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process is governed by 

dT*(t)  = -sgn(v*(t) - y ) d t  + d w ( t ) .  (33) 

The corresponding Fwkker-Planck equation can be written, in terms 
of a generalized function, as 

l imp( t ,  zlx)  = 6(z - x ) .  (34) 
1 - 4  

We apply (27), noticing that - )z - yl is an indefinite integral of 
-sgn(z - y) ,  to obtain 

(35) 

and is C’.2 which is obviously positive and continuous on (0, CO) x 
on (0, CO) x (R\{Yl). 

Using Properties 5 and 6 in Proposition 1, one can easily verify 

00 

p ( t ,  zlx)dz = 1 v(r, X )  E (0, m) x 8. L 
In fact, 

00 

L _ P ( ~ ,  zlx)dz 

The steady-state density function p,(z) can be obtained by directly 
taking the limit 

p,(z) = ,~lilP(f’ zlx) 

Jx - y \ +  - y /  - 
= lim e 2 H ( 1 , t ,  I z - Y I + I x - Y l )  

I-CC 

= e-21x--YI 

where we have used the relation (6). And, of course, the invariant meas- 
ure of (33) is p(dz)  = e-z/z-y/ dz .  

Before we conclude this example, let us make the following observa- 
tion: let the diffusion m(t )  be governed by 

d d t )  = -sgn (vo( t )  - y )  dt + sgn If(?o(t))l dw (0  (36) 

where f: R + kl is Lebesgue measurable. 
We claim that q o ( f )  and ?*(t) ,  determined by (33), share the same 

transition probability density given in (35) and the same Fokker-Planck 
equation (34). 

In fact, to see thib, it is sufficient to notice that 

W ( t ) c l  sgn ~(m(s) ) l  d w ( s )  

is another Brownian motion because {W( t ) ,  5 , ,  t 2 0 )  and {w(f) - 
t ,  5 , ,  t > 0} are both martingales. Therefore, (36) can be rewritten as 

d m ( 0  = - s g n ( d f )  - Y )  df + d W ( t ) ,  

i.e., q*(t)  of (33) is a weak solution of (36). 
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Next, we compute the mean u( t ,  x)zE[<(t) l .$(O) = x ]  by using (35). 

As we know, u(f ,  X )  solves the backward equation 

au du ld2u - = -sgn ( x  - y)- + - - 
at ax 28x2 x f y  

u(0, x )  = x .  

Computation gives 

U(t, x )  = Y + a u t )  - Y IC;(O) = X I  

( 0 0  = y + e l  x - y  1 -- l m z e - J z l G ( t ,  z + y  -x )dz  

I x - y  I-t 
= y + e  [ ( X - Y + t ) H ( - l , t , x - y )  

+ ( X - Y - t ) H ( - l , t , Y - X ) l .  
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York: Springer-Verlag. 1988. 
[7] -, “Trivariate density of Brownian motion, its local and occupation times, with 

applications to stochastic control,” Ann. Probability, vol. 12, pp. 819-828, 1984. 
[8] A. A. Novikov, “On an identity for stochastic integrals,“ Theory Probability 

Appl., vol. 17, pp. 717-720, 1972. 
[9] W. Zhang, “Conditional expectation of Brownian functional and its applications,” 

Stochas. Proc. Appl., vol. 31, no. I ,  Mar. 1989. 

Comments on “A Discrete Optimal Control Problem for 
Descriptor Systems” 

HANS F. RAVN 

Abstract- In a recent paper,’ necessary and sufficient optimality con- 
ditions are derived for a discrete-time optimal control problem, as well 
as other specific cases of implicit and explicit dynamic systems. We cor- 
rect a mistake and demonstrate that there is not an “if and only if” 
correspondence between stationarity conditions and minimization of the 
Hamiltonian. 

Manuscript received April IO, 1989. 
The author is with the Institute of Mathematical Statistics and Operations Research, 

IEEE Log Number 9036554. ’ J.-Y. Lin and Z:H. Yang, IEEE Tmns. Automat. Contr., vol. 34, pp. 177-181, 

The Technical University of Denmark, DK-2800 Lyngby, Denmark. 

Feb. 1989. 

0018-9286/90/0800-0985$01 .00 0 1990 IEEE 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 23, 2009 at 08:48 from IEEE Xplore.  Restrictions apply. 



986 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 35, NO. 8, AUGUST 1990 

I. INTRODUCTION 

In the paper,' the following problem was considered: 
N-I 

k =O 

X k + i  = f k ( x k ,  uk), k = O ; . . , N  - 1 (Ib) 

q k ( ( X k r U k ) L O ,  k = O ; " , N -  1 (IC) 

x, = x, (fixed value) ( 1 4  

xk ER",Uk E R m , G : R "  + R , L k : R " + m  + R ,  fk:R"+" + R n , 4 k :  
R"+"' + RP , as well as other specific cases of implicit and explicit dy- 
namic systems. 

In this note, we correct an error in the paper' and extend the results 
by weakening the assumptions on constraint qualifications. 

The approach taken in the paper,' as well as here, is to derive opti- 
mality conditions by considering (1 )  as a specific case of a nonlinear pro- 
gramming problem. In this approach, a central element is the derivation 
of the Kuhn-Tucker conditions, and the identification of assumptions un- 
der which these conditions are necessary and/or sufficient, respectively, 
for optimality. This is supplemented with the control approach, where 
the Kuhn-Tucker stationarity conditions are supplemented with (or par- 
tially substituted by) minimization of the Hamiltonian with respect to the 
control uk . 

11. MAIN RESULTS 

Let us introduce the following assumptions. 
Assumption 1: Lk , f k , 4k , k = 0,.  . , N - 1 and G are continuously 

differentiable with respect to all their variables. 
Assumption 2: The Managasarian-Fromowitz constraint qualification 

holds at the optimal points (x;, U;), x; , i.e., there holds that: 
i) the gradients V F ( y )  are linearly independent; and 
ii) there exists a z E RN("+'") such that 

V F ( y " ) z  = 0 

Vq,k(y*)z  > 0 for all ( i ,  k )  for which q,k(y*)  = 0; 

here 

Y = ( x ' , . . . , x N ,  ~ O , " ' . U N - ' ) ' .  

F = ( f o , . . . , f ~ - ~ ) ,  f k  = ( f l k , . . . , f n k )  

4 = ( 4 0 ,  ' " , 4 k ,  " '  r 4 N - I  1, qk = (qlk ,"' ,4pk). 

Remark I :  This assumption is weaker than the assumption of linear 
independence of V F ( y * )  and those V4,k ( y * ) ,  for which 4,k (U) = 0, 
which was used in the paper.I 

Assumption 3: At the optimal solution x: , L k  is convex, fk is affine, 
and q k  is quasi-concave with respect to uk , k = 0,. . . , N - 1. 

Assumption 4: Lk is pseudoconvex, fk is quasi-linear (i.e., quasi- 
convex and quasi-concave) and 4k is quasi-concave at (& , & ), k = 
0 ,  . . , N - 1; and G N  is pseudoconvex at XN . 

Theorem I :  If (x, U)* = ( x ; ; . . , x ; ,  U ~ , . . . , U ~ - ~ )  is optimal in 
( l ) ,  then under Assumptions 1 and 2, there exist vectors & E R" and 
F k  E RP such that at ( x ,  U)* there hold 

8G 
AN = - 

8 X N  

where 

Hk(Xk, uk, A k + l )  = Lk(xk, uk) +A:+lfk(xk, uk) 

k = O , . . . , N  - 1. (2g) 

If Assumption 3 holds also, then for k = 0,. . , N - 1, U: is a solution 
to 

minHk(X;, U ,  A , + , )  (3a) 

4k(x; ,  2 O. (3b) 

" 

Proof: The first result is proved in [5]. For the second result ob- 
serve, that for xk = x i ,  the Hamiltonian Hk is convex (Lk convex, f k  

affine, and hence, also A:+, fk affine) with respect to uk , and therefore, 
also pseudoconvex [ 1, p. 1081 and 4k quasi-concave with respect to uk . 
Therefore, the conditions (2e)-(2g) are sufficient for optimality of U; in 

Remark 2: The assumption of convexity of Lk in the last part of The- 
orem 1 cannot be substituted by an assumption of pseudoconvexity of 4, . 
To see this, consider the fo!lowing example. Let n = 1, m = 1, N = 1, 
p = O , L o ( ~ o , ~ o ) = - e ~ u ~ , f o ( x o , u o ) = x o + u o , G I ( x I ) = ( x I - c ) Z  
with c = a( 1 +e-'I2)/2, x - 0. We find the following unique solution 
to (2): U; = 4 1 2 ,  x f  = $E, AI = Since Assumption 4 
is fulfilled, this is the optimal solution (cf. Theorem 2). However, $ is 
not minimizing HO(x0, U ,  XI); in fact, infHo(go,  U ,  A , )  = --CO. 

The error in the proof of Theorem 2 in the paper' is the conclusion 
that the sum (viz. the Hamiltonian) of a pseudoconvex function (viz. L ) 
and an affine function (viz. A;+,fk,  where fk in the paper1 was assumed 
affine) is pseudoconvex. 

Theorem 2: Assume that Assumption 1 holds, and that there exist 
A,  ,U such that (2) holds at ( x ,  U)*. If Assumption 4 holds also, then 
( x ,  U)' is optimal in (1). 

Proof: We first show that the criterion function ( la)  is pseudocon- 
vex. The key observation is that ( la)  is additive (viz. the sum of &,  
k = O , . . . , N  - 1, and G N ) .  Since all terms in ( la)  are continuously 
differentiable ( la)  is continuously differentiable; therefore, the gradient 
is zero, if and only if any partial derivative is zero. If the partial deriva- 
tive with respect to (xk , uk) is zero, then Lk attains a minimum since 
Lk is pseudoconvex, and similarly holds for GN . Since (la) is additive, 
the attainment of a minimum in each term implies that (la) attains a 
minimum. Therefore, (la) is pseudoconvex. Now, the result is proved 
as in [ I ,  pp. 147-1481 by observing that (2c), (2f), and (2g) imply that 
( x ,  U)* is feasible in (1). U 

Remark 3: This result can also be obtained under the following 
weaker assumption on fk : f(k is continuously differentiable, f i k  is quasi- 
convex at (x:, U:) if A I k + '  > 0, f,k is quasi-concave at ( x ; ,  U;) if 

Remark 4: In Theorem 2, the stationarity condition (2e) cannot be 
substituted by the condition that U; is optimal in (3). However, (2e) may 
be substituted by the condition that U: is an optimal solution to 

(3) [ l ,  pp. 147-1481, U 

h,k+l > 0 [ I ,  pp. 147-1481, 

minHk(x:, U ,  Ak+I)-P:qk(X;, U). (4) " 
But this condition is actually stronger than (2e); since (4) is an uncon- 
strained problem with a continuously differentiable criterion function, the 
optimal point in (4) is a stationary point [ 1, p. 1251 and this implies that 
(2e) holds. 

111. DISCUSSION 

We have given necessary and sufficient optimality conditions for a 
discrete-time optimal control problem. 

The conditions are derived from similar stationary conditions in non- 
linear programming, and supplemented by conditions from the control 
approach, in which the Hamiltonian is minimized. It is shown that the 
distinction between convexity and pseudoconvexity is essential, and that 
the results from the two approaches thus differ, implying that there is not 
an "if and only if" correspondence between stationarity conditions and 
minimization of the Hamiltonian. 
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The discussion about the equivalence or nonequivalence between vari- 
ous versions of optimality conditions in connection with discrete-time op- 
timal control is old (see [7]). The mathematical programming approach 
has maybe been most extensively treated in [2]. Derivation of optimality 
conditions from the saddle-point theorem of mathematical programming 
was done in [8]. A discussion of the connection between mathematical 
programming and discrete-time optimal control was performed in [4]. 

In all the aforementioned references, the Hamiltonian was defined as 
in (2g). By a suitable generalization of the Hamiltonian it is possible to 
specify weaker assumptions under which the Hamiltonian is minimized 
( see ,  e.g., P I ,  161, or 171). 
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Authors’ Reply’ 

JING-YUE LIN AND ZI-HOU YANG 

The authors would like to thank Prof. Ravn for his comments on the 
paper. I 

While we appreciated the comments, we wish to give a revised version 
of Theorem 2 in the paper’ in the context of the rest of this response, 
to achieve a balance of emphasis on the control problem for descriptor 
systems which has not been adequately explored in the literature. 

The revised version of Theorem 2 in the paper’ is given by the follow- 
ing theorems without proofs which can be given by a slight modification 
of those in the paper,’ according to the correction given by Prof. Ravn. 

Theorem 2.1: Consider the control problem (19). Let L k  be convex, 
and q k  be quasi-concave in Xk and uk  , k = 0, 1 ,. ’ , N - 1. If the se- 
quence {(xk , uk), k = 1,. . . , N} is an optimal solution to the problem, 
then there exist vectors AI , . . . ,AN, h, .  . . , p N - l  such that (20a)-(20f) 
and (21)-(23) hold. 

Theorem 2.2: Consider the problem (19). Suppose the necessary con- 
ditions in Theorem 2.1 hold. If G is pseudoconvex in xN , L k  is pseu- 
doconvex and q k  is quasi-concave in x k  and uk  , k = 0, 1,. . , N - 1, 
then the sequence {(xk, u t ) ,  k = 1,. . . ,N} is an optimal solution to 
the problem (19). 

The distinction between conventional systems and descriptor systems 
is essential since Ek , k = 1,. . . , N, in (19), may be singular matrices. 
Thus, our results differ from those for conventional systems and are 
generalizations of them. 

We conclude by noting that there is a typographical error on the 
first line of p. 178 of the paper1: “where gk is a p-dimensional 
vector function...” should be “where q k  is a p-dimensional vector 
function. . .”. 

2Manuscript received June 2, 1989. 
I.-Y. Lin is with the Department of Electrical Engineering, University of Ottawa, 

2.-H. Yang is with the Department of Automatic Control, Northeast University of 
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Ottawa, Ont., Canada KIN 6N5. 

Technology, Shenyang, Liaoning, China. 

Comments on “A Generalization of Kharitonov’s 
Concept for Robust Stability Problems with 

Linearly Dependent Coefficient 
Perturbations” 

YAU-TARNG JUANG 

Abstmct-It i s  shown by a counterexample that the main theorem 
in the above paper’ may lead to an erroneous D-stability conclusion 
for certain polynomials among the considered ones. Suggestions are 
presented and discussed. 

I. INTRODUCTION 

The Kharitonov stability theorem [ I ]  has attracted much attention to the 
robust stability problem in the recent literature. Based on Kharitonov’s 
four-polynomial concept, a generalization theorem for robust D-stability 
assurance of polynomials with linearly dependent coefficient perturba- 
tions is presented in the paper.’ 

In this note, we give a counterexample to show that the main theorem 
in the paper’ may have a misleading result. Subsequently, suggestions 
and discussions are made. 

Consider a linear system whose characteristic polynomial depends on 
p physical parameters q, with qf E [q,-, q:], i = 1, 2;.. , p .  Suppose 
that the characteristic polynomial is of the form 

n 

p ( s , q ) = x a J ( q ) s J  
J =o 

whereq = [ql  q2 . . qP]’ and the coefficient perturbations are polytopic. 
Then the family of polynomials P 

can be expressed as the convex hull of finitely many generating polyno- 
mialsp’(s),~2(S),...,Pk(s), i.e., 

where ” 

, =O 
and q” denotes the mth extreme point in the bounding set Q 

Q = { q : q f - 5 q r  S q ; ,  i = l , 2 , . . . , ~ )  . 
Let D be the union of a finite number (21) of pathwise connected 

regions in the complex plane. Define the notation 90 (6) as a continuous 
mapping of the scalar variable 6 E R onto the boundary of D. One choice 
of +D (6) proposed in the paper’ is 

dD(6) = -U + jS U 2 0. 

This implies that D is the half plane described by Re (s) < - U .  There is 
another function used in the paper,’ namely & ( p ) ,  and a simple choice 
for this function is’ 

+r(p) = COS 2ap + j  sin 2ap p E [0, 11. 

Then the paper’ presents the following result. 
Theorem: 
Assume that the polytope of polynomials P contains at least one D- 

stable polynomial. Then P is D-stability if and only if for each 6 E R 
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