green’s function G” may be
obtained from the LMTO-ASA equation
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[21 — H"|G"(z) = 1. (1)
Here, z is a complex energy and
HY = C +VAS"VA, (2)

the LMTO Hamiltonian written in terms of structure
constants S7 and center C, bandwidth A, and « poten-
tial parameters. The KKR-ASA Green’s function g¢? is
defined in terms of the KKR-ASA equation

[PP(2) - §°1¢°(2) = 1, 3)

where PP is a diagonal potential-function matrix, the
elements of which obey the scaling relation

(PP) 1+ B8=(P) "+ (4)

and S7 is a structure constant matrix which may be eval-
uated in real space. Within the nearly orthogonal repre-
sentation, the potential function is linear in energy, i.e.,

z—C
R (®)

and as a result the Hamiltonian Green’s function G” and
the KKR-ASA Green’s function g7 are connected by the
simple scaling relation

GV (2) = A™2g7 (2) ATY/2, (6)
The transformation of the KKR-ASA Green’s function

between different representations has the form16:18
PB(z PA(2 P8(z

O <. N )
P(z)  P7(2) P(z)

PY(z) =

g7 (z)=(vy—P)

+

where 3 and « are the diagonal screening constant and
potential parameter matrices, respectively.

In the calculation of the Green’s function for an in-
terface, we exploit the short range of the most localized
structure constants to get matrix equations of finite di-
mension. Hence, we calculate g# from the relevant Dyson
equations. On the other hand, the charge density needed
in a self-consistent calculation is most conveniently ob-
tained in terms of one-center expansions and partial-
wave-projected state densities. For this purpose we need
the imaginary part of the Hamiltonian Green’s function
G” and this we obtain from g? by means of the scaling
relations Egs. (6) and (7). We point out that these scal-
ing relations are given in terms of diagonal matrices and
hence are extremely efficient in numerical calculations.

B. Green’s functions for stacking faults

The starting point for the Green’s-function technique
is the self-consistent one-electron potential of the per-
fect crystal, from which one proceeds to account for the
changes in potential and structure near the interface by
means of Dyson’s equation. In the case of a general inter-
face, one first inhibits hopping across the interface plane
and constructs the so-called ideal Green’s function,?° §.
This Green’s function represents a perfect crystal termi-
nated not by a hard-wall potential but by P? = oo, corre-
sponding roughly to a vacuum potential lying 1 Ry above
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the occupied bands.!® Next, one uses Dyson’s equation,
which includes the structural changes in terms of struc-
ture constant differences, to obtain the ideal Green’s
functions for the fault structure. After that, the left-
and right-hand ideal Green’s functions are reconnected to
form the Green’s function for the complete fault struc-
ture with unrelaxed potentials. Finally, the potentials
are relaxed and the Green’s function is iterated to self-
consistency.

Let A denote layers on the left-hand side, and B layers
on the right-hand side of the interface. In this notation
the KKR-ASA ideal Green’s-function matrix for the left
half-space is defined by

[Pa(z) — Saa(k))]gaa(k),2) =1, (8)

where k| is the label of the two-dimensional (2D) Bloch
representation. Here and in the following we suppress
the LMTO tight-binding representation label 3. In the
original implementation® the ideal Green’s-function ma-
trix was obtained by means of a k; integration of the
Green’s-function matrix for the perfect crystal. This in-
tegration turned out to be a time-consuming process, es-
pecially for the high accuracy needed in the calculation
of stacking-fault energies, and instead we have now intro-
duced the notion of principal layers?! which was recently
implemented by Kudrnovsky and co-workers.??23

A principal layer?! is defined as the minimum number
of atomic layers which ensures that hopping only occurs
between nearest-neighbor principal layers. In the KKR-
ASA equations, the range of the hopping is determined
by the structure constants, and as a result of the short
range within the tight-binding representation, a principal
layer typically consists of only two atomic layers. To de-
rive the central equation of the principal-layer technique
one considers the situation in which a principal layer is
added to a surface described by an ideal Green’s func-
tion. From the Dyson equation connecting the Green’s
function g, with hopping between the semi-infinite crys-
tal and the added layer and the Green’s function §, with-
out this hopping, one arrives at the equation given by
Kudrnovsky and Drchal??

Goo(k)|, 2) = [ Po(2) — Soo(ky|)
—So1 (k)11 (k) 2)S10 (k)] (9)

which is analogous to Eq. (41) in Ref. 9 where a complete
half-space and not just a single principal layer was added.

In the principal-layer equation (9) the index O repre-
sent the added principal layer and the index 1 represent
the top principal layer of the original semi-infinite crystal.
Furthermore, goo is the ideal Green’s function projected
on the added principal layer, §;1 is the Green’s function
without hopping projected on the original top principal
layer, and the hopping is mediated by the structure con-
stants S;g and Sp; connecting the added layer and the
original top layer. Now, the introduction of the hopping
makes the added principal layer identical to the top prin-
cipal layer of a semi-infinite crystal, and it follows that
g11(ky}, 2) = Goo(ky|, 2). This identity may be introduced
into Eq. (9) which then becomes a quadratic equation
in §i11, i.e., aa in the notation of Eq. (8), that may be
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solved by iteration.
In the most localized representation one may calculate
the 2D structure constants directly as the Bloch sum

SﬁL,R'L'(k“) - Z eik”'T”SgL,R/_‘_T”L/ (10)
T

in real space. Here L denotes angular momentum, R a
. B .
2D basis vector, Sp; g/ +T) L the transfer matrices con-

necting sites R and R’ in the 2D basis, and T) a 2D
translation vector. The transfer matrices are in turn de-
fined by the matrix equation

§P = S°+ 5°BSP, (11)

where S° is the conventional LMTO transfer matrix and
[ is the diagonal screening matrix given by Andersen and
co-workers.16:18 The most localized transfer matrices are
obtained from this equation by inversion on a sufficiently
large cluster of neighboring atomic sites.

Once the ideal Green’s-function matrices a4 and §gp
for the two semi-infinite sides of the interface have been
calculated by means of Eq. (9), the rearrangement of sites
corresponding to the stacking fault may be introduced
separately in the two half spaces. Thus, we calculate the
ideal Green’s-function matrix for the left-hand side of the
fault structure §£ 4 by Dyson’s equation

[1aa — §aaASE )55 4 = Gaa, (12)

and the Green’s-function matrix for the right-hand side
by the analogous equation. In Eq. (12) the perturbation
is the change in the structure constant matrix for the A
side

AS), =S4, — Saa, (13)

which is finite and may be calculated directly in real
space. The hopping between the two sides of the fault
structure may be introduced through the equation

([Lm OAB] + [fbfm(z) 04B ] [OAA SﬁB]) 9(z)

OpalBa Opa 523(2) Slf?A OpB

_ §f (2) Oam
= %9 o]

where the structure constant matrices that connect the
two sides are those of the fault structure. This equation
is analogous to Eq. (36) of Ref. 9 and may be solved
in a similar manner. The result is the Green’s-function
matrix for the fault structure with unrelaxed potential
functions.

In a self-consistency procedure, g provides the first
guess at the self-consistent Green’s-function matrix g°,
determined by succesive solution of the Dyson equation

[1+9(2)AP'(2)]g'(2) = 9(2), (15)

where AP%(z) = P — P is the relaxation that occurs in
the potential function close to the fault structure. The
solution of the Dyson equation for the KKR-ASA Green’s
function has the advantage that the potential enters only
through changes in the diagonal potential-function ma-
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trix. Therefore the dimension of the Dyson equation is
determined by the small number of atomic spheres with
nonvanishing AP%(z), i.e., with a perturbed potential.
This is in contrast to the case of the Hamiltonian for-
malism, where the relaxation of the potentials enters as
changes in the nondiagonal elements of the Hamiltonian
and overlap matrices and may be of long range.

The KKR-ASA Green’s function (15) in the tight-
binding representation may be scaled to the second-order
Hamiltonian Green’s function G” as explained in Sec.
II A. This latter Green’s function is directly related to
the partial-wave projected state density and yields the
moments of the state density by the integral
mfy, = %Im dz 2° /BZ @’k GYp ro(ky,2),  (16)

UEp

where the energy integration is performed on a con-
tour in the lower half-plane cutting the real axis at the
Fermi level Er, and the k|| integration extends over the
2D Brillouin zone. In the actual self-consistent calcula-
tions, only the first few moments ¢ = 0,1, 2 obtained by
Eq. (16) from the site- and L-diagonal elements of the
Green’s-function matrix are needed since they contain
all the electronic-structure information necessary to cal-
culate the electron density and total energies within the
ASA.

C. Linearized Dyson equation

In the interface Green’s-function technique the com-
puter time is dominated by the solution of Dyson’s equa-
tion (15) for the relaxed potentials. It is therefore desir-
able, especially in systematic studies of several systems,
to reduce the number of times the complete Dyson equa-
tion must be solved. In the following, we shall describe
how a reduction by almost one order of magnitude may
be accomplished by a linearization of the Dyson equation
and the calculation of a few nondiagonal state-density
moments.

Let us assume that we have solved the Dyson equa-
tion (15) for a specified potential. Hence, we know the
moments of the state density from the contour integral
(16). If we now add a perturbation §H” to the LMTO
Hamiltonian G7, the corresponding first-order change in
the Green’s function may be found from

6G7(2) = GV (2)6HG" (), (17)

as obtained by keeping terms to linear order in (1). The
perturbation of the Hamiltonian caused by a change in
the potential may be written in terms of the correspond-
ing change in the potential parameters and if we keep
only the dominant contribution we have § HY = §C where
C is the band center. Hence, to leading order the change
in the Green’s function is

§G7(2) = GV (2)6CG(2). (18)

It is also possible to include the changes in the bandwidth
parameter A and the band distortion parameter v, but
experience shows that these are normally not needed.
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We may now insert (18) into (16) to obtain the linear
change in the moments caused by the change in potential
expressed through the shift in the band centers. We find

om4
smby =Y +=2L6Criyp, (19)
R'L! aCR'LI
% = ZIm dz 29
OCryp w UEp

/ dzMIG;lER'L'(Z)G ’L'RL(Z)
(20)

from which it is seen that the integrations over k space
and along the energy contour need only be done once
for a given solution of the exact Dyson equation, G"*(z).
Hence, within the linear approximation the moments cor-
responding to a relaxed potential are simply given by
adding 6m%; to the already known moments.

D. Self-consistency procedure

The starting point for the iterations towards self-
consistency is formed by the perfect interface Green'’s
function (14) corresponding to unrelaxed bulk potentials,
which at the outset gives state-density moments (16)
and their parameter derivatives (20). With this informa-
tion, one may perform an approximate self-consistency
cycle in which (19) is used to calculate the charge
densities needed in the solution of Poisson’s equation.
Once self-consistency has been reached within the lin-
ear approximation to Dyson’s equation, the reference
Green’s function may be updated by solving the exact
Dyson equation, and a new approximate cycle started.
In this manner, one succesively eliminates second- and
higher-order contributions to the self-consistent interface
Green’s function.

We find that the series of Green’s functions and one-
electron potentials generated in our two-step procedure is
rapidly convergent. As a result, the number of times the
exact, time-consuming Dyson equation must be solved is
reduced to a minimum. In the present calculations typ-
ically 4-5 updates of the Green’s-function matrices were
necessary while for surface calculations!! where the per-
turbations in the potentials were substantial the number
of updates goes up to 8-10.

E. Details of the calculations

At the outset of a stacking-fault calculation, one needs
starting potentials as well as total energies correspond-
ing to the perfect, infinite crystal of the atomic species
that form the fault structure. To obtain this input,
we perform self-consistent bulk calculations by means of
the second-order Hamiltonian (2), and calculate the one-
electron contribution to the kinetic energy by integrating
the bulk Green’s function on a complex energy contour.
The contour is chosen as a semicircle and the integra-
tion performed by a Gaussian technique on a mesh of
25 points distributed exponentially so as to increase the
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TABLE I. Twin-fault energy in (mRy) for the fcc tran-
sition metals calculated with two sampling densities in the
irreducible part of the 2D Brillouin zone.

ky Ni Cu Rh Pd Ag Ir Pt Au
45 2.14 0.78 445 3.08 061 651 588 0.79
135 2.18 0.67 4.17 320 054 6.34 547 0.85

sampling density near the Fermi level. Furthermore, al-
though it is more time consuming, we use in the bulk
calculations a Brillouin zone based on the 2D zone of the
fault structure, and in the direction perpendicular to the
plane of the 2D zone we use 400 k points distributed over
the period 27 /d, , where d is the distance between the
fault planes. This large number is necessary because the
Green’s functions for the fault structures are calculated
by the principal-layer technique, and hence is completely
converged in terms of k| .

Based on convergence tests, the fault calculations are
performed using a fault region consisting of seven layers
for the twin fault, eight layers for the intrinsic fault, and
nine layers for the extrinsic fault. For the k|| integration
we use 135 special points?? in the irreducible part of the
two-dimensional hexagonal Brillouin zone. As indicated
by the results in Table I, a less dense sampling leads to
errors of up to 15%. Furthermore, to maintain charge
neutrality the small excess charge (< 10~3 electrons) of
the fault region is placed at two sheets just outside the
fault structure, and the corresponding contribution to
the one-electron potential and the total energy are in-
cluded. In this manner, we take approximate account
of the charge connected with the Friedel oscillations and
ensure fast convergence of the fault energies in terms of
the region size. Finally, for exchange and correlation we
use the local-density functional of Ceperley and Alder?®
as parametrized by Perdew and Zunger.?8
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III. RESULTS

In the following we shall present twin, intrinsic, and
extrinsic face-centered-cubic stacking-fault energies for
28 elemental metals, as obtained by the procedure de-
scribed in Sec. II. All calculations are performed at 0 K
and at the experimentally observed equilibrium volumes,
and structural relaxations are neglected. The results are
listed in Tables II-V and compared with other ab initio
calculations as well as available experimental data.

A. The face-centered-cubic metals

Out of the 28 metals treated here only nine form natu-
rally in the fcc structure, and for these we have collected
available values for the stacking-fault energies in Tables
II-IV. It is seen that the present results give a correct de-
scription of the trend observed experimentally and that
they generally are higher than the corresponding experi-
mental values, the only exception being the intrinsic fault
energy in Rh. We find this agreement satisfactory, espe-
cially in view of the large uncertainties connected with
the experimental determination.

There are a number of ab initio calculations of
stacking-fault energies with which to compare, the most
comprehensive being those of Crampin et al.? These au-
thors used the LKKR Green’s-function method?? in con-
junction with the so-called force theorem. Thus, they
apply frozen bulk potentials and obtain a stacking-fault
energy as the difference in the sum of the one-electron
energies between the fault structure and the perfect crys-
tal to which they add a term proportional to the excess
charge in the fault region. The procedure is not self-
consistent but is expected to work well, as indeed the
results indicate it does.

TABLE II. Twin-fault energy for the fcc transition metals.
Eiwin (mJ/m?)

Supercell This Expt.
Metal APW? pseudo® LMTO*® LKKR? work
Rh 147 145
Ir 243 217
Ni 70 88 43¢
Pd 97 76 106
Pt 179 161°
Cu 29 36 26 247
Ag 12 19 16 gf
Au 21 21 26 15f
Al 54 608 74" 130 56 140 75'
® See Ref. 3. f See Ref. 28.
b See Refs. 5 and 6. & See Ref. 8.
¢ See Ref. 4. h See Ref. 7.
4 See Ref. 2. ! See Ref. 29.

¢ See Ref. 1.
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TABLE III. Intrinsic stacking-fault energy for the fcc transition metals.
Ein (mJ/m?)
Supercell This Expt.
Metal APW? pseudo® LMTOP LKKR® work
Rh 308 320 7509
Ir 534 499 480¢
Ni 180 187 125¢
Pd 161 225 180¢
Pt 393 3224
Cu 50 51 70 56 55° 48" 418
Ag 18 38 33 34 22¢ 20f 16®
Au 45 52 44 59 50° 42° 32!
Al 126 1567 161% 280" 124 295 166™
® See Ref. 3. b See Ref. 33.
b See Refs. 5 and 6. ! See Ref. 34.
¢ See Ref. 2. J See Ref. 8.
4 See Ref. 1. k See Ref. 7.
¢ Values recommended by Gallager (Ref. 31). ! See Ref. 4.
f See Ref. 30. ™ See Ref. 29.
& See Ref. 32.
L s B B B B In comparison with the LKKR results we find that for
10 - /Gz Cr 1 Rh and Ir the two sets of calculations agree to within 15%
3d ? CO Ni for all three stacking faults. For Ni the deviations are up
5t Vv 7 to 25% and for the intrinsic fault in Pd the LKKR is lower
than the corresponding value for Ni in contrast to both
0 the present value and the experimental trend. In the case
of the noble metals the deviation between the LKKR and
Sr the present results is up to 30%. However, both sets of
\é T' calculations correctly describe the trend that the three
-10 fault energies for Ag are lower than the corresponding
‘0 values for both Cu and Au. This is in agreement with

s [&=
E Y ¥
w
-10 + Zr N
-20 L 1 1 1 1 1 ]
20 T T T T T T T T
Ir
10 5d w i

| BG—82Twin Os

1 2 3 4 5 6 7 8 9 10
Bulk d occp

FIG. 2. The calculated twin-fault energy of the 3d, 4d,
and 5d transition metals compared to the structural energy
differences between the hcp and fcc structures. Note that
to comply with the approximate relations (21) and to make
direct comparisons with the following figures we have plotted
2Etwin and 2Ehcp~

the energy-band picture in which relativistic effects lead
to a raising of the d band in Au relative to the s band
leaving Ag with the lowest-lying d band of the three noble
metals.

The supercell approach, in which the two-dimensional
fault structure is treated by means of a conventional

TABLE IV. Extrinsic stacking-fault energy for the fcc
transition metals.

Eex (mJ/m?)

Supercell This
Metal APW?®  pseudo® LMTO° LKKRY  work
Rh 282 291
Ir 494 440
Ni 149 178
Pd 156 214
Pt 374
Cu 44 73 57
Ag 18 38 35
Au 41 44 59
Al 108 138°151F 260 118 201
2 See Ref. 3. 4 See Ref. 2.
> See Refs. 5 and 6. ¢ See Ref. 8.
© See Ref. 4. f See Ref. 7.
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TABLE V. Calculated hcp structural energy difference and fcc stacking-fault energies in mRy

for the 3d, 4d, and 5d transition metals.

Sc Ti Vv Cr Mn Fe Co Ni Cu
FEnep® -1.82 -3.35 2.72 3.76 -2.08 -3.79 2.39 2.53 0.78
Enep? -2.04 -4.00 3.97 5.19 -2.21 -4.39 2.28 2.63 0.83
Fiwin® -2.27 -2.63 2.62 3.66 -3.60 -3.32 2.22 2.18 0.67
FEin -4.10 -7.16 8.69 8.00 -4.97 -8.46 4.71 4.57 1.45
Eexb -4.14 -5.05 3.21 8.21 -7.54 -6.16 4.35 4.39 1.47

Y Zr Nb Mo Tc Ru Rh Pd Ag
Ehep -0.77 -2.80 0.93 2.63 -5.91 -6.65 4.70 3.65 0.51
Ehep -0.22 -3.71 1.80 4.70 -6.96 -9.10 4.25 3.91 0.64
Eiwin® -1.21 -1.22 1.32 3.35 -9.81 -7.02 4.17 3.20 0.54
Ein® -1.48 -5.49 5.87 6.60 -15.3 -17.8 9.19 6.76 1.13
Eexb -1.89 -1.47 0.00 7.27 -20.5 -13.2 8.36 6.45 1.16

La Hf Ta w Re Os Ir Pt Au
Ehep® 1.51 -4.71 4.32 5.00 -5.86 -7.95 8.22 6.86 0.92
Ehcpb 2.39 -4.76 6.19 7.28 -7.04 -12.4 7.60 7.14 1.11
Eiwin® 0.67 -3.61 5.30 6.14 -10.8 -10.6 6.34 5.47 0.85
Ei,? 2.96 -9.06 14.7 12.4 -16.4 -25.3 14.6 12.0 1.94
Eo® 1.26 -6.48 7.29 13.6 -22.1 -19.6 12.9 114 1.93
2See Ref. 37.

bPresent result.

three-dimensional one-electron method, has been applied
in a number of cases. Xu, Lin, and Freeman? used the
LMTO method within the ASA to calculate stacking-
fault energies in Pd and Al, and the noble metals were
studied by Schweizer and co-workers®® by means of the
LMTO method within the ASA, as well as by a non-
shape-restricted pseudopotential method. The agree-
ment at the 10% level between the LMTO supercell cal-
culations and the present LMTO Green’s-function results
indicates that the perturbation generated by a stacking
fault is extremely localized and hence may be treated to
a high accuracy also by a supercell method.

All four ab initio calculations listed in Tables II-IV
confirm the trend that Ag has the lowest stacking-fault
energies among the noble metals. However, at the quan-
titative level there are large and unsystematic deviations
between the calculations. If one considers the twin and
intrinsic stacking faults, it appears that the pseudopo-
tential calculation is in best agreement with the exper-
imentally derived values. On the other hand, the pseu-
dopotential result deviates more from the theoretically
based relationship Ei, &~ Fex = 2Fiwin than does the
LKKR and the present results. One reason for this de-
viation may be the limited size of the supercell, which
could compromise the accuracy of the pseudopotential
calculations.

In the case of Al, the supercell augmented plane wave
(APW), the supercell pseudopotential, and the LKKR
methods give stacking-fault energies which vary among
each other by up to 40% but otherwise are in rea-
sonable agreement with the experimentally derived val-
ues. In contrast to this, the supercell LMTO and the
Green’s-function calculations agree to within 10%, but

give stacking-fault energies which are almost a factor of
2 larger than the experimental values. One reason for
this discrepancy may be the fact that the LMTO method
within the ASA tends to be less accurate for metals with
broad sp bands and relatively large electron density in
the outer parts of the Wigner-Seitz cell.

B. Trends in the transition-metal series

The three types of stacking faults shown in Fig. 1 con-
sist of a perfect fcc stacking sequence interrupted by one
or two layers, which as far as the neighboring layers are
concerned, have a hep environment. The energies of these
stacking sequences may be analyzed in terms of an Ising
model3®® or a pair potential in conjunction with a tight-
binding model.3® With short-range interactions the mod-
els lead to the approximate relations

2Ehcp = 2Etwin = Ein = Eex, (21)
where Epp is the structural energy difference between
the hep and the fee structures. These relations may also
be obtained in a nearest-neighbor layer model simply by
counting the number of layers with a hcp environment in
Fig. 1. The accuracy with which they are obeyed by the
ab initio calculations may be judged from Table V and
Figs. 2-4 and will in turn justify the localized models of
stacking faults.

In Figs. 2 and 3 we have plotted the calculated twin
and intrinsic stacking-fault energies together with the hcp
structural energy differences also obtained in the present
work for the 3d, 4d, and 5d transition metals. The com-
parison shows clearly the applicability of the two first
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FIG. 3. The calculated intrinsic fault energy of the 3d,

4d, and 5d transition metals compared to twice the structural
energy differences between the hep and fec structures.

relations in (21). In Fig. 4 we have compared the extrin-
sic and the twin-fault energies for the transition metals
and find an almost perfect proportionality between the
two. Apart from justifying the local interaction picture of
stacking faults, the accuracy with which these relations
are obeyed may serve as an internal consistency check
on calculated as well as experimentally derived stacking-
fault energies.

It is clear from Figs. 2-4 that the stacking-fault ener-
gies of the three transition series follow the same trend
as a function of the calculated d occupation number. We
have therefore plotted the calculated energies scaled by
the appropriate d-band widths together with the results
of a canonical d-band model for the hcp-fcec structural
energy difference in Fig. 5. It is seen that the change
in magnitude of the fault energies in the 3d, 4d, and 5d
metals to a large degree is caused by the increase in the
d-band width. It is furthermore seen that the canonical
d-band model, which relies only on the crystal structure
and not on the atomic potentials, gives a correct qualita-
tive description of the fault energies. Thus, we conclude
that the d band to a large degree controls the formation
of stacking faults. However, it is also clear that the hy-
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width Ay and compared to the results of a tight-binding
canonical d-band model.
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bridization with the sp band cannot be neglected if one
wants a quantitative model.

We note from Table V that the agreement between the
fault energies and the hcp structural energy differences is
less satisfactory if we use the hcp energies calculated by
Skriver.37 Such a comparison is, however, slightly incon-
sistent since he used a third-order LMTO-ASA Hamil-
tonian and included combined correction terms. It may,
on the other hand, serve as a check on the accuracy of
the second-order tight-binding LMTO Hamiltonian used
in the Green’s-function technique. We find that, for the
proper fcc metals at the right-hand side of the Periodic
Table, the application of the second-order Hamiltonian
leads to errors of less than 10%.

IV. CONCLUSION

‘We have calculated the twin, intrinsic, and extrinsic fcc
stacking-fault energies for the 3d, 4d, and 5d transition
metals. The values confirm a series of simple relations be-
tween these energies and the energy difference between
the hcp and the fec structure and thereby justify the lo-
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cal model for stacking faults. The present values for the
fault energies of the proper fcc metals at the right-hand
side of the Periodic Table are in good agreement with
previous ab initio calculations and are in semiquantita-
tive agreement with experiments. Here, one should note
that the experimental stacking-fault energies are derived
in an indirect way, and in some cases one has even made
use of theoretical relations such as those given in Eq. (21)
to obtain experimental values. One may therefore argue
that present day ab initio calculations may be the most
consistent method of obtaining stacking-fault energies.
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