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Neural Network Signal Understanding for 
Instrumentation 

Abstract-This paper reports on the use of neural signal interpre- 
tation theory and techniques for the purpose of classifying the shapes 
of a set of instrumentation signals, in order to calibrate devices, di- 
agnose anomalies, generate tuning/settings, and interpret the mea- 
surement results. Neural signal understanding research is surveyed, 
and the selected implementation is described with its performance in 
terms of correct classification rates and robustness to noise. Formal 
results on neural net training time and sensitivity to weights are given. 
A theory for neural control is given using functional link nets and an 
explanation technique is designed to help neural signal understanding. 
The results of this are compared to those of a knowledge-based signal 
interpretation system within the context of the same specific instru- 
ment and data. 

Keywords-Neural understanding, calibration, signal understand- 
ing, control theory, neural control, training time, sensitivity to noise, 
explanation facilities, knowledge-based signal interpretation, instru- 
mentation, analytical instrumentation. 

I. INTRODUCTION 
N THE FOLLOWING, the term “neural signal un- I derstanding” is defined as using neural processing for 

signal understanding tasks, such as signal classification 
and interpretation. It does not cover neural signals as re- 
lated to the neurons. For an introduction to neural pro- 
cessing, the reader is referred to introductory references 
such as [1]-[3]. 

This paper reports on a project involving neural pro- 
cessing for the purpose of classifying the shapes of a set 
of instrumentation signals y ,  ( r ) ,  i = 1, , N, in order 
to calibrate a device, to diagnose anomalies or wrong set- 
tings, to generate appropriate tuning settings, and to in- 
terpret the measurement results; all together there are c = 
1, . * ,  C classes. 

The sensors in the instrument are calibrated by expos- 
ing it to a standardized but controlled environment, with 
controlparameters U ( t )  = {U, ( t ) ,  i = 1, * * , p >  (e.g., 
flow, gain, bandwidth, delay, etc.). The output of the cal- 
ibration runs are N 1-D signals y I  ( t ) ;  i = 1, , N  
depicting the variations over time of a number of hetero- 
geneous responses. 

In instrument operations, likewise, signals yl  ( t )  are 
recorded in the same way for given U (  t ) ,  except that the 
sensors, the environment, and the samples can be differ- 
ent or unknown. 

* 

- 
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Until recently, a skilled operator was needed to inter- 
pret the shapes of all N signals jointly to relate them to 
changes to be made in the controls U (  t ) ,  and to past be- 
havior/settings of the sensors and electronics. These sig- 
nal shape changes were supplemented by a diagnosis (hy- 
pothesize-then-test) of the functional faults, which were 
either of the sensor and/or of the set-up. 

Three approaches are possible [4] : 

signal feature extraction, and neural processing 
thereof, with training by known calibration and test 
data, and later neural classification [9]; 
syntactic pattern recognition of the curve shapes, on 
the basis of formal symbolic grammars, and analysis 
of the parsed symbol strings by diagnostic knowl- 
edge based rules [ 5 ] ,  [6];  
identification of a dynamic model of the ( U ( t ) ,  
yI  ( t ) )  relation, in a multi-model framework, with 
each model corresponding to a separate functional 
behavior of the whole instrument [7], [8]; one such 
approach is by hidden Markov models applicable to 
well segmented signal portions; two subclasses co- 
exist here, one where the in-built control laws in the 
instrument are known, and one where they are not. 

Approach 3) did not seem to work in general unless the 
signals could be segmented (as is the case in phoneme 
recognition, but different from the approach of Section 
111). Therefore, we will report mainly about approach 1) 
(Sections 11-V), and compare it briefly with 2), which was 
also implemented for exactly the same practical case (see 
Section VI). 

The paper is organized as follows. Neural signal un- 
derstanding, as related to signal processing and the re- 
quired neural network architectures, is surveyed in Sec- 
tion 11. The main contribution of the paper is in Section 
111, where a real case of neural signal understanding for 
instrumentation is defined, results are given, and a formal 
result is presented about the training convergence speed 
of a feedforward neural network. Section IV shows how 
the signal classification results can serve for instrument 
actuator control, in relation to the functional link net ar- 
chitecture. Users of the system have required added ex- 
planation facilities akin to those of expert systems, and 
the implementation concept for this approach is presented 
in Section V. The same task, as that of Section 111, is 
treated with an application specific expert system, called 
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KEMEX, and the comparative performances are dis- 
cussed in Section VI. Conclusions are given in Section 
VII. 

11. SURVEY OF RELATED NEURAL SIGNAL 

Neural signal understanding involves three major con- 
UNDERSTANDING WORK 

cerns: 

1) signal knowledge representation or feature selec- 
tion, to be presented to the inputs of the neural net- 
work; 

2) selection of the neural network architecture; 
3) adaptive control and classification considerations re- 

lating to the controls U (  t ) .  

This section serves, not as much the purpose of covering 
neural signal understanding, but to highlight which alter- 
native signal processing approaches are related to it and 
to exploit the signal representations they propose within 
a neural signal understanding framework. 

A. Neural Signal Representation 

The four following approaches prevail (Fig. 1). 

Signal feature selection, which means defining a 
battery of feature extraction functions pj wherej  = 

1, * - , n applicable to signals: 

pj: { { y i ( t ) ,  t E [0,  T I } ,  i = 1, * * , N ]  -, R .  

Examples are minimum, maximum, morphomathe- 
matical signal features, first spectral component, 
Karhunen-Loeve expansion components, signal 
moments, polynomial coefficients, etc. [9], [lo]. In 
most pattern recognition cases the features are highly 
application specific; there have been attempts in 
neural processing to identify some general feature 
extraction functions pj, e.g., for curvilinear line 
drawings by identifying high curvaturelinflection 
points. 
Serial order description [ 1 11, consisting in defining 
a state consisting of two elements: 

a) a vector of measurements ( Y (  t )  G { y i  ( t ), 

b) a plan P for updating these vectors Y ( t ) ,  
i = 1, * - . , N } )  for any given t .  

which are updated as 

Y ( t  + 1 )  = f( y(rL p )  
where P typically includes U ( t )  but also 
provides scheduling choices ( P  3 U (  1 ) ) .  

In this case, there is no explicit representation of 
temporal order and no explicit representation of ac- 
tion sequences; the input nodes then receive the 
states ( Y ( t ) ,  P ) .  This approach is related to shape 
analysis of the signals. 
An explicit signal representation, where there is one 
input node attached to each signal sample y i  ( t ) ,  
leading to a total of n = N X T input nodes [ 121, 
~ 3 1 .  

t pn 

Fig. I 

y i i t l =  1 O , , t . h (  I 
(d)  

Neural signal representation. (a) Signal feature selection. (b) Serial 
order description. (c) Explicit signal representation. (d) Functional sig- 
nal expansion. 

4) A functional signal expansion, where all signals 
y, ( .  ) are series expanded in terms of a basis of 
known kernel functions hP where P = 1, * , L 

Y ! ( f )  = P =  c 1.L a,trhr. 

Examples are: polynomial expansions (Legendre, 
Hermite), Walsh functions, sinusoidal functions, 
Fourier functions, etc. 111, 1141. The signal is then 
represented through n = L x N x T coefficients 

Later in the paper, we assume the default signal repre- 
sentation to be 3 ) ;  changes can readily be made for further 
developments to accommodate other representations in- 
stead. 

( a , ! , } .  

B. Neural Signal Understanding Network Architecture 
The selection of the network architecture is, together 

with the signal representation, paramount for its learning 
capabilities, convergence, etc. 

Most work refers to the back-propagation algorithm [2], 
[3], [15] operating on a perceptron with hidden layers, zk, 
k = l ; * *  , X where the weights { wp, } control adapta- 
tion formulas inserted at each hidden layer node; wp, rep- 
resents the weight applicable to the link between neurons 
P and m. The input elements are usually kept as linear ele- 
ments in order to provide for a good dynamic range, while 
sigmoid elements are used for hidden or output nodes. 
Sometimes the output nodes are also linear. 
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Fig. 3.  A three-layer feedforward neural network. 

imization operating on the weights applicable to dif- 
ferent time-slices [TI, T2] and signals y j  (.), thus 

magnitude of the weights. 
? r  emphasizing some more or less according to the 

111. NEURAL SIGNAL UNDERSTANDING FOR 
INSTRUMENTATION 

For the task defined in Section I, the following ap- 
proach was selected in one specific instance of analytical 
instrumentation [ 171. In the literature, cases of neural sig- 
nal instrumentation are very rare, and those that do occur 

omitted for industrial confidentiality reasons. 

PLAN 5 TAT E 
N m S  NODES 

(b) 

square adaptation. (b) Recurrent network (delta rule) with self-decay. 
Fig. 2.  Neural signal understanding network architectures. (a) Least mean to design [20]- Further details are 

1) 

E =  

A.  Signal Classes Typical adaption formulas inside the hidden nodes 
(Figs. 2 and 3) are shown in the following. 

I Least mean squaredadaline [ 131 : 

The C ( C  = 9 )  signal classes were taught by labelling 
* * , N ,  t = 1, 

- , T )  by their class labels and U( * ) plan/control la- 
observed evolutions { yi ( t ) ,  i = 1, 
* 

a ( k )  

Zk = Zko -I- ,E W h Y k ( t  - J  ' At)  
J =  I 

where zko is the activation threshold (the same value 
for all neurons of a given layer), and wkt are deter- 
mined as to minimize the expected error in the least 
square sense: 

Here, J designates the neurons in the successor/ 
predecessor layer to layer k,  and a ( k )  is the number 
of such neurons. The time integral is for time aver- 
aging of the least square error, if appropriate. 

2) Generalized delta rule with self-decay [ l l ] ,  e.g., 
with a logistic function 

z k = (max - min) - f( yk  ( t ) )  + min 

where min is the minimum value attained by the lo- 
gistic function (and, therefore, the minimum value 
of activation that any unit can have), and max is the 
maximum value, or with an explicit decay weight 
( ( C L I W )  < 1,CL < 1):  

Z k ( t )  = W k ( t  - 1)  + W k t Y k ( f ) .  

A variant is found in [ 161. 
3) Functional link network [ 13, with the gradient min- 

bels. The issue of the selection of training examples was 
complicated by the fact that more than one label was often 
assigned to these samples, making further post-processing 
of the neural classifications necessary [18]. 

B. Neural Signal Representation 

(See Section 11-B1) 
A signal feature selection was determined as follows. 

1) The N signals yi ( t )  were first passed through a sec- 
ond order derivative filter in order to find points of 
inflection and curvature changes. 

2) The ordered lists pj of such positions, and their 
number, were then entered into the network. 

Additional similar evolved procedures for curve feature 
extraction involve acquiring the discrete tangent field by 
taking equidistant curve slices and estimating the tangents 
and curvature at the slice end points on the curves [17]. 
Orientation discontinuities appear as multiple tangents at 
a single position, with no curvature estimate. Splines can 
then be matched to these intersection points. 

C. Neural Signal Understanding Network Architecture 
A layered feedforward network with the back propa- 

gation training rule [2], [3], [15] without decay (Section 
II.B.2)) was used and implemented in the self-developed 
NETSIM package (written in C) [12]. 
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D. Neural Classification Performance 
Six series of experiments were performed: 

1) calibrated signal data, no = 20 input nodes, n l  = 20 
hidden nodes in one hidden layer X = 1, and C = 
6 output nodes; 

2) same as l ) ,  but with one additional hidden layer with 
n2 = 20 nodes; 

3) noncalibrated signal data, otherwise as in 1); 
4) calibrated signal data, no = 15 input nodes, one hid- 

den layer X = 1 of n l  = 15 nodes, and C = 6 output 
nodes; 

5 )  additive noise applied to the calibrated signal data 
1 ) :  

YJ’ ( t )  = y j ( t )  + P * n ( t )  

where /3 is a constant, and n ( t )  white noise in the 
interval [ - 1, + 11; 

wFk 

a l  = zpo + C 0, * wjp, 
j = l ; * . , n p - l  

4 A 1 / 4  
6 A 4/27  

Conclusions: 

weight applicable to the link 
between neurons P and k ,  

weighted sum of the inputs to 
neuron P, having threshold 
value zp0, when this neuron 
is in layer P, 

neuron response function being 
the logistic function (Fig. 
4) 9 

are given constants as related 
to bounds on the logistic 
neuron response function, 
and its derivative [12]. 

6) multiplicative noise applied to the calibrated signal 1) The sensitivity of the network output 0, in output 
layer A ,  to changes in the input values Z, in layer k 
= 0, is bounded by 

data 1): 

Yi’ (I) = ( 1  + CY * 4) Y,(+ 
N A -  I  NA-  1 

These results were obtained by leave-one-out testing of 

percentages of correct classification results with the num- 
ber of training steps (in parenthesis) for one specific train- 
ing algorithm implementation: 

A 0, 
the entire training set. The results [12] yield the following - AZ, 5 4A * c kn (-. * kn c ~ I ( W k , , - I 4  * ( *  9)). 

2) The sensitivity of the network output 0, in layer A ,  
to changes in the weight w,k between nodes at two 
successive layers ( P  - 1 ) and ( P )  is bounded by 

1) 65% (127); 4) 40% (71); 9 < - 4 ( ~ - l + l )  
A wik 

2) 60% (93); 5) as 1)  with P < 0.0369 (156); 

3) 55% (248); 6) as 1) with CY < 0.1777 (311). 

It also appears that calibrated training signals are less 
sensitive to multiplicative noise than noncalibrated ones, 
whereas the latter are less sensitive to additive noise. 

The same experiments were carried out by varying the 
number of input nodes no, with hidden nodes in each layer 
( n ,  in l ) ,  n2 in 2)) .  The performances changed but the 
same overall comparative pattern as the one reported 
above prevailed, provided more than 5 nodes were used 
each time. 

E. Training Time and Network Sensitivity 
A formal study of the convergence of the selected three- 

layer feedforward network was established [ 121, leading 
to the following result, to be justified in a subsequent pa- 
per. 

Hypotheses: 

number of layers, 
number of neurons in layer j ,  

where j = 0 is the input 
layer; when J increases, 
a ( j )  = n(j-11, 

output of neuron j ,  
input to neuron j ,  equal to 0, 

in layer j = 0, otherwise 
equal to 0, 

3) The training time 7 is proportional to 

7 - l/(incr. . D:(,”> 
where 

U E ( n j )  average number of neurons in a layer, 
D m i n  minimum Euclidian distance be- 

tween any two training points y j  ( t )  
belonging to two different classes 
among the C possible, 

incr. E ( A w )  average weight change between two 
iterations. 

Reference [ 121 shows a good correlation of this curve with 
real training time data. 

Interpretation: 

The two sensitivity results 1) and 2) indicate what 
changes can be expected on the network output neurons 
vs. changes in the input neurons and weights. Result 1) 
can be used to determine the number (A) of layers to al- 
leviate noise in the input neurons, while not affecting the 
output neurons by more than some threshold values pre- 
serving the classification results. Result 2) immediately 
gives a criterion to heuristically stop the training algo- 
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--1 r, p-k OUTPUT -m 
THRESHOLD " 

- 
0 m 

Fig. 4 .  Neural processing element. 

rithm (thus speed up the results), as soon as the sensitivity 
of the output neurons to changes in the weights is less than 
the classification thresholds on their values. Result 3)  al- 
lows, in the case of repetitive tests with one given archi- 
tecture, to curtail the training or to extrapolate its value 
in case of changes, e.g., in the separability measure Dmin 
between classes. 

IV. NEURAL CONTROL BY FUNCTIONAL LINK NETS 
A. Introduction 

As mentioned in Section I, the instrument operator will, 
after calibration, trim some controls U (  t )  to achieve de- 
sired performances while also complying with specific 
sensor and electronics behavior. Examples of such con- 
trols U (  t )  are gain, offset, and flow of titrant/solvent. 

In this section we present the formal process of syn- 
thesizing these controls U (  t )  by neural processing, as- 
suming the net architecture to be the functional link net 
[ l ] .  These results are original and of a general nature; 
therefore, the instrumentation application will not be em- 
phasized in the remainder of this section. 

As highlighted in Fig. 5 ,  the back propagation net of 
Section I11 is used for classification, while all neural con- 
trol functions require the functional net architecture. Thus 
there is no correspondence exploited here between them; 
on the contrary, different nets are shown here to be co- 
existing, and the classification net could be replaced by 
another classification approach. 

B. Functional Link Nets 

the following: 
Functional link nets [ 11 are essentially characterized by 

1) a single layer of input neurons; 
2) a single aggregation node with a nonlinear response; 
3) the expansion of the input layer by functional links 

which are kernel functions of selected components 
of the input vector X (  U ,  t ) ;  as a result the N nodes 
of the input layer are the N functional links ( X (  U ,  
t )  ), I = 1, - , N (including eventually5 = xi  ( U ,  
t ) ,  the ith component of the vector X ) ;  

4) the back propagation search rule which updates lin- 
ear weights wi,  i = 1, * e e , N .  

Whereas functional nets allow for supervised learning, 
unsupervised learning, as well as classification, they pro- 
vide a formal framework for the synthesis of controls 
while also encompassing key notions from traditional 

Error 

t 
GLOBAL 
SYSTEM 

PERFORMANCES 
V 

MORPHISM 

EXPLIClT 

STRAINT 

1- e I W.T) 

CLASSI- 

Class (w) 

Sclcct fi 

Fig. 5 .  Neural control by functional link net. 

control theory. This gives the capability of reusing neural 
processing hardware and firmware, not only for percep- 
tual or learning tasks, but also to replace programmable 
logic controllers and other control devices (proportional 
integrated derivative (PID) controls, etc.). 

C. Neural Control lkeory 
Consider a functional net, with inputs X (  U ,  t )  subject 

to controls U ( f ) ,  and a flat net with N functional links 
5 (X) (see Fig. 5). 

The target z (  U ,  t )  and threshold 0 require that the lin- 
ear weights wi in the net be such that: 

w l j - , ( x ( ~ ,  t ) )  + + w N f N ( x ( u ,  t ) )  = Z ( U ,  t )  - e. 
This defines the vector W (  t )  = [ wl  * * * wN 1 ] as orthog- 
onal to a manifold which is subject to the controls U ( t ) .  
As a result, in line with identification theory, W A [ wI  
. . wN 1 ] is a dual control W (  t ) ,  or point in the w-control 
space which is dual to the U-control space. 

However, the neural learning schemes, which deter- 
mine W = [ w I  - - - wN 11, such as a gradient search or 
in some cases a recursive pseudo-inverse calculation, are 
of much wider applicability in practice than optimal con- 
trol schemes, which also suffer from high numerical com- 
plexity. 

The neural control functional net will in turn operate on 
functional links g,,  * * , gN applying to the input W (  t ) ,  
with weights u l ,  - * 9 U N :  

ulgl( w ( t ) )  + * * + Z / N g N (  w ( t > )  = T ( t )  - 
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where T ( t )  is the target. Typically this target will deal 
with global performance criteria of the overall system, 
such as: 

those classes for which, given the current weights, the 
classification frequencies will be the highest. Of course, 
in both cases, text generation in Prolog allows us to relate 

1) response time to meet the target z (  U, t); 
2) energy level related to the control energy j U ( t )  dt. 

11 will belong to a space isomorphic with the original 
functional spacef(X( U, t ) ) ,  of which V (  t )  = U (  t )  is a 
special case. 

Being a dual to W ( t ) ,  the weights V ( t )  = [ U , ,  * , 

This formalism, opens up for three capabilities. 
1) By classifying the vectors W (  t )  over time, typically 

with fixed discriminants trained by a dedicated supervised 
net, makes it possible to select those functional link groups 
(i.e., subsets off,,  , fN) achieving the desired prop- 
erties of the system that are chosen via the classification 
net training of the pairs ( W, class ( W ) ) ,  where class ( W )  
is the result of the classification. 

2) The dual net V will in fact enforce on the learning 

text to these two explanations described. By selecting the 
number of items of highest ranks, the user can request 
rough, meaningful, or comprehensive explanations. Fur- 
thermore, a knowledge base may filter out the alternatives 
to eliminate nonsignificant explanations in causality 
chains and to generate the corresponding root explana- 
tions in such chains. 

VI. COMPARISON WITH KNOWLEDGE-BASED 
INSTRUMENTATION SIGNAL INTERPRETATION 

Fortunately, the neural signal understanding set-up de- 
scribed in Section I11 for a specific case could be com- 
pared with a knowledge-based signal interpretation sys- 
tem working with the same instrument and data [ 171. 

The major differences between the two solutions, in the 
case of the knowledge-based system were: 

net w, long term properties Over time, Or measured 1) a signal interpretation inference procedure, based on 
in terms of the error in the position X( U, t )  itself, by 
assigning the weights V to belong to fixed domains in the 
X-space or U-space. 

3) Temporal properties will be explicitly available by 
tracking the changes over time of W (  t).  

conceptual graphs, and implemented in Prolog; 
interface implemented in Small- 

talk language, involving logbooks, application 
notes, and sensor behavior monitoring; 

3) a signal feature extraction procedure (similar to Sec- 
tion 111-B), implemented in Pascal; 

4) an explanation facility, implemented in Smalltalk 

2) an intelligent 

V. EXPLANATION FACILITIES TO NEURAL SIGNAL 
UNDERSTANDING and Prolog. 

For the calibration, set-up, diagnostic and measurement 
interpretation tasks, the instrument operator almost in- 
variably wants a support system to justify its advice by 
explanations such as why? how? why not? Unfortunately, 
such facilities do not exist in neural processing. We there- 
fore describe the formal and practical solution developed 
to address this issue [19]. 

1) All inputs X( U, r )  are scaled to belong to the range 
[-1,  + I ] .  

2) Our neural explanation facility involves asserting as 
Prolog language facts the weights wi, i = 1, , N (ob- 
tained after convergence), as well as the corresponding 

- , 
N by decreasing values of 1 w, 1 ,  which are eventually 
signed. 

4) A sorting utility ranks the classes c by decreasing 
frequencies in both the learning and operational neural 
signal interpretation modes, for given weights wi, i = 

5 )  Implement (in Prolog) standard back tracking or for- 
ward chaining explanation facilities operating on the 
sorted fact bases 2) and 3) of hypothesis and goals, re- 
spectively. 

The result is to allow the selection of “why” expla- 
nations, which are those neural input nodes (meaning 
those inputs xi ( U, ( t ) )  or functional IinksJ;), which have 
the largest weights and thus contributions to the output 
neuron responses. Likewise, the “how” explanations are 

signal classes N(X(U,  t ) )  = c ,  c = 1, * 
> c. 

3) A sorting utility ranks the weights wir i = 1, 

9 N. . . .  

The knowledge-based signal classification perfor- 
mances, estimated on the same data as in Section III.D., 
was a minimum of 92% correct classification on cali- 
brated or noncalibrated data. 

The knowledge acquisition time was close to 6 man 
months, compared to a few days by the techniques in Sec- 
tion 111-D. 

The knowledge based signal interpretation sensitivity to 
additive or multiplicative noise (see Section 111-D.) was: 

e = 7 4 %  f = 5 6 %  

which indicates a better robustness of the neural signal 
interpretation procedure, for the available knowledge. 

Regarding generating controls U( r ) ,  of which two were 
stationary and a third was a linear time dependent func- 
tion, the accuracy achieved by the approach of Section 
IV-C. was higher than that of the knowledge based ap- 
proach which had a tendency to give only class-related 
settings (which were not measurement related). 

In terms of explanation facilities, the knowledge-based 
system was clearly superior in terms of accuracy and depth 
of the justifications; however, the neural signal explana- 
tion facilities of Section V, executed with the first five 
ranked candidates, were quite sufficient for all practical 
purposes. 

VII. CONCLUSION 
Neural signal understanding for instrumentation is a 

promising technology, especially when the sensors or 
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processes drift or have memory. Its performance is less 

which however assumes an extensive knowledge acqui- 
sition process and is not always practical. The neural 

usually implemented in or adjacent to instruments. Im- 

[5] K. S. Fu, Syntactic Pattern Recognition. New York: Academic, 
1975. 

CRC Press, 1980, Ch. 6. 

Cliffs, NJ: Prentice Hall, 1985. 

1985. 

than the approach’ [6] K .  S. Fu, Ed., Application of Pattern Recognition. Boca Raton, FL: 

[7] B. Widrow and S.  Steams, Adaptive Signal Processing. Englewood 

training time is far too long using hardware which is [g] H, W, Sorensen, Ed,,  Kalman Filtering, New York: IEEE press, 

proved signal feature extraction procedures, possibly 
combining knowledge-based and neural processing and 
high-speed coprocessor boards, are key to better overall 
performances. 

Depending on operations of the instrument, this may be 
a minor problem since the neural network only needs to 
be trained once for each operational setting. 
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