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The ordering kinetics in two-dimensional Ising-like spin models with inhibited interfacial adsorp-
tion are studied by computer-simulation calculations. The inhibited interfacial adsorption is modeled
by a particular interfacial adsorption condition on the structure of the domain wall between neighbor-
ing domains. This condition can be either hard, as modeled by a singularity in the domain-boundary
potential, or soft, as modeled by a version of the Blume-Capel model. The results show that the ef-
fect of the steric hindrance, be it hard or soft, is only manifested in the amplitude, A, of the algebraic
growth law, R(t) ~ At", whereas the growth exponent, n, remains close to the value n = % predicted
by the classical Lifshitz-Allen-Cahn growth law for systems with nonconserved order parameter. At
very low temperatures there is, however, an effective crossover to a much slower algebraic growth.
The results are related to experimental work on ordering processes in orientational glasses. It is
suggested that the experimental observation of very slow ordering kinetics in, e.g., glassy crystals of
cyanoadamantane may be a consequence of low-temperature activated processes which ultimately

lead to a freezing in of the structure.

I. INTRODUCTION

The presence of a foreign component in a system un-
dergoing a nonequilibrium ordering process is known to
have a significant influence on the growth law, R(t) ~
Af(t), which describes the temporal evolution of order-
ing domains of average linear size R(t). The essential
time dependence f(t) of the growing domains for a pure
system is often found at late stages to be given by an
algebraic growth law!

R(t) ~ At™, 1

where the value of the kinetic exponent obeys a remark-
able universality and is basically only determined by the
conservation laws in effect. A “foreign” component which
couples to the order parameter can change the growth
law in either a qualitative way by changing the form of
f() or in a quantitative way by changing the value of
the amplitude, A. Since most real systems contain im-
purities, display inhomogeneities, or suffer from imper-
fections, the ideal asymptotic growth law is often dif-
ferent from the expected algebraic law or is associated
with growth exponents which deviate from those pre-
dicted by theory or by the principle of universality. Spe-
cific situations which have been studied include systems
with quenched randomness (the random-field Ising model

46

or systems with quenched dilution) which are known to
display logarithmic growth laws,2™> f(t) ~ (logt)?, sys-
tems with annealed randomness (dilution) which often ef-
fectively display logarithmic growth or algebraic growth
with very small exponent values,®™1! despite the fact that
the annealed randomness should not influence the asymp-
totic growth behavior. Obviously, it is important to dis-
tinguish between foreign components (vacancies, impu-
rities,. random. fields,. second-phase. particles). which. are.
mobile and those which are not.? In both cases it is,
however, fruitful to consider the foreign component as
specifically interacting with the walls between different
ordered domains leading to a lowering of the interfacial
tension. This is a particular case of dynamic interfacial
adsorption.!2

An interesting situation arises in some pure systems
which themselves can create a foreign component during
the dynamic ordering process. As an example, consider
a system of molecules with internal states of which only
one or a few are compatible with the structure of a given
ordered domain. The other internal states may, however,
be favorable to mediate domain boundaries and are hence
created at the boundaries and there act effectively as an
interfacially adsorbed species. Among models with this
type of behavior are chiral clock models!® and axial next-
nearest-neighbor Ising models!4 near the wetting line, the
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Blume-Capel model,’® as well as certain Potts models
with anisotropic grain-boundary potential.®

In the present paper we have conducted a compar-
ative model study of the ordering kinetics in two sim-
ple models with intrinsic mechanisms which support in-
terfacial adsorption at the domain boundaries due to
self-induction of a foreign component. The work has
been inspired by some intriguing experimental results
for the ordering kinetics in orientational glasses, such as
cyanoadamantane.!” 19 In this context the self-induced
foreign component in the model may be thought of as
an orientationally disordered molecule in the glassy crys-
tal. In order to focus on the principles, we have cho-
sen to study the problem within two-dimensional Ising-
like lattice models in which the degrees of freedom are
not intended to be a realistic description of the details
of the orientational molecular variables. It is, however,
anticipated that general aspects of the effects of inter-
facial adsorption on domain growth may be studied via
these models. The models have twofold degenerate or-
dering as in an Ising ferromagnet. We have studied two
types of models in which the interfacial adsorption con-
dition (steric hindrance) is enforced either in a hard or
a soft manner: (a) Model A with a hard condition: this
model is an extension of an earlier model'® devised to
study the problem. Within this model, domain bound-
aries have to be wetted by a foreign component which is
created subject to a particular applied chemical poten-
tial and is supposed to model a disordered molecule. (b)
Model B with a soft condition: this model is the well-
known spin-1 Blume-Capel model?° in the ferromagnetic
part of its phase diagram where spin-0 states are created
predominantly at the domain boundaries. We have stud-
ied the domain-growth kinetics of both these models us-
ing computer-simulation quenching techniques and have
compared the results to those of the two-dimensional
Ising model with nonconserved order parameter.

In Sec. IT we present the models in some detail and de-
scribe the simulation techniques we have used. The equi-
librium properties of the models are presented in Sec. III
with emphasis on the phase transition characteristics.
In Sec. IV we describe our results for the nonequilib-
rium ordering processes in both models and investigate
the growth in terms of dynamical structure factors and
growth laws. Patterns of the microstructural evolution
are presented and evidence in favor of dynamical scaling
is put forward. The paper is concluded by a discussion
in Sec. V where a comparison is made with the experi-
mental data for the dynamics of orientational ordering in
glassy crystals.

II. MODELS AND SIMULATION TECHNIQUES

A. Models with hard and soft interfacial adsorption
conditions

The models on which our study are based are exten-
sions of the model proposed by Willart, Descamps, and
Naudts!® to describe the effects of steric hindrance on
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domain-growth kinetics. The models are spin-1 Ising-
like models arrayed on a square lattice defined by the
Hamiltonian

K
H=> (—J— o —aj|) oi0;+ DY o, (2)
(4,) i
where o; = 0,%1 and the first summation is extended

over nearest-neighbor pairs on the square lattice.

The model with the hard condition (model A, steric
hindrance) is obtained for K — oo and J > 0. In this
limit, spins with different finite spin values (¢ = +1) can-
not be at nearest-neighbor sites and whenever a domain
characterized by ¢ = 1 meets a domain with 0 = —1,
sites with 0 = 0 have to wet the boundary completely.
The original model by Willart, Descamps, and Naudts!®
is obtained for K — oo and J = 0. In the original
model the ordering process is driven exclusively by the
single-site term (~chemical potential) and there is no
energetic advantage of forming compact domains. Hence
this model has a transition described by a percolation
phenomenon'® and the system is all interface.

The model with the soft condition (model B) is ob-
tained for K = 0 and J > 0. This is the limit of the
Blume-Capel model.2® When the ferromagnetic pair in-
teractions are included the model has a stable ferromag-
netic phase for D/J < 2 at low temperatures. During the
ordering process subsequent to quenches into the ferro-
magnetic phase, the pair interaction favors the formation
of compact domains. The phase diagram of the Blume-
Capel model contains a line of wetting transitions.?!

B. Simulation techniques

We have calculated the equilibrium thermodynamic
properties of the model with the hard condition for
D/J = 0 and the Blume-Capel model for D/J = 0
and D/J = 1 using conventional Monte Carlo simula-
tion techniques. The simulations are performed on finite
lattices with N = L x L sites subject to periodic bound-
ary conditions. Finite-size effects have been assessed by
studying different lattice sizes, L=100, 200, and 300. The
equilibrium properties calculated include the average in-
ternal energy per site, E(T) = N~!(H), the occupation
variables

¢Go=N"1> 8(ci—0), =01, (3)
i

the transformed fraction of spins

q=(q+1+9q-1), (4)

and the order parameter

¢=<¢1+1;(1—1>. (5)

We have also calculated the specific heat

C(T) = —= ((H?) — (1)?) (6)
kgT

and the susceptibility
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d+1 —q-1
q

(=g,

x(T) = k;T <<
(7

The nonequilibrium ordering dynamics of the mod-
els is calculated by Monte Carlo simulation of thermal
quenches. The system is prepared in the disordered
phase at high temperatures and the temperature is sub-
sequently changed to a value below the phase transition
temperature. The dynamics of the ordering process is
controlled by the stochastic dynamics on which the par-
ticular Monte Carlo algorithm is built. We have used
conventional single-site Glauber dynamics, which corre-
sponds to a nonconserved order parameter. The time
parameter of the associated Markov process is then in-
terpreted as a physical time which is measured in units
of Monte Carlo steps per site (MCS/s).

The temporal evolution of the system is followed both
by direct inspection of particular microscopic configura-
tions and by calculation of time-dependent ensemble av-
erages. Since some of the nonequilibrium properties of
a system undergoing an ordering process are not self-
averaging,?? these ensemble averages have to be per-
formed using results obtained from a large number of
independent quenches, typically 20-100.

We have calculated the excess energy

AE(t) = E(t) — E(T), (8)

where E(t) is the nonequilibrium internal energy and
E(T) is the equilibrium internal energy at the temper-
ature to which the system is quenched. AE(T) is a
measure of the total nonequilibrium energy bound in
the entire domain-boundary network. For localized do-
main boundaries, this energy is proportional to the total
perimeter of the domain-boundary network and hence
AE(t) scales as an inverse length scale, AE(t)~! ~ R(t).

A more comprehensive description of the evolving
structure is provided by the time-dependent static struc-
ture factor, S(g,t), which under the assumption of trans-
lational invariance is given by

2

S(g,t) = <N"1 Zaj(t)eiq”'j > . (9)
J

A quantitative measure of the length scale of the growing
ordered domains is obtained via the moments, kn,(t), of
S(g,t)

km(t) = _'q™S(g,1) / > 'S(g,t), (10)

where the primed sums are restricted by an ultraviolet
cutoff. From the moments, measures of the linear length
scale may be derived as R(t) ~ (km)~%™, where d = 2
is the spatial dimension. Without an explicit assumption
about the shape of the structure factor it is not possible
to relate measures of the length scale obtained in this
way to lengths in real space.
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III. EQUILIBRIUM PROPERTIES AND PHASE
TRANSITIONS

For both models with D = 0 the simulation results for
the occupation variables, the internal energy, the order
parameter, and the transformed fraction as functions of
temperature are given in Figs. 1 and 2. The data for
the specific heat and the compressibility are displayed
in Figs. 3 and 4. The data refer to a 100 x 100 lat-
tice. Since the main issue of the present paper is to
study the nonequilibrium ordering processes, we have not
performed a full-fledged finite-size scaling analysis of the
transition properties of either of the two models. The
transition in the two models is most directly identified
by the pronounced peak in the isothermal susceptibility
in Fig. 4. The transition temperatures found for the mod-
els are in good agreement with previous estimates.?!:23
It is seen from the data in Fig. 2 that the hard condi-
tion leads to a stabilization of the ordered ferromagnetic
phase and the transition temperature of model A is more
than twice as high as that of model B. Furthermore, the
transition region is more narrow in model B. The tran-
sition is barely reflected in the variation of the internal
energy in the model with the hard condition. The specific
heat gives hardly any sign of the transition in model A

T T L B
(a)
0.6 - wwmo 1
ow»«.W"W
04 | e 1
Qo .o P
02 o 1
0 |, ot q'llna_uﬂ;&j B
! | 1 I 1 ] | !
0 2 3 4 5
kgT/J
T T L] T
1 foococcce IS q+1 (b) -
08 | % 4
0.6 |- .
04 | °8965ae030005000as]
O ettt
02 | Qo -
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o} 8600000000000 -
] ! 1 1
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FIG. 1. Equilibrium results for the occupation variables,

¢-(T) in Eq. (3), for the model with the hard condition (a)
and the model with the soft condition (b) in the case D =0,
Eq. (2). ¢ : g4+1(T), O : g-1(T), and + : go(T). The data
refer to a simulation on a lattice with 100 x 100 sites.
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1 | T T from high temperatures to low temperatures within the
e ferromagnetic phase. Since this phase is twofold degener-
05 | q et :
o ate, two types of domains are spontaneously nucleated as
ol o, (Il " the system responds to have been brought into the ther-
MR modynamically unstable regime. The hard condition of
05 b i model A implies that the domain walls are always wet-
M T ted by spins in the o = 0 state. In model B, which
at s E corresponds to a soft condition for the interfacial adsorp-
' tion, the two types of ferromagnetically ordered domains
15 b M (a) ] can meet but it is obvious from the snapshots that the
5 system has a distinct tendency to wet the interfaces by
-2 0“” L 2' L ; ! i L 1 o = 0 spins. The overall conclusion obtained from com-
kg T/ J paring the two panels of snapshots in Fig. 5 is that the
domain-growth kinetics is much slower in model A than
1 1 s T—— in model B. The adsorption at the domain-boundary net-
. work lowers the interfacial tension and slows down the
0.5 I- o)) q 1 driving force for the interface motion. However, as we
) shall show below, only the absolute growth rate is slowed
or soetnenn i teoneriy down. The essential time-dependent growth function,
05 | e f(t), is in fact the same in the two models.
1 b ]
-15 | (b) .
-2 b munﬂﬂDDDUO o 1 | 3.0 I ' ) ‘ ' !
0 0.5 1 15 2 25
ot/ o(T) (a)
FIG. 2. Equilibrium results for order parameter, ¢(7T') in 20
Eq. (5), the average internal energy, E(T), and the trans- T i
formed fraction, ¢(T') in Eq. (4), for the model with the hard
condition (a) and the model with the soft condition (b) in the
case D = 0, Eq. (2). o: ¢(T), O: E(T), and + : g(T). The 10l 1
data refer to simulations on a lattice with 100 x 100 sites.
o'.....o N. ML o
whereas the specific heat has a dramatic peak at the tran- 0.0 . . Aihebudnen e
sition in model B, cf. Fig. 3. Hence the transition in 30 35 40 45 50 55
model B is driven purely by entropy. The much smoother kT / J
energy variation in model B is due to the fact that ex-
citations in the model with the hard condition are much
more costly since, in order to reverse a spin in the ferro- 3.0
magnetic phase, a cluster of at least four sites with ¢ = 0 C (T)
has to be created before a spin fully wetted by o = 0 i
states can flip. This is clearly borne out by the tem-
perature variation of the occupation variables in Fig. 1, 2.0}
which shows that gqo rises to a very high value in the or-
dered phase as the transition is approached, whereas g 7
in the Blume-Capel model only gains some weight in the 10l |
transition region. It should be noted that the asymmetry
in Fig. 1, g41 # q—1, below the transition is due to the _
symmetry breaking in the ordered phase, which in this
case corresponds to a ferromagnetic state in the o = 1 oop .
manifold. 1.3 1.5 17 19 21
kpT/J
IV. NONEQUILIBRIUM ORDERING
AND GROWTH
A. Microscopic evolution FIG. 3. Equilibrium results for specific heat, C(T) in

In Fig. 5 is shown a selection of snapshots of microcon-
figurations typical of thermal quenches of the two models

Eq. (6), for the model with the hard condition (a) and the
model with the soft condition (b) in the case D = 0, Eq. (2).
The data refer to simulations on a lattice with 100 x 100 sites.
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(b)

X(T)

501

13 15 17 1.9 21

kpT/J

FIG. 4. Equilibrium results for isothermal susceptibility,
x(T) in Eq. (7), for the model with the hard condition (a)
and the model with the soft condition (b) in the case D =

0, Eq. (2). The data refer to simulations on a lattice with
100 x 100 sites.

B. Structure factor and dynamical scaling

The simulation data for the time-dependent static
structure factor, S(g,t) in Eq. (9), for the two models
with D = 0 are displayed in Fig. 6. Comparison of

the structure factor for the two models shows that the
growth is much slower in model A than in model B. A
time-dependent length scale may be extracted from the
time-dependent static structure factor via the moments,
Eq. (10). We shall return to the moments in Sec. IVC
below.

We have tested whether the ordering processes in the
two models obey dynamical scaling by constructing the
dynamical scaling function, F(z), and the scaling vari-
able, z, as

F(z) = S(q,t)/Ki(t),

The dynamical scaling functions for the two models are
shown in Fig. 7. In both cases it is seen that the ordering
process within statistical accuracy obeys dynamical scal-
ing in an extended temperature regime. By analysis of
the tails of the scaling functions we have confirmed that
the Porod law,

F(z) ~ g~ @+

T = gkit. (11)

g>1 (12)

holds with w ~ 1 as expected for small-angle scattering
on domains with sharp boundaries.?* We have also con-
structed other scaling functions, e.g., S(g,t)/S(g = 0,t)
and S(q,t)/k2(t), and found that the data are equally
consistent with the existence of such functions.

C. Growth laws

The time dependence of the different measures of in-
verse length scale, AE(t), ki(t), and k;/ 2 is analyzed
quantitatively for the two models in Figs. 8-10. Data
for different quench temperatures are shown. The over-
all picture which emerges from these sets of data is as
follows.

In model A the growth stops after a very short time
at T = 0 and the domain pattern freezes in. As the
temperature is raised, the system grows with an early-
time effectively algebraic growth law with an exponent
which increases with increasing temperature. At inter-
mediate times there is a crossover to a late-time growth

FIG. 5.

Snapshots of typical microconfigurations illustrating the temporal evolution of the ordering subsequent to a deep

thermal quench from kgT/J = co. (a) corresponds to the model with the hard condition quenched to ksT/J = 0.5 and (b) to
the model with the soft condition quenched to kgT/J = 0.1. For both models D = 0 in Eq. (2). The data refer to simulations
on a lattice with 100 x 100 sites. Sites with o = 0 are indicated by blanks and sites with o = 1 are indicated in two grey

tones. The time, ¢, is given in units of MCS/s.
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behavior also characterized by an algebraic growth law
with an exponent which is approximately independent
on temperature. The higher the temperature, the ear-
lier is the occurrence of this crossover. The late-time
exponent, n in Eq. (1), is different for the three differ-
ent quantities. For model A we find that n ~ 0.4 — 0.5
in the case of R(t) ~ AE(t), n ~ 0.35 — 0.5 in the
case of R(t) ~ k7 (t), and n ~ 0.25 — 0.3 in the case of

R(t) ~ ky Y 2(t). We have also investigated the growth
behavior of other system properties. For example, the
variation of the transformed fraction, Aq(t) = ¢(t)—q(T),
is found to scale the same way as AE(t).

In model B the growth persists at all temperatures,
even at T = 0. This is in contrast to the freezing-in
behavior of model A at low temperatures. Moreover the
growth in model B is well described by a single algebraic
growth law for all temperatures and the same growth
exponent applies independent of temperature. Similar to

1000 T T T T T
S(q,t)
800 I

600 |- ) —

400 | R .

200 | VAN .

0.4 0.6

1800
1600 :
1400 | : 1
1200 P ]

S(q,t)

1000 | Pid 1
800 | i .
600 | FERS ]
400 |- ]
200 |- '

e

0.4 0.6
q

0
-0.6

FIG. 6. Time-dependent static structure factor, S(g,t)
in Eq. (9), for the model with the hard condition (a) and
the model with the soft condition (b) in the case D = 0,
Eq. (2). (a) The model is quenched from kgT/J = oo to
2. Data at different times (in units of MCS/s) are indicated
by (——): t = 500, (— — —): t = 1000, (- - - -): ¢ = 1500,
and (------ ): t = 2000. The data refer to simulations on
a lattice with 200 x 200 sites. (b) The model is quenched
from kgT/J = oo to 0.7. Data at different times (in units of
MCS/s) are indicated by ( ): t = 100, (— — —): t = 200,
(----):t=2500,and (- - - -- - ): t =1000. The data refer to
simulations on a lattice with 100 x 100 sites.
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25 [
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FIG. 7. Dynamical scaling functions, F(z) in Eq. (11),
corresponding to the data in Fig. 6. (a) Data at different
times (in units of MCS/s) are indicated by (¢): t = 500, (+):
¢t = 1000, (O): t = 1500, and (x): t = 2000. (b) Data
at different times (in units of MCS/s) are indicated by (o):
t = 200, (+): ¢ = 500, and (0): ¢ = 1000.

model A the value of the growth exponent depends on the
quantity under consideration. For model B we find that
n =~ 0.4 — 0.5 in the case of R(t) ~ AE~!(t), n ~ 0.4 in
the case of R(t) ~ k;1(t), and n ~ 0.3 — 0.35 in the case
of R(t) ~ ky 1 %(t). These exponent values are within
the numerical accuracy the same as those found for the
late-stage growth in model A. We have also studied the
growth kinetics in model B in the case of D/J = 1 in
Eq. (2) and found that the same growth behavior prevails
with the same exponent values.

For both models A and B we find that as the quench
temperature is increased towards the equilibrium transi-
tion temperature there is a new crossover (not shown in
the figures) to an effectively algebraic growth law with
a smaller exponent. This behavior is caused by critical
slowing down which involves?® the dynamic critical ex-
ponent z.

In order to further investigate the significance of
our finding of algebraic growth laws for both model A
and model B with exponent values which depend on
the quantity under consideration, we have investigated
the domain-growth kinetics in the ferromagnetic two-
dimensional Ising model which is obtained from Eq. (2)
for K = D = 0. The ordering kinetics of this model
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has been studied by a number of techniques?® and is well
understood in terms of the classical theories of curvature-
driven growth of continuous ordering processes with non-
conserved order parameter. Specifically, the ordering
process is obeying dynamical scaling and the growth law
is algebraic with an exponent value n = % In Fig. 11
are shown our simulation results for the Ising model
for the same three different measures of inverse length
scale as calculated for models A and B in Figs. 8-10.
A remarkable similarity is observed between the growth
laws for all three models. For the Ising model we find,
in the temperature and time regimes investigated, that

1072

10™

1072

10-3 1 1 [ 1
1 10 10 10° t 10°*

FIG. 8. Log-log plot of the excess internal energy, AE(t)
in Eq. (8), vs time, ¢ in units of MCS/s, for the model with
the hard condition (a) and the model with the soft condition
(b) in the case D = 0, Eq. (2). The quench temperatures are
indicated to the left in the figure. The bottom set of data
corresponds to the units on the left-hand axis whereas each
of the other data sets is translated one decade above the one
below. The solid lines are guides to the eye and the numbers
indicated in association with these lines denote their slope.
The data refer to simulations on a lattice with 200 x 200 sites
for model A and 100 x 100 sites for model B.
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n =~ 0.5 in the case of R(t) ~ AE~!(t), n ~ 04 in
the case of R(t) ~ k;1(t), and n ~ 0.35 in the case of

R(t) ~ k3 Y2 (t).

V. CONCLUSIONS AND DISCUSSION

We have conducted a comparative study of the or-
dering kinetics in two different two-dimensional models
undergoing a ferromagnetic ordering process in response
to thermal quenches below a phase transition. The two

10°
k,(t)
10*
10°

10?

10

1 —
10—1 J | 1 | |
2 3 4 5
1 10 10 10° 10 10
1 T L I
2 p— -—
ol (b)
k,(t)
10 -
1 -
. 0.40
107! .
J 0.40
10—2 [ L 1 1
1 10 10 10° ¢ 10° 10°

FIG.9. Log-log plot of the first moment, ki(t) in Eq. (10),
of the time-dependent static structure factor vs time, t in
units of MCS/s, for the model with the hard condition (a)
and the model with the soft condition (b) in the case D = 0,
Eq. (2). The quench temperatures are indicated to the left in
the figure. The bottom set of data corresponds to the units
on the left-hand axis whereas each of the other data sets is
translated one decade above the one below. The solid lines
are guides to the eye and the numbers indicated in associa-
tion with these lines denote their slope. The data refer to
simulations on a lattice with 200 x 200 sites for model A and
100 x 100 sites for model B.
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models, model A and model B, are distinguished by a
particular property of the domain walls. The domain
walls of model A are formed subject to a hard condition
for the interfacial adsorption of a spin-0 state. In this
model the interfaces are completely wetted by particles
in the spin-0 state and the domain-boundary dynamics
has to adapt to this hard condition. In model B, which is
equivalent to the Blume-Capel model, spin-0 states are
adsorbed at the domain boundaries but the condition for
adsorption is soft in the sense that the interfacial adsorp-
tion is controlled by the interfacial tension in the usual
way.

Our main result for the ordering dynamics is that the
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FIG. 10. Log-log plot of the square root of the second mo-
ment, k;/ %(t) in Eq. (10), of the time-dependent static struc-
ture factor vs time, ¢t in units of MCS/s, for the model with
the hard condition (a) and the model with the soft condition
(b) in the case D = 0, Eq. (2). The quench temperatures are
indicated to the left in the figure. The bottom set of data
corresponds to the units on the left-hand axis whereas each
of the other data sets is translated one decade above the one
below. The solid lines are guides to the eye and the numbers
indicated in association with these lines denote their slope.
The data refer to simulations on a lattice with 200 x 200 sites
for model A and 100 x 100 sites for model B.
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FIG. 11. Log-log plot of the excess energy, AE(t) in

Eq. (8), the first moment, k:(t) in Eq. (10), and the square
root of the second moment, k3/%(t) in Eq. (10), of the time-
dependent static structure factor vs time, ¢ in units of MCS/s,
for the two-dimensional ferromagnetic Ising model. The bot-
tom set of data corresponds to the units on the left-hand
axis whereas each of the other data sets is translated one
decade above the one below. The model is quenched from
kpT/J = oo to 0.9. The solid lines are guides to the eye and
the numbers indicated in association with these lines denote
their slope. The data refer to simulations on a lattice with
100 x 100 sites.

absolute growth rate in model A is much slower than in
model B. The absolute growth rate is controlled by the
prefactor, A(T'), in the growth law. The growth pro-
cesses in both models obey dynamical scaling. Whereas
the absolute growth rates in the two models are rather
different, the essential time dependence of the growth
law, f(t), is the same for both models, f(t) ~ t", with a
growth exponent value which in the case of the excess en-
ergy is n ~ 0.4 — 0.5. This value of the growth exponent
is consistent with the classical value for Lifshitz-Allen-
Cahn growth kinetics, n = %, for continuous ordering
with nonconserved order parameter.! We have verified
that this is also the exponent value which, in accordance
with expectations, applies to the domain-growth kinet-
ics of the conventional two-dimensional Ising ferromagnet
with nonconserved order parameter (Glauber dynamics).

A striking result of our studies of the ordering kinetics
in models A and B is that the exponent values which one
obtains when analyzing the time dependence of length
scales derived from the moments of the time-dependent
static structure factor are somewhat lower that the clas-
sical value, n = -%, obtained from the excess energy.
This seems to indicate a breakdown of dynamical scal-
ing, which implies that different measures of length scale
should scale the same way, i.e., AE~1(t) ~ kil(t) ~

ky 1/2(4) ~ tn. However, dynamical scaling seems ef-
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fectively to hold, judging from the analysis of the time-
dependent static structure factor in Fig. 7. We therefore
interpret our finding of systematic lower exponent val-
ues from the moments, as well as the finding that the
exponent value describing k7 !(t) is consistently larger

than that describing ky 1/2 (t), as indicating that the mo-
ments are not proper measures of the length scale. This
conclusion implies that a careful analysis of the shape
of the time-dependent static structure factor has to be
performed in order to identify a relation which permits
determination of the coherence length from the structure
factor. Our numerical data are not sufficiently accurate
to permit such a detailed analysis of the shape of S(g,t).
As additional evidence in favor of considering the mo-
ments as inappropriate measures of length scale, we wish
to point to our results for the time dependence of the
moments of the structure factor for the Ising model in
Fig. 11. This figure shows quite clearly that even for
this well-studied model the growth exponents describing
the moments are distinctly lower than that describing
the excess energy. In fact, the values of the exponents

for k7'(t) and ky Y 2(t) are the same as those found for
models A and B. It is noteworthy that only a few data
are available in the literature on the scaling properties
of the moments of the time-dependent static structure
factor of the Ising model, and the existing data?” are
rather imprecise and not inconsistent with the results of
the present work. Finally, we wish to point out the pos-
sibility that moments in general may be inappropriate
measures of length scale in ordering processes to the ex-
tent that the shape of the structure factor has not been
determined. Studies of ordering kinetics in several other
models? have also revealed that in those cases the expo-
nent values pertinent for the moments tend to be smaller
than those describing length scales derived from, for ex-
ample, the excess energy or the domain-size distribution
function.
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The present model study was motivated by the ex-
perimental finding of extremely slow domain-growth ki-
netics in orientational glasses such as cyanoadamantane
and related mixed compounds.1?71? In these compounds
the molecules are positioned in a perfect crystalline array
and the orientational ordering process among the bulky,
anisotropic molecules is hampered by steric hindrance.
The orientational ordering in cyanoadamantane is six-
fold degenerate. It has been suggested!® that the steric
hindrance may be seen as a particular boundary condi-
tion for the domain walls separating domains of different
orientational order. This condition should imply that the
walls are mediated by disordered molecules, and domains
of different orientational order cannot meet without in-
duction of an interfacial layer of disordered molecules. In
the present model study we have incorporated this con-
dition as a hard condition for an interfacial adsorption
process in the simplest possible setting. Our finding of
low absolute growth rates, but otherwise classical growth
laws, suggests that the experimentally observed algebraic
growth laws with anomalously small exponent values may
be a consequence of a low-temperature condition. How-
ever, the experimental situation is still puzzling. At low
temperatures the hard condition, as demonstrated by our
comparative model study, implies that the domain-wall
migration is an activated process which at low tempera-
tures can lead to arbitrarily small exponents whose values
are strongly temperature dependent. At very low tem-
peratures the ordering process leads to a freezing in of
the domain pattern at very early times.
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FIG. 5. Snapshots of typical microconfigurations illustrating the temporal evolution of the ordering subsequent to a deep
thermal quench from ksT'/J = co. (a) corresponds to the model with the hard condition quenched to kgT/J = 0.5 and (b) to
the model with the soft condition quenched to kgT'/J = 0.1. For both models D = 0 in Eq. (2). The data refer to simulations
on a lattice with 100 x 100 sites. Sites with o = 0 are indicated by blanks and sites with ¢ = +1 are indicated in two grey

tones. The time, t, is given in units of MCS/s.



