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Abstract 

Polyethylene Terephthalate (PET) is one of the most important polymers in use today 

for packaging due to its outstanding properties. The usage of PET has grown at the 

highest rate compared with other plastic packaging over the last 20 years, and it is 

anticipated that the increase in global demand will be around 6% in the 2010 – 2015 

period.  

The rheological behaviour, thermal properties, tensile modulus, permeability properties 

and degradation phenomena of PET/clay nanocomposites have been investigated in this 

project. An overall, important finding is that incorporation of nanoclays in PET gives 

rise to improvements in several key process and product parameters together – 

processability/ reduced process energy, thermal properties, barrier properties and 

stiffness.  The PET pellets have been compounded with carefully selected nanoclays 

(Somasif MAE, Somasif MTE and Cloisite 25A) via twin screw extrusion to produce 

PET/clay nanocomposites at various weight fractions of nanoclay (1, 3, 5, 20 wt.%). 

The nanoclays vary in the aspect ratio of the platelets, surfactant and/or gallery spacing 

so different effect are to be expected. The materials were carefully prepared prior to 

processing in terms of sufficient drying and re-crystallisation of the amorphous pellets 

as well as the use of dual motor feeders for feeding the materials to the extruder. 

The rheological properties of PET melts have been found to be enhanced by decreasing 

the viscosity of the PET i.e. increasing the ‗flowability‘ of the PET melt during the 

injection or/and extrusion processes. The apparent shear viscosity of PETNCs is show 

to be significantly lower than un-filled PET at high shear rates. The viscosity exhibits 

shear thinning behaviour which can be explained by two mechanisms which can occur 

simultaneously. The first mechanism proposed is that some polymer has entangled and 

few oriented molecular chain at rest and when applying high shear rates, the level of 

entanglements is reduced and the molecular chains tend to orient with the flow 

direction. The other mechanism is that the nanoparticles align with the flow direction at 

high shear rates. At low shear rate, the magnitudes of the shear viscosity are dependent 

on the nanoclay concentrations and processing shear rate. Increasing nanoclay 

concentration leads to increases in shear viscosity. The viscosity was observed to 

deviate from Newtonian behaviour and exhibited shear thinning at a 3 wt.% 

concentration. It is possible that the formation of aggregates of clay is responsible for an 

increase in shear viscosity. Reducing the shear viscosity has positive benefits for 

downstream manufacturers by reducing power consumption. It was observed that all 
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three nanoclays used in this project act as nucleation agents for crystallisation by 

increasing the crystallisation temperature from the melt and decreasing the 

crystallisation temperature from the solid and increasing the crystallisation rate, while 

retaining the melt temperature and glass transition temperatures without significant 

change. This enhancement in the thermal properties leads to a decrease in the required 

cycle time for manufacturing processes thus potentially reducing operational costs and 

increasing production output. 

It was observed that the nanoclay significantly enhanced the barrier properties of the 

PET film by up to 50% this potentially allows new PET packaging applications for 

longer shelf lives or high gas pressures. 

PET final products require high stiffness whether for carbonated soft drinks or rough 

handling during distribution. The PET/Somasif nanocomposites exhibit an increase in 

the tensile modulus of PET nanocomposite films by up to 125% which can be attributed 

to many reasons including the good dispersion of these clays within the PET matrix as 

shown by TEM images as well as the good compatibility between the PET chains and 

the Somasif clays. The tensile test results for the PET/clay nanocomposites micro-

moulded samples shows that the injection speed is crucial factor affecting the 

mechanical properties of polymer injection moulded products. 
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Chapter One 

1. PolyEthylene Terephthalate (PET) 

1.1 Introduction 

Polyethylene Terephthalate (PET) exhibits excellent chemical and mechanical 

properties such as optical haze, chemical resistance, low weight, excellent electrical 

insulation, high stiffness and strength as well as good thermal resistance. Based on these 

features, it is one of the most versatile engineering plastics. 

Over the last 20 years, the use of PET packaging has recorded very strong growth. The 

first market that PET penetrated was that for carbonated soft drinks (CSD) due to the 

outstanding properties of PET bottles such as the excellent barrier properties, its low 

weight and its strength. In addition to its ‗unbreakable‘ features when compared to glass 

bottles, PET bottle weight is one-tenth of the glass bottle weight. Furthermore PET 

bottles have taken a big market share for water bottles, fruit juices, oils, sauces, sports 

drinks and others. 

Due to these features and more, the demands for PET resins in Europe (one of the areas 

most affected by the financial crisis between 2007 and 2009) remains steady, while the 

demand for other commodity plastic resins fell. For example the demand for 

Polypropylene (PP) decreased by 15% from 2007 to 2009 and for the same period, the 

demand for Polyvinyl Chloride (PVC) decreased by 23% and by around 11% for Low 

Density Polyethylene (LDPE) and Linear Low Density Polyethylene (LLDPE) as figure 

1.1 shows. 
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Figure 1.1 European plastics demand by resin type 2009 [Source: Plastics Europe Market Research 

Group (PEMRG)] 

Moreover, according to the US-based consultant CMAI, the average annual growth rate 

(AAGR) of PET world wide in the period between 2005 and 2010 was 5.3%. CMAI 

forecasts the AAGR of global PET demand will be 5.7% in the 2010 – 2015 period as 

figure 1.2 shows. 

 

Figure 1.2 World demand of Polyethylene Terephthalate (PET) (actual demand 2005 – 2009 and 

forecast demand 2010 – 2015) [source: CMAIS] 
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Demand is increasing for PET packaging as it combines strength and transparency with 

good barrier properties. Obviously, metalized coatings, cartons and aluminium 

packaging can not compete with this combination of properties. Furthermore one of the 

more specialised applications that PET is dominant is the plastic barrier packaging due 

to the low permeability properties of PET packaging compared with other plastic 

packaging such as PP and High Density Polyethylene (HDPE) as Table 1.1 illustrate 

[Lange and Wyser (2003)]. 

Container composition 

and size 

Oxygen transmission rate at 23 °C, 

50% RH [cm
3
/(pack day atm)] 

PP, 900 ml 6 

HDPE, 500 ml 4 

PET, 500 ml 0.2 – 0.4 

Table 1.1 Barrier properties of rigid containers 

 

On top of that, recycling the plastic attracts the public interest and this interest continue 

to grow. According to British Plastic Federation (BPF) in 2006, recycling the plastic in 

UK saved the emissions of 684,000 tonnes of CO2 which equivalent to take 216,000 

cars off the road. In 2009, 0.55 million tonnes of plastic packaging recycled then export 

0.39 million tonnes [source: Liz Smith, WRAP]. 

PET is one of the most recyclable plastic as post-consumer scrap and the recycled PET 

can be used in food contact applications. In 1979, 4 million kg of PET beverages bottles 

were recycled and this number increased to 20 million kg in 1982 and 8 years after the 

number increased to 125 million kg. 
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1.2 PET preparation and chemistry 

Poly (ethylene terephthalate), commonly abbreviated to PET or PETE, is an aromatic 

polyester which is a condensation product of Pure Terephthalic Acid (TPA) or Dimethyl 

Terephthalate (DMT) and Ethylene Glycol (EG). It was first prepared in 1941 by 

Whinfield and Dickson of the British company ICI [Rubin (1990)]. Their work followed 

guidelines previously established by W.H. Carothers and J. W. Hill of E. I. du Pont de 

Nemours and Company whose work in 1932 had yielded a low melt temperature 

oriented fibre of an aliphatic polyester. 

Since its invention, PET has become one of the most important plastics industrially and 

economically, and it has become one of the most important commercial polymers used 

for bottles, films, fibres and food packaging. The physical and mechanical properties of 

PET such as high percentage crystallinity, high strain-induced orientation, high optical 

clarity and low gas permeability have been well researched by many with regard to 

these properties [McIntyre (2003) and others]. 

Jabarin (1996) and McIntyre (2003) reported that PET can be prepared by 

transesterification of Dimethyl Terephthalate (DMT) with ethylene glycol (EG) or direct 

esterification of Pure Terephthalic Acid (TPA) and Ethylene Glycol (EG).  

In melt polymerization, DMT or TPA is reacted with EG in the presence of one or more 

combinations of catalysts at a temperature between 190 and 200°C to form 

bis(hydroxyethyl) terephthalate (BHET) with the elimination of methanol and water. 

The formed product BHET is polymerized under high vacuum and at a temperature 

between 275 and 285°C. During this polymerisation process, the excess of Ethylene 

Glycol is distilled off. 
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The preparations of the main raw materials are as follows: 

1- Ethylene glycol (EG) is an essential material for producing PET and it can be 

obtained by converting ethylene to ethylene oxide then to ethylene glycol, as 

figure 1.3 shows. 

 

Figure 1.3 Preparing the reaction for ethylene glycol [Jabarin (1996)]. 

 

2- Para-xylene is oxidized to produce Pure Terephthalic Acid (TPA), then TPA is 

purified by reaction with methanol to form dimethyl terephthalate (DMT), as 

Figure 1.4 shows. 

 

Figure 1.4 Preparation of DMT from Para-xylene [Jabarin (1996)]. 

 

 

Ethylene from petroleum 

or natural gas 

Ethylene oxide Ethylene glycol 

(EG) 
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3- During the synthesis of PET using TPA or DMT, bis(hydroxylethyl) 

terephthalate (BHET) is prepared (Figure 1.5) 

 

 

Figure 1.5 Chemical structure of bis (B-hydroxylethyl) terephthalate (BHET) [Jabarin (1996)]. 

 

The BHET acts as the monomer for polymerization to yield PET (Figure 1.6). 

 

 

Figure 1.6 Chemical structure of PET [Jabarin (1996)]. 

 

As mentioned above, PET can be prepared by transesterification of DMT or TPA 

with EG (see section 1.2) as follows [Jabarin (1996)]: 

A- Synthesis from DMT follows this scheme: 

 

2 EG + 1 DMT    bis (hydroxylethyl) terephthalate + 2CH3OH 

   Cat.    (BHET) 

Conditions: 190-220°C, N2, and 1 Atmosphere. 

Catalysts: Acetates of Li, Ca, Mg. 

 

Equation 1.1 
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BHET    PET + EG 

           Cat. 

Conditions: 275-285°C, High vacuum. 

Catalysts: Acetates of Sb, Zn or Pb. Oxides of Sb, Ge or Pb. 

B- Synthesis from TPA follows this scheme: 

2 EG + TPA      BHET 

                  Esterification 

 

Conditions: 190-220°C, N2, 2 Atmosphere, no catalyst. 

 

BHET    PET + EG 

               Cat. 

Conditions: 275-285°C, High vacuum. 

Catalysts: Acetates of Sb. Oxides of Sb, Ge. 

Melt polymerisation can produce PET with 100 degrees of polymerisation (DP) which 

can yield an intrinsic viscosity (I.V.) of up to 0.64 dl/g [I.V. is discussed in detail in 

section 4.3.5].  

This PET grade is suitable for some applications such as fibres and carpet. For some 

products a higher I.V. is required necessitating up to 150 of polymerisation degrees, 

such as for sheets, films, bottles and other containers. To achieve this, a further process 

is required to increase the molecular weight of the amorphous pellets. This process is 

called Solid State Polymerisation (SSP) and is carried out at about 210°C under a 

nitrogen atmosphere fluidized bed or vacuum pressure [Rieckmann and Volker (2003)]. 

This process is covered in detail in section 1.3.  

Equation 1.2 

Equation 1.3 

Equation 1.4 
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1.3 Solid State Polymerisation (SSP) 

Producing high molecular weight PET during the melt processing stage provides 

challenges in handling of the high viscosity PET melt. Increasing the molecular weight 

of PET using Solid State Polymerisation (SSP) can overcome this problem. This 

technique is widely applied in the industrial manufacture of bottle grade PET 

[Papaspyrides and Vouyiouka (2009)]. 

Processing of polymeric materials is a broad field consisting of many operations such as 

extrusion, injection moulding and thermoforming. The processing method is chosen 

according to the specifications of the final product and the characteristics of the polymer 

[Culbert and Christel (2003) and Kim et al. (2003)]. 

Solid State Polymerisation (SSP) aims to increase the molecular weight of the polymer 

by promoting many reactions between the polymeric end groups. Culbert and Christel 

(2003) reported that SSP is a relatively simple treatment which results in few side 

reactions and provides more effective removal of volatile degradation products than 

other methods of increasing molecular weight.  

Three reactions are carried out during the SSP of PET. All these reactions produce high 

molecular weight PET and some side products. The polycondensation reaction is the 

main reaction and occurs when two hydroxyl end groups interact and produce a high 

molecular weight PET with ethylene glycol as a side product (figure 1.7). A second 

reaction can occur when chains having vinyl ester end groups interact with hydroxyl 

end groups to produce acetaldehyde (AA) as a side product in addition to the high 

molecular weight PET (figure 1.8) [Culbert and Christel (2003)].  
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The third reaction is the esterification reaction which occurs when the carboxyl end 

groups react with hydroxyl end groups (figure 1.9) to produce PET with high molecular 

weight and water as a side product [Jabarin (1996) and Wadekar et al. (2009)]. 

 

 

Figure 1.7 Polycondensation reaction 

 

 

 

Figure 1.8 Vinyl ester group interacting with hydroxyl end group. 

 

 

Figure 1.9 Esterification reaction 
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The SSP process is carried out either in the presence of an inert gas or in a high vacuum 

environment and at temperatures below the melting point of PET (200 - 240°C), so the 

risk of PET degradation is low. This processing temperature can lead to sticking of the 

amorphous pellets inside the SSP reactors thus forming lumps which may hinder the 

pellets‘ flow.  

Consequently the amorphous pellets should be crystallised prior to entering the SSP 

reactor. This crystallisation process is carried out in a rotational and vibrationary reactor 

at temperatures between 150 and 180°C. The concentrations of some reactive end 

groups increase during this crystallisation process. Furthermore, the movement or 

mobility of the PET molecules decreases.  

One of the advantages of the crystallisation process is the prevention of moisture 

penetrating the crystalline region, which decreases the possibility of hydrolytic 

degradation. Deactivation of some end groups also occurs during the crystallisation 

process. SSP can also be used in the recycling of PET bottles. The advantage of using 

the SSP process in recycling is that the low I.V. flakes can be recycled to high I.V. 

bottles [Jabarin (1996) and Wadekar et al. (2009)]. The basic flow charts for melt 

polymerisation and solid state polymerisation processes are shown in Figure 1.10.
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Figure 1.10 Schematic of PET manufacture. [Culbert and Christel (2003)]
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1.4 Safety and application of Polyethylene Terephthalate (PET) 

The U.S. Food and Drug Administration (FDA) is responsible for the stringent 

regulations that assure the safety of food in the US. The FDA regulates materials 

intended to come into contact with a food or beverage, including plastic packaging as an 

―indirect‖ food additive. According to the FDA, indirect food additives are substances 

that may come into contact with food as part of packaging or processing equipment, but 

are not intended to be added directly to food [FDA‘s Center for Food Safety and 

Applied Nutrition (2004)]. 

Polyethylene terephthalate (PET) has become the plastic packaging of choice for many 

food products. This is due to its inherent properties that are well suited for lightweight, 

large capacity and shatter resistant containers. Castle (1989) determined the levels of 

compounds that have the potential to transfer from the plastic into food under conditions 

that simulate the actual use of the material. The author found that the migration of any 

components of PET plastics under laboratory conditions is well below applicable safety 

levels. 

In a report of PET for food packaging applications issued in July 2000, the International 

Life Sciences Institute (ILSI) summarized the large body of test data that demonstrates 

the safety of PET resin and compounds for food and beverage containers: 

―PET itself is biologically inert if ingested, is dermal safe during handing and is not a 

hazard if inhaled. No evidence of toxicity has been detected in feeding studies using 

animals. Negative results from Ames tests and studies into unscheduled DNA synthesis 

indicate that PET is not genotoxic. Similar studies conducted with monomers and 

typical PET intermediates also indicate that these materials are essentially nontoxic and 

pose no threats to human health. It is important to stress that the chemistry of 
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compounds that are used to manufacture PET shows no evidence that demonstrates that 

the use of PET is not a concern and is perfectly safe in this respect‖ [Packaging 

Materials (2000)]. 

Polyethylene terephthalate (PET) has distinguishing properties such as [Brooks and 

Glies (2002)]: 

- Low cost. 

- Thermal resistance. 

- Chemical resistance. PET can be used for containers for many food and non-

food applications such as fruit juice, milk, shampoo and cosmetic containers. 

- High barrier, mechanical and physical properties. Preferred for Carbonated Soft 

Drink (CSD) bottles, other pressurised containers and water drink bottles. 

- Excellent transparency and light weight. 

- Excellent electrical insulation. 

- Crystallisable plastic. Heat setting technology can be used to produce PET 

bottles which resist deformation during hot filling. 

- One of the virtues and attractions of PET products are that it is a fully recyclable 

plastic and recycling is more practical compared with other commodity 

polymers. 

 

For all these versatile properties and more, PET has been widely used in a variety of 

applications (Table 1.2). Its major uses are as food and beverage containers, fibres and 

films [Brooks and Glies (2002)]. 

 



14 
 

Fibre Form Film Form Containers 

Textiles, industrial yarn,  

tyre cord, carpeting,  

staple fibre. 

Film, tapes, bags, 

photographic film. 

Food, beverages,  

household products, 

pharmaceuticals, trays. 

Table 1.2 Some PET applications 

The molecular weight or intrinsic viscosity (I.V.) of PET varies, and the following 

ranges are suitable for commercial products (Table 1.3): 

 

Table 1.3 PET applications by intrinsic viscosity 

 

From time to time researchers and PET producers present new PET applications to the 

market. Even with these new products, the demands of new PET performance are 

continuous. There are many methods for meeting these demands such as changing the 

molecular weight, using new additives, changing the processing conditions, or changing 

the fundamental properties of PET by copolymerisation of new monomers into the PET 

backbone.  

Poly (ethylene terephthalate)-glycol (PETG) is one of the commercial PET copolymers 

[Schiraldi (2003)].  It is a non-crystallizing amorphous copolymer of PET. PETG is a 

random copolymer consisting of (typically) 31 mol% CHDM (Cyclohexanedimethanol) 

and 69 mol% PET. PETG does not occupy the same industrial niche as PET, precisely 

Application I.V. (dL/g) 

Textiles 0.55–0.65 

Films and Tapes 0.65–0.75 

Bottles 0.7–1.0 

Tyre Cords 1.0 
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because it lacks the ability to undergo strain-induced crystallisation [Brooks and Glies 

(2002)]. Dupaix and Boyce (2005) reported that PET and PETG exhibit quite similar 

deformation behaviour but have a different glass transition temperature. Crystallisation 

is nearly impossible to achieve in PETG. 

Stretched polyester film (PETF) is very different from PETG and indeed PET. It is a 

semi-crystalline film produced by a roll quenching process; followed by biaxial 

orientation (stretching the film in machine and transverse directions). Stretched 

polyester film is used in many applications such as video tape, high quality packaging, 

professional photographic printing, x-ray film and floppy disks. The primary advantages 

of the film are high thermal stability, mechanical strength and chemical inertness 

[Brooks and Glies (2002)]. 
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1.5 Objectives and writing tactic 

I. Objectives 

This project was initiated and designed to investigate the rheological behaviour, thermal 

properties, tensile modulus, permeability properties and degradation phenomena of 

Polyethylene Terephthalate (PET) nanocomposites. Three different types of nanoclays 

were compounded with PET pellets via a twin screw extrusion. Further melt processing 

and characterisation followed this compounding stage. The main objective of this 

project was based on achieving different requirements as follows: 

 Choosing the most compatible nanoclay by studying the structure of different 

nanoplatelets and conducting some characterisation. 

 Compounding via twin screw extrusion, feeding the raw materials simultaneous 

to the extruder by using two motor feeders and processing under optimum 

temperatures, residence time and screw speed in order to achieve a good mixing 

process. Drying of the raw material is necessary prior to the compounding 

process. 

 Analysing the rheological behaviour of PET nanocomposites over a wide range 

of shear rates and investigate the effect of increasing the nanoclay loading on the 

rheological behaviour. 

 Exploring the effect of adding the nanoclay on the thermal properties of PET 

including its crystallisation properties. Moreover studying the effect of the 

biaxial stretch process on the thermal  properties of PET nanocomposites films. 

 Producing PETNCs films via single screw cast film extrusion and PETNCs 

micro-size samples via micromoulding injection machine to study the effect of 

nanoclay on the tensile modulus of PET final products. 
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 Investigating the tensile modulus of PET nanocomposites and correlating these 

results with TEM micrographs. 

 Studying the effect of adding nanoclays on the barrier properties of PET films. 

 The degradation phenomenon of PET pellets in the presence of nanoclay was 

studied over long time scales and through reprocessing the PETNC pellets. 

II. Writing tactic 

 The thesis was written in the same sequence in terms of PET preparation and 

processing (i. e. thermal processing and flow behaviour before mechanical and 

barrier testing on the final PET nanocomposites). The thesis is divided into nine 

chapters.  

 Chapter one covers an introduction and background of Polyethylene 

Terephthalate (PET) in terms of global market, history, chemistry, preparation 

and application.  

 The fundamentals and concepts of nanocomposite materials, their classification 

and types are included in chapter two. In addition, an extensive review of 

previous studies of PET nanocomposites is presented in this chapter while more 

intensive literature reviews are presented in each of  the results and discussion 

chapters as appropriate. 

 The methodology of the project including the details of the raw materials, 

compounding process, cast film extrusion, micromoulding injection process as 

well as characterisation techniques are explained in chapter three.  

 Chapter four presents the literature review for polymer nanocomposites studies 

in terms of rheological science and discusses the rheological behaviour of 
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PETNC over a wide range of shear rates. The results were analysed from 

different views for more understanding. 

 Chapter five covers an introduction to the thermal properties of PET and 

discusses the effect of nanoclay on these focusing on the crystallisation 

properties. 

 The tensile modulus results for the PETNC films and micromoulded samples are 

presented in chapter six along with some discussion and a short literature 

review. 

 Chapter seven includes the results and discussion of the effect of the nanoclay 

platelets on the barrier properties of PET films. 

 Analysis of the degradation of PETNCs over long time scales and after 

additional melt re-processing is covered in chapter eight. 

 Chapter nine includes some general conclusions and discussions in addition to 

the suggested future work in this area. 

 

 

 

 

 

 

 

Chapter Two 
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2. Polymer nanocomposites 

The objectives of this chapter are: 1) to understand the fundamentals of polymer 

nanocomposite materials by identifying the nanotechnology, nanoparticles and 

organoclays, 2) review some of the extensive research carried out in this field, and 3) to 

examine a variety of nanoclays in order to choose three, as well as the proper 

compounding methodology. 

2.1. Introduction  

The science of nanocomposites is a branch of nanotechnology, so it is appropriate to 

define nanotechnology as a prelude to understanding nanocomposites. The prefix 

―nano‖, Greek for ―dwarf‖, means one billionth or 10
-9

. To get a sense of the nanoscale, 

the smallest things that can be seen with the naked human eye are approximately 10,000 

nanometers (nm) [Booker and Boysen (2005)]. The thickness of a human hair is about 

50,000nm by way of comparison in dimension. Ratner and Ratner (2003) state that 

nanotechnology is difficult to define as it is difficult to determine. Different scientists 

define nanotechnology based on the view of their particular field of science. To clarify 

the definition a new committee was formed in the USA, the National Nanotechnology 

Initiative. Booker and Boysen (2005) summarized the committee‘s definition as 

follows: 

―1- Nanotechnology involves research and technology development at the 1nm to 

100nm range. 

2- Nanotechnology creates and uses structures that have novel properties because of 

their small size. 

3- Nanotechnology builds on the ability to control or manipulate at the atomic scale.‖ 
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To fabricate at the nanoscale there are two approaches: bottom-up and top-down. The 

bottom-up approach seeks to arrange smaller components (e.g. molecules) into more 

complex assemblies while the top-down approach mimics a large scale assembles and 

then reducing size until the nanoscale product is formed. 

Buzea et al. (2007) state that nanotechnology has the potential to create many new and 

novel materials which will affect our lives by increasing standards of living. By 

producing new medicines and new devices, medical diagnostics will be faster and 

cheaper and nanotechnology will aid in the delivery of the optimum quantify of 

medicine to exact spots in the body that need it most. Also security will increase by the 

production of more powerful and smaller computers and of superior lightweight 

materials which are ten times stronger than steel but only a tenth of the weight. 

2.2 Nanocomposites 

Ajayan et al. (2003) defined nanocomposites as multiphase solid materials where one of 

the phases has a dimension of less than 100nm. The field of nanocomposites is a fast 

growing area of research and efforts are focused on the ability to obtain control of the 

nanoscale structures via innovative synthetic approaches. Theng (1979) reported that 

nanoscale organoclays have been used to control the flow of polymer solutions in 

cosmetics since the mid 1950s.  

Polymer nanocomposites are mixtures of polymers and particles with one of the 

component dimensions of nanometre length scale. Reducing filler quantities and 

enhancing some properties are examples of the advantages of nanocomposites. Usuki et 

al. (1993) stated that the surface area of the fillers is an important factor in achieving 
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high performance nanocomposites, since nanoparticles have extremely high surface area 

to volume ratios when good dispersions are achieved. 

Clays are one of the nanoscale materials used to form nanocomposites. Koo (2006), Ke 

et al. (2002), Ray and Okamoto (2003), Carrado (2003) and other researchers have 

reported that there are three types of polymer-clay nanocomposite structures. The 

affinity of the clay with the polymer is the main factor in classifying nanocomposites 

into the three types as follows: 
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Figure 2.1 Schematic showing polymer-clay nanocomposite classifications 
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1- Tactoid structures (unmixed) 

These structures are obtained when the interlayer space of the clay does not 

expand, due to its poor affinity with the polymer. These structures are like 

conventional fillers since improving one property requires a loss of another 

property.  

2- Intercalated structures 

Intercalated structures show better dispersion than the first type above. These 

structures are obtained in the case of a small interlayer expansion of clay. Also, 

due to some affinity between the polymer and the clay, there is a well-ordered 

multilayer structure.  

3- Exfoliated structures  

Due to an excellent affinity between the polymer and the clay, the clay layers are 

well separated into single layers within a continuous polymer matrix. The 

exfoliated structure is required to make the best nanocomposite in terms of 

tensile, thermal and barrier properties, due to the excellent dispersity of clay and 

the interfacial interaction of clay platelets with the polymer. 

Tailoring the morphology (i.e. exfoliated or intercalated structures) of the 

polymer matrix is the main challenge in enhancing the properties of polymer 

nanocomposites [Barber et al. (2005)]. Figure 2.1 illustrates these classifications 

schematically. 
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Generally, exfoliated structures achieve the most enhancements in the properties of 

polymer nanocomposites, but in some cases a combination of tactoids and exfoliated 

structures can exhibit better enhancements. Svoboda et al. (2002) investigated the 

properties of polypropylene / organoclay nanocomposites and reported that when most 

of the nanoclay was present in the polypropylene (PP) matrix as tactoid structures and 

some in the exfoliated form, the mechanical and crystallisation properties were 

improved when compared with clay present in fully exfoliated structures. 

2.3. Nanoparticles 

A number of changes in physical properties can occur when materials are reduced in 

size from microparticles to nanoparticles. As the size is reduced, the ratio of surface 

area to volume is increased dramatically. For example, the ratio of surface area to 

volume in sphere shape can be calculated from this equation: 

𝒔

𝒗
=  
𝟑

𝒓
 

where r is the radius, s is the surface area and v is the volume. 

This increase leads to an increasing dominance of the behaviour of the atoms on the 

surface of the particle over that of those in the interior of the particle. Some of these 

surface interactions can reflect positively on some properties, for example by increasing 

the chemical/heat resistance and increasing the strength of the composite material. 

Nanoparticles are currently manufactured from a wide variety of materials. Ceramics 

are the most common of the new generation of nanoparticles. Silicate-nanoparticles 

currently in use are flakes about 1nm thick and 100-1000nm across. The most common 

type of clay used is Montmorillonite, a layered alumina-silicate. 
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Nanoparticles can be divided into three categories based on their dimensions as follows 

[Utracki (2004)]: 

1- Layered nanoparticles 

The most interesting of all nanoparticle categories is the layered nanoparticle 

which can exhibit good dispersion into a polymer matrix. Layered nanoparticles 

used in polymer nanocomposite processes can exist in different types such as 

smectite clays (e.g. Montmorillonite (MMT)), synthetic clays (e.g. Sodium 

fluoromica), and others (e.g nanotalc). The thickness of the platelet is in the 

range 0.7 to 2.5nm. The first and second types have been used in this project so 

they will be discussed in further details later (see section 2.4). 

2- Fibrillar nanoparticles 

With fibrillar nanoparticles the diameter of the fibres is in the range 1 to 20nm 

with length 30 to 200nm. The best known fibrillar materials are carbon 

nanotubes and carbon nanofibres. Carbon nanotubes are molecular-scale tubes of 

graphitic carbon. They have novel properties that make them potentially useful 

in many applications in nanotechnology. Nanotubes are categorized as single-

walled nanotubes (SWNTs) or multi-walled nanotubes (MWNTs). Carbon 

nanofibres are a form of vapour-grown carbon fibre. They are available in 

diameters ranging from 50 to 200nm and are much smaller than conventional 

milled nanofibres (5 to 10μm) but larger than carbon nanotubes (1 to 10nm). 

They can be used for improving the strength and modulus of the polymer 

material. One of the carbon polymorphs is graphite which is formed by stacking 

graphene sheets with an gap spacing of 0.335 nm. Graphite is the stable form of 
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the element carbon. Exfoliated graphite can replace the CNTs when the high 

electrical conductivity is required [Utracki (2004)]. Andre Geim and Konstantin 

Novosrlov were awarded the Nobel Prize in Physics for 2010 for their research 

―for groundbreaking experiments regarding the two-dimensional material 

graphene‖. 

3- Other nanoparticles 

Other nanoparticles include spherical particles, sol-gel hybrids and 

polyhedral oligomeric silsequioxanes (POSS). 

2.4 Structure and properties of Montmorillonite organoclay (MMT) and 

synthetic mica clay 

The preferred layered nanoparticles for preparing polymer nanocomposites (PNCs) are 

phyllosilicates. The phyllosilicates or smectite clays are used most frequently for non-

ceramic applications. The smectites have a triple layer sandwich structure (2:1). This 

consists of an octahedral sheet in the middle connected to two silica tetrahedral sheets 

by oxygen ions, as shown in figure 2.2. The two outer layers of silica (tetrahedral) are 

fused onto an inner layer of alumina (octahedral). A Van der Waals gap occurs when the 

layers stack on each other and this gap is called a gallery or interlayer [Giannelis et al. 

(1998), Ray and Okamoto (2003)]. Montmorillonite (MMT) is one of the most common 

smectites used in different polymers for a variety of applications. MMT is inexpensive 

and available in nature in large quantities but impossible to obtain in a purified state. 

Because it is a naturally occurring mineral its composition is subject to variation which 

can causes variability in the properties of the manufactured polymer nanocomposites. 

Consequently, synthetic layered nanoparticles with a smectite structure have drawn 

some attention and interest in the field of polymer nanocomposites. The main 
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distinguishing features of synthetic clay (e.g. synthetic mica) are its well controlled 

chemical and physical properties, its high aspect ratio compared with natural clay, and 

the good reproducibility of its polymer nanocomposite performance [Utracki (2004)]. 

The major drawbacks of synthetic clay are the material cost and limited availability.  

 

Figure 2.2 The chemical structure of dry phyllosilicates: a) Montmorillonite clay, b) synthetic mica 

clay. 
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2.5 Nanoclay modification 

MMT clays are highly hydrophilic which means they are immiscible with hydrophobic 

polymers (e.g. PET). Crystalline swelling occurs when MMT is contacted by water.  

However, to make these nanoclays compatible with most polymers, they must be made 

hydrophobic. The laboratory route usually introduces alkylammonium ions in the 

gallery by an ion exchange reaction which can make the clay surface organophilic. The 

cations of MMT are commonly hydrated K
+
 or Na

+
. However, the ion exchange reaction 

of an organic cation with a gallery cation can enhance the organophilic nanoclay 

surface. The amount of the charge which is generated within the layers by replacing 

Fe
+2

 or Mg
+2

 with Al
+3

 can be measured by the cationic exchange capacity (CEC), 

which is usually between 0.9 and 1.2 milli-equivalent/g. 

The alkylammonium cation contains different types of functional groups which could 

introduce the polymer to the inorganic clay. Furthermore, the organic cations can allow 

the organic polymer to expand the gallery by reducing the energy of the nanoclay 

surface. 

The Van der Waals interaction energy causes the platelets to remain stacked together, 

and the attraction energy depends on the distance between the platelets (h) as shown in 

figure 2.3. 
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Figure 2.3 Attraction energy vs. the separation distance between two plates between two 

phyllosilicate layers [Utracki (2004)]. 

 

The attraction energy (Uattraction) between two plates which have the same thickness is 

given in Equation 2.1 [Bhattacharya et al. (2008)]: 

   Equation 2.1 

where A11 is the Hamaker constant, t is the platelet thickness and h is the separation 

distance between two plates. The Hamaker constant is a force constant which can be 

used to define the Van der Waals force. 
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2.6 Previous studies of polymer nanocomposites  

In the following paragraphs some studies of polymer nanocomposites are reviewed to 

give a general idea about the efforts, work volume, results and observations in this area. 

Later, each individual chapter will include an extensive literature review covering each 

specific subject (e.g. rheology and thermal analysis barriers properties).  

Ray and Okamoto (2003), Ray (2006), Utracki et al. (2007) and Pavlidou et al. (2008) 

published review papers covering a wide range of the polymers used to produce 

polymer nanocomposites. The authors discussed subjects such as the properties and 

structure of layered nanoparticles, types of polymer used to produce nanocomposites 

with layered nanoparticles, polymer nanocomposite preparation, and the rheological and 

mechanical properties of polymer nanocomposites. They reviewed and discussed the 

results of hundreds of papers. 

Furthermore, polyethylene terephthalate (PET) nanocomposites drew the researchers‘ 

attention to investigate the effect of nanoclays on the various properties of PET. The 

researchers compounded the PET with nanoclay via different methods. Some 

researchers used in situ methods to prepare the PET nanocomposites prior to analysis 

and characterization, including Chang et al. (2004), Han et al. (2006), Lee and Im 

(2007), Lu et al. (2007), Chang and Mun (2007), Guan et al. (2008), Antoniadis et al. 

(2009) and Vassiliou et al. (2010). Other  researchers used the melt screw extruder 

process to compound the clay with PET matrix, then quenched the melt output prior to 

pelletizing it, including Pegoretti et al. (2004), Sanchez-Solis et al. (2004), Barber et al. 

(2005), Costache et al. (2006), McConnell et al. (2006), Calcagno et al. (2007), Kim et 

al. (2007), Kim and Lee et al. (2008), Tzavalas et al. (2008), Ammala et al. (2008), Kim 

and Choi et al. (2009), Rajeev et al. (2009), Frounchi and Dourbash (2009), and Soon et 
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al. (2009). In addition, some researchers aimed to enhance various properties of 

recycled PET (rPET) by adding nanoclays during the recycling process, such as Bizarria 

et al. (2007), Kracalik et al. (2007) and Giraldi et al. (2008).  

The main challenge in achieving success in PET nanocomposite (PETNC) properties is 

the high processing temperatures during PETNC preparation. PET and nanoclays 

degrade under high processing temperatures, as reported by Costache et al. (2006) when 

they prepared PET nanocomposites via an in-situ method in which the polycondensation 

process took place at 280°C. However, the decomposition temperature of most 

surfactants, used to modify the hydrophilic clay organophilic, is well below these 

processing temperatures, as Gupta and Bhattacharya (2008) reported. Furthermore PET 

is a hydroscopic material, so a high efficiency dehumidifier or vacuum oven is required 

prior to any melt processing to partially eliminate the effect of hydrolysis degradation. 

However, many researchers [e.g. Ou et al. (2004)] have suggested a solution method to 

prepare PET nanocomposites in order to avoid thermal degradation, because this does 

not require elevated temperatures, which means the PET matrix and the surfactant are 

not degraded. The use of significant volumes of solvent in this method is a drawback 

because it is expensive as well as being harmful to the environment.  

One of the potential applications for polymer nanocomposites is in compounding a 

nanofiller with a recycled polymer to enhance the properties of the recycled product 

(e.g. its mechanical properties). The recycling of polymers is affected by many factors 

such as the environmental protection regulations of the country and the price of the neat 

polymer. Therefore, instead of buying the neat polymer, one can add a small quantity of 

nanofiller to the recycled polymer to attempt to regain the same properties as the virgin 

material. Pegoretti et al. (2004) aimed to prepare and characterize recycled PET/clay 
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nanocomposites. Recycled PET (rPET) pellets and two montmorillonite clays (Cloisite 

Na
+
 and Cloisite 25A) were used to produce PET nanocomposites with 1, 3 and 5 wt.% 

via melt compounding with co-rotating twin screw extruders. Scanning transmission 

electron microscopy (STEM) was used to evaluate the dispersity of the nanocomposites 

and it was found that the Cloisite 25A gave much better dispersion in the 

nanocomposite compared to Cloisite Na
+
. Also Wide Angle X-ray Scattering (WAXS) 

measurements indicated increased lamellar periodicity of Cloisite 25A in the 

composition which infers intercalation. The authors observed that Cloisite 25A 

increases the rPET nanocomposite tensile modulus. Furthermore, good interfacial 

adhesion was observed as the yield strength was not reduced with increasing nanoclay 

fraction. A similar study was carried out by Bizarria et al. (2007) who observed a large 

reduction in intrinsic viscosity (I.V.) after extrusion and injection moulding processes. 

The authors tried to avoid hydrolytic degradation by using an antioxidant (Irganox 

B561) with all nanocomposites during extrusion. They observed some improvement in 

the modulus and yield strength through addition of the organoclay. They did not explain 

why the nanoclay they used (Montmorillonite clay (DELLITE1 67G)) did not act as an 

effective nucleating agent for the nanocomposites which could be because they extruded 

the nanocomposites under high temperatures (up to 285°C) which may cause 

degradation in the composite, or they did not select a suitable clay, or both reasons. 

The many variables of the melt extrusion method have given researchers concern, such 

as whether a twin or a single screw extruder was used, the screw design itself as well as 

the feeding of the two components. McConnell et al. (2006) studied the effect of various 

organoclays (MAE, MTE, etc.) on the mechanical properties of the PET matrix. 

Processing methods included compounding via single screw extrusion and injection 

moulding to produce test specimens. They found that the organoclays enhanced the 
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mechanical performance and suggested that the organoclays were acting as nucleating 

agents to form the crystalline phases in the PET during fibre spinning. Through 

capillary rheometer their results showed that the nanofiller negatively affected the 

intrinsic viscosity (I.V.) of the PET due to thermal degradation. The researchers also 

used single screw extrusion which may decrease the mixing efficiency compared to twin 

screw extrusion and may lead to increased residence time, which could cause thermal 

degradation. Anoop et al. (2006) used single walled carbon nanotubes (SWNTs) to 

study the influence of PET crystallization. They found that SWNTs at low concentration 

(0.03%) enhance the crystallization temperature during melt cooling, increasing it from 

200 to 210°C. It was shown that the oriented SWNTs in PET melt enhanced the 

oriented crystallization of PET. 

Researchers studied several ways to enhance the properties of polymer nanocomposites 

and in particular PET nanocomposites by investigating the effects of different factors on 

the behaviour of polymer nanocomposites. Many researchers have studied the effect of 

nanoclay surfactant type or quantity on PET nanocomposite properties. Other 

researchers have used a compatibilizer with the PET nanocomposites to increase 

affinity. 

Gurmendi et al. (2007) studied the effects of three types of organoclays in producing 

PET nanocomposites. Cloisite 15A and 20A were used because they have the same 

surfactant but in different amounts, and this allowed the researchers to study the effect 

of the amount of surfactant. Also Cloisite 30B was used because it has the same level of 

surfactant content as 20A but has a more polar chemical nature. This allowed Gurmendi 

and his team to find out the effects of the polarity of the surfactant on PET 

nanocomposites. The researchers concluded that a higher surfactant content (Cloisite 
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15A) does not have a positive effect on the ability of the polymer to intercalate into the 

clay galleries, and they attributed this to the larger initial interlayer distance of Cloisite 

15A, which leads to a decrease in the energy necessary to overcome the attractive 

interlayer force when the polymer is intercalated into the clay galleries. Also they 

reported that the surfactant content affected the interaction between the surfactant and 

the polymer matrix and did not influence the intercalation level. In addition it was 

found, after comparing Cloisite 30B and 20A, that the polarity was favoured for 

intercalation. On the other hand it was observed that the modulus increased and was 

found to be independent of the level and nature of the organic modification of the clay, 

which means that the parameters that lead to a large increase in the modulus of elasticity 

differ from those that lead to a large degree of intercalation. The increasing modulus of 

elasticity was correlated with wide clay dispersion. 

Ke et al. (1999) studied the effect of the clay on the crystal morphology and 

crystallisation processes. Approximately 80% of clay ores are formed as MMT. The 

clay was treated before mixing it with PET and then refined into small particles with a 

cation ion exchange range from 0.7 to 1.1 meq/g. The nanocomposites were prepared 

via an in-situ method. The results show that the clay content affects the crystallisation 

because the clay acts as a nucleating agent. Also Ke et al. (2002) discussed the 

relationship between the distribution of intercalated or exfoliated clay and the 

crystallization of PET. They reported that the increased intercalation with the large 

number of clay platelets leads to a decrease in crystallization. In the same study it was 

observed that the dispersion of the clay platelets was controlled by the polymerization 

method as well as by the surface modification. 
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Many researchers have tried to improve the dispersion of the clay in the PET matrix by 

a variety of methods. One of these methods is to use compatibilizer additives to increase 

the adhesion of the polymer matrix to the clay. Imai et al. (2002) reported making 

PET/Expandable Fluorine Mica nanocomposites utilizing compatibilizers via a two step 

polymerization procedure and gained a good dispersion of the mica and enhancement of 

the mechanical properties of the nanocomposites. Sanchez-Solis et al. (2003) used a 

compatibilizer (Pentaerythrytol and Maleic Anhydride) with PET nanocomposites 

(Cloisite 15A). The results did not show an exfoliated morphology, while with high clay 

and compatibilizer content the crystallinity was increased due to the clay acting as a 

nucleating agent. 

Barber et al. (2005) prepared PET ionomer (PETI)/modified MMT clay nanocomposites 

via melt extrusion. The authors investigated sulfonated PET which contains various 

incorporated ionic comonomer and modified clays. The interactions between the matrix 

PET and MMT clay were enhanced by the random merging of ions introduced along the 

PET backbone. It was found that mixing nanofiller into different ionomers decreased 

the crystallisation rate and increased mechanical properties. 

Tarverdi and Sontikaew (2008) aimed to study the effect of using different 

concentrations of modifier on the rheology, morphology and product tensile properties, 

and also studied the effects of different process melt temperatures on these properties. 

Cloisite 10A and Nanofil-2 (N2) organoclays were used because both are coated with 

same surfactant, but the percentage of surfactant in 10A (125 meq/100g) is greater than 

in N2 (75 meq/100g). As discussed before, Gurmendi et al. (2007) worked on a similar 

study using 15A and 20A to study the effect of using different concentrations, but the 

15A and 20A have two long alkyl (dehydrogenated tallow) tails while 10A and N2 have 
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one alkyl tail (hydrogenated tallow) in the surfactant. Thus it might be expected that the 

polymer molecules will more easily enter the clay gallery. Also the higher modifier 

content of 10A means it is probably more easily degraded than N2, which may cause a 

reduction in the dispersion of clay in the PET matrix. It was observed from TGA results 

that it is difficult to produce high quality PET nanocomposites because the onset 

decomposition temperature of both clays is 200°C while the PET melt processing 

temperature is over 260°C. The TGA results also showed that N2 has better thermal 

stability than 10A. It was also found that organoclays with more surfactant content gave 

nanocomposites with higher tensile moduli and better clay dispersion. 

Calcagno et al. (2007) studied the effects of the organic modifier of the clays Cloisite 

10A, 15A and 30B on the crystallization and morphology properties of PET 

nanocomposites. The crystallization temperature (Tc) of the pure PET was lower than 

that of the PET nanocomposites which possibly means that the nanoclay has a 

nucleation effect on the PET. It was also found that the PET 30B and PET 10A 

nanocomposites showed exfoliated and intercalated morphologies due to many 

contributing factors, including the polarity of the surfactant and its chemical structure. 

In addition they reported that the nanocomposites showed smaller mean spherulite size 

and more nuclei than in pure PET. 

Generally, the thermal stability of polymer nanocomposites can be measured by weight 

loss (volatile products) upon heating. Blumstein (1965) studied the improvement in the 

thermal stability of polymer nanocomposites by blending clay with 

polymethylmethacrylate (PMMA), and reported that adding PMMA to a nanocomposite 

containing 10% clay causes degradation at a temperature 40-50°C higher than with 

unfilled PMMA. 
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On the other hand, unwanted side reactions between the decomposition products and the 

polymer matrix may also result from surfactant decomposition. These reactions degrade 

the polymer itself in the nanocomposites. Some active sites can degrade the polymer 

during the melting process due to clay catalysis effects. 

2.7 Nanoclay selection 

There are many types of organoclay Montmorillonites (MMT). Commonly used clays 

produced by Southern Clay Products Inc. include Cloisite 10A, 15A, 20A, 25A and 

30B; each one of these clays has a different structure and surfactant. All Cloisite clay 

types and other clays have been reviewed to find the clay most compatible with a PET 

matrix. Figure 2.4 shows the chemical structure of the major Cloisite clays. Cloisite 10A 

has a benzene ring which indicates the possibility of its compatibility with the PET 

benzene ring. Table 2.1 shows the basal spacing between the layers. It is obvious that 

Cloisite 15A has the biggest basal space which may mean that the PET chains can 

penetrate more easily in the interlayer spacing. Cloisite 30B has two hydroxyl groups in 

the modifier which may lead to compatibility with the hydroxyl group of PET and they 

may also interact with the carboxyl group of PET. 
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Figure 2.4 The chemical structure of all Cloisite 

additives. [Ref. supplier data sheet] 

 

Table 2.1 shows the concentration of the modifiers. It is clear that Cloisite 20A has a 

low surfactant content (95 meq/100g clay) which indicates that the lower the content the 

greater the PET/clay interface and the lower the degradation.  

LeBaron et al. (1999) reported that the polarities of the polymer matrix surface and 

organoclay must be matched. Since PET is a polar polymer, Cloisite 15A and 10A have 

been removed from our selection list due to their non-polarities (Table 2.1). 

Cloisite 20A has an advantage because it has a low surfactant content but contains two 

alkyl groups (dimethyl, dehydrogenated tallow) similar to those of Cloisite 15A, which 

indicates the possibility of reducing the interaction between the clay and the polymer 

chains. This reason was enough to drop Cloisite 20A from our list of potential 
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candidates. Cloisite 25A and 30B are both polar, which means the surface polarities of 

the PET matrix match the organoclay.  

Khan et al. (1987) reported that these polar interactions are important for the formation 

of well dispersed systems. As mentioned earlier, Cloisite 30B has two hydroxyl groups 

and it is expected that this may lead to compatibility with the hydroxyl group of PET, 

while Kracalik and Puffr et al. (2007) showed the thermal degradation of 

alkylammonium tethers as well as by chain scission due to water and the hydroxalkyl 

groups of Cloisite 30B during the melt compounding lead to form low Mw compounds 

which decreased the melt viscosity of the nanocomposites at higher shear rate.  

Kracalik and Puffr et al. (2007) assumed that the degraded and shorter polymer chains 

could easily penetrate into the gallery of the silicate layers and this may lead to a 

reduction in the melt viscosity of nanocomposites at higher shear rate compared with 

recycled PET, due to the inert low molecular weight compounds formed by thermal 

degradation. The same process has been applied to a Cloisite 25A nanocomposite and 

this shows improved results. Based on the points made above, Cloisite 25A has been 

chosen (see Chapter 3 for more details about Cloisite 25A) for the studies reported in 

this thesis. 

Organoclay Modifier concentration 

(meq/100 g/clay) 

Basal spacing      

(Å) 

Polarity 

Cloisite 10A 125 19.2 Non polar 

Cloisite 15A 125 31.5 Non polar 

Cloisite 20A 95 24.2 Polar  

Cloisite 25A 95 18.6 Polar  

Cloisite 30B 90 18.5 Polar  

Table 2.1 Surfactant content and basal spacing between layers for all Cloisite clays studied 

[Kracalik and Puffr et al. (2007)]. 
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In order to study the effect of synthetic clays and compare to this natural clay, Somasif 

clays (MAE and MTE) have been used. These organically modified sodium fluoromica 

clays were supplied by UniCoop Japan (now CBC Co. Ltd.), Japan (see Chapter 3 for 

more details about Somasif MAE and Somasif MTE).  

Three types of nanoclays have been used in this project. Two are organo-modified, 

synthetically based on sodium fluoromica (Somasif MAE and Somasif MTE), and the 

third clay is organically modified (Cloisite 25A). The nanoclays‘ details have been 

presented in section 3.2.2. 

2.8 Nanocomposite processing methods 

After the selection of the appropriate nanoclay, the next challenge is to determine the 

proper synthetic methods to prepare the polymer nanocomposites. Matayabas and 

Turner (2001), Li et al. (2001) and Chang (2004), reported that the preparation methods 

of polymer nanocomposites are divided into many categories. For compounding the 

thermoplastic polymers with solid nanoclays, there are many common processing 

methods used: 

I- Melt intercalation 

II- Solution intercalation 

III- Roll milling 

IV- In situ polymerization 

V- Emulsion polymerization 

VI- High-shear mixing 



41 
 

The methods written in bold font will be discussed in brief because it the main three 

methods which have been used in a wide range of polymer nanocomposite processing 

methods. 

2.8.1 Solution method 

Krikorian and Pochan (2003), Ou et al. (2004), Liu and Chen (2008), and others have 

reported that the solution method has been widely used with water-soluble polymers to 

produce intercalated nanocomposites. Here the clay layers are swellable in the solvent 

and the polymer is soluble. The main advantage of this method is that the compounding 

process is carried out well below degradation temperatures. The major impediment is 

the high quantity of solvent used in this method. 

2.8.2 In-situ polymerisation method 

Polymerisation can occur between the intercalated sheets because the layered nanoclay 

is swollen within the liquid monomer. When the monomer is inserted into the gallery 

space, polymerisation can occur. This method gained considerable attention after the 

Toyota research group prepared Nylon-6/MMT nanocomposites via an in-situ method 

and observed significant enhancements in mechanical and thermal properties [Okada et 

al. (1995)]. 

2.8.3 Melt intercalation 

The melt intercalation method is the most widely used method to prepare 

polymer/nanofiller nanocomposites [Bhattacharya et al. (2008)]. Direct compounding is 

the most common intercalation method. In this method, the polymer and nanofiller are 

mixed in an extruder (usually via a twin screw due to its superior mixing quality) by 
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introducing shear to the polymer matrix and nanoclay above the melting temperature of 

the polymer. This method does not require a solvent. The residence time and 

temperature of the compounding process in the melt intercalation method are lower than 

with the in-situ polymerisation method. The method is also well-suited to commercial 

scale production. This is the method which has been chosen for the present project.  
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Chapter Three 

3. Experimental work 

3.1 Introduction 

The methodology of this project is covered in this chapter. Section 3.2 gives brief 

information about the raw materials which were used. The drying of the materials -

particular the PET - is a critical step required prior to compounding and carrying out 

many analytical tests, and so this drying procedure is covered in a separate section 3.3. 

As mentioned before, the melt intercalation method was used to prepare the PET 

nanocomposites (see chapter 2) so the compounding procedure and further sample 

preparation are described in section 3.4. Section 3.5 includes a description of all the 

equipment used to analyse the raw materials or PET nanocomposites (pellets and films). 

Furthermore, a preliminary study was conducted on some PET nanocomposite sheets 

obtained from Queen‘s University. These sheets were prepared under the EPSRC 

funded QBOX project (EPSRC grant EP/C006909/1) by blending PET pellets (Tergal 

F9) with nanoclays (Somasif MAE and MTE) [Soon et al. (2009)]. This study was 

initiated to study the effect of different cooling rates when analyzing the thermal 

properties of the samples. The results and discussion of is preliminary study are covered 

in appendix 5 (see x5.4). 

3.2 Raw materials 

3.2.1 Polyethylene terephthalate (PET) pellets 

Polyethylene terephthalate (PET) grade T74F9IV080 was supplied by Tergal Fibre, 

France. It has an intrinsic viscosity (I.V.) of 0.8dl/g in a 50/50 mixture of phenol/o-

dichlorobenzene with a PET concentration of 5gl
−1

. An AccuPycTM 1330 Pycnometer 
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(see section 3.5.1) was used to measure the density of the PET pellets, giving a value of 

1.4g/cm3. [appendix x3.1 shows the data sheet for PET Tergal F9 and appendix x3.2 

shows the density results in detail for all raw materials]. 

3.2.2 Nanoclay additives 

As mentioned in section 2.7, Somasif MAE, Somasif MTE and Cloisite 25A were 

chosen for blending with PET to prepare the PET nanocomposites and can be described 

as follows: 

I. Somasif MAE and Somasif MTE 

Somasif nanoclay is a synthetic clay based on sodium fluoromica, modified by di-

methyl di-(hydrogenated tallow) ammonium chloride [Utracki, (2007)]. Generally, 

Somasif is prepared by heating Na2SiF6 and talc for several hours in an oven. 

Somasif is a swellable synthetic fluoromica having dimethyl di(hydrogenated tallow) 

ammonium chloride ions between layers (MAE) or methyl trioctyl ammonium chloride 

ions (MTE). It is supplied by CO-OP Chemical Co., Japan (now CBC Co. Ltd). (See 

Table 3.1 for more details) 

II. Cloisite 25A 

Cloisite 25A is a commercial organoclay produced by Southern Clay Products (SCP), 

Gonzales, Texas, USA. It is a natural Montmorillonite (MMT) and in order to enhance 

its affinity, dispersibility and miscibility, the clay is modified with a quaternary 

ammonium salt by the producer (see Table 3.1 for more details). 
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General comments on the nanoclays 

o Pees et al. (2008) reported that swellable Montmorillonite and fluorine mica are 

preferable for producing polyamide nanocomposites, and fluorine mica is more 

preferable due to its excellent brightness and its positive effects on final 

mechanical properties. 

o The two platelet-shaped silicates (MAE and MTE) are both based on fluoro-

mica. The size of mica particle (6μm) is much bigger than Montmorillonites 

(200nm). The higher negative charge of mica (2.5 times higher than 

Montmorillonites) can lead to big expansions in the gallery of mica. This 

advantage can lead to the PET chain penetrating easily into the space of the 

gallery. 

o Somasif clays have a slightly higher tendency to water absorption when 

compared to Cloisite clay nanocomposites. 

o The longer tallow group of the surfactant in MAE is expected to be more 

reactive than the carbon chain (C8) or methyl group in MTE. 

o One of the advantages of Somasif clay is its colour (white). The end products of 

PET nanocomposites are usually transparent and the colour of the clay affects 

the final product colour. Therefore, a better product appearance might be 

expected compared to when using Cloisite 25A which can cause a yellow/brown 

product. This optical clarity is a much sought after requirement for the use of 

PET packaging (film or bottle). 
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 Somasif MAE
3
 Somasif MTE

3
 Cloisite 25A

3
 

Density (g/cm
3
) 

1 

 

1.55 1.72 1.76 

Basal spacing, 

d001(nm) 
2 

 

3 2.5 1.86 

Aspect ratio 

 

1230 1230 218 

Surfactant 

 

2M2TA M3O 2MHTL8 

Surfactant 

formula 

Dimethyl 

di(hydrogenated 

tallow) ammonium 

chloride 

Methyl trioctyl 

ammonium 

chloride 

Dimethyl 

hydrogenated 

tallow 2-ethylhexyl 

quaternary 

ammonium 

 

Cation exchange 

capacity (CEC) 

(meq/100g) 

200 120 95 

Table 3.1 Some properties of the chosen nanoclays 

1
 An AccuPycTM 1330 Pycnometer (see section 3.5.1) was used to measure the density 

of the nanoclay powder [Appendix x3.2 shows the density results in detail for all raw 

materials]. 

2
 Measured by powder XRD (see section 3.5.9); the results are shown in appendix x3.3.  

3 
Appendix 3.3 shows the data sheet for Somasif MAE, Somasif MTE and Cloisite 25A. 

3.3 Drying process 

As mentioned before, polyethylene terephthalate (PET) is highly hydroscopic and 

absorbs moisture quickly which can cause hydrolytic degradation during melt 

processing (for more details see section 8.1.2). To avoid this degradation, it is essential 

to dry the crystallized PET pellets. Drying the PET pellets in the temperature range 

140–180°C is effective but above 180°C this may cause a yellowish colour degradation 

of the pellets. The preferred drying parameters are 160°C for 6 hrs in a dehumidifier 
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dryer (dew point –40°C) or vacuum dryer [Jones (2002)]. However, prior to any further 

melt processing or rheological analysis for the amorphous PET nanocomposite pellets 

produced from the compounding process, a further re-crystallisation process should be 

applied. This re-crystallisation process is a very important step to simulate the 

crystallized PET pellets. It was observed and reported (see sections 4.3.1 and 4.3.2) that 

the rheological behaviour of amorphous PET pellets is significantly different from that 

of crystallised or re-crystallised PET pellets.  

The re-crystallisation process is also applied to eliminate the sticking and lumping of 

pellets during melt processing which usually occurs with amorphous PET pellets and 

blocks the process flow (bridging in hopper etc.). 

In addition, prior to the compounding process, the organoclays were vacuumed dried at 

80°C for 20 hours. Meanwhile, the PET was dried by dehumidifier dryer at 140°C for 

20 hours. Also the nanocomposite (NC) master batch (PET/nanoclay 20 wt.%) was 

dried at 80°C for 20 hours (above the glass transition [Tg ≈ 75°C] to avoid the pellets 

sticking) before re-compounding it with dried virgin PET pellets to produce 1, 3 and 5 

wt.% NC samples.  

 

Figure 3.1 Pictures of the driers, A) Motan Drier (Luxor) and B) Vacuum dryer. [IRC, Bradford]. 
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Figure 3.1-A shows the dehumidifier dryer (Luxor CA) which uses hot and very low 

dew point air to dry the materials. The material in the vacuum oven (figure 3.1-B) is 

surrounded by a vacuum (- 5bar), to remove sources of contamination and gases such as 

oxygen. 

3.4 Extrusion and injection processes 

In preparing polymer nanocomposites by melt processing a compounding technique 

such as extrusion or batch mixing can be applied. Kim et al. (2007) reported that the 

twin screw extrusion technique is preferable to batch mixing because the twin screw 

extrusion breaks up the agglomerates and exhibits better mixing of the nanocomposites 

than for the batch mixing technique. Furthermore, the method of feeding the polymer 

and the nanofiller to the twin screw extruder is one of the most important factors in 

good compounding. Anderson (2002) observed that feeding the materials together leads 

to better mixing. Cho and Paul (2001) studied the properties of nylon 6 nanocomposites 

produced by melt compounding using single and twin screw extruders. They found that 

the single screw extruder failed to show similar levels of exfoliation or dispersion 

compared with the twin screw extruder. Only a few articles have discussed the 

relationship between the processing parameters and the degree of mixing with the 

objective of optimisation. Increasing the melt processing temperatures leads to increase 

the mobility of the polymer molecules. Decreasing the viscosity resulting in less force 

applied to the nanofillers, which makes it difficult to break up the nanofiller 

agglomerates. Furthermore, the degree of mixing may be improved by increasing the 

residence time of the processing, but at the same time this may enhance the degradation 

of the nanofiller. 
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Dennis et al. (2001) studied the effect of screw configuration and screw type on the 

quality of mixing as measured by TEM. The authors found that improving the clay 

dispersion can be achieved by increasing the residence time. They observed that by 

using a co-rotating or counter-rotating extruder with excellent optimization of the screw 

configuration, good dispersion and exfoliation can be achieved. Fasulo et al. (2004) 

measured the quality of mixing with changing the temperature, screw speed and feed 

rate. The authors observed that increasing the processing temperature can cause 

degradation for the clay surfactant which can lead to agglomeration of the clay into the 

polymer matrix. They found that introducing the material at high feed rates can lead to 

the formation of a great mass of clay which can increase the pressure in the extruder 

thereby causing agglomerated clay. 

Kim and Lee et al. (2008) studied the degree of mixing in Alumina/PET 

nanocomposites through changing melt processing conditions such as temperature, 

screw speed and feed rate. The authors found that the screw speed had the strongest 

effect on the degree of mixing with higher screw speeds leading to better mixing. The 

melt temperatures and feed rate also had significant effects with lower temperatures or 

lower feed rates giving better degrees of mixing. 

3.4.1 Compounding of polyethylene terephthalate (PET) nanocomposite 

Twin screw extrusion is widely used for compounding and mixing and can allow 

relatively simple changes of screw configuration in order to satisfy process 

requirements. For example, the two screws can be co-rotating or counter-rotating, 

intermeshing or non-intermeshing. Also the design of the screws themselves can be 

varied depending on the end product required. 
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In order to obtain high levels of clay dispersion in the PET matrix, two screw feeders 

(secondary and main feeder) were used to load the raw material simultaneously at 

constant feed rates directly to the compounding screws, as shown in Figure 3.2. The 

main screw feeder was attached onto the machine and used to feed the dried virgin PET 

pellets. The nanoclays and the master batches were introduced separately through the 

secondary screw feeder designed within the IRC at Bradford. 

Other researchers have premixed PET with clay in a high speed mixer prior to 

extrusion. The premixing method may lead to agglomeration of the clay due to a 

relatively uncontrolled clay distribution. The twin screw co-rotating extruder (APV, 

MP19TC-25, Figure 3.2) with length to diameter (L/D = 25, D = 19mm) screws (Figure 

3.3) was used in the compounding processes at the first stage. The screws have two 

mixing zones to allow greater mixing and thus interaction between the polymer and the 

clay. The first mixing zone has 12 paddles at 90° and the second mixing zone has 8 

paddles at 90°, as shown in figure 3.4. The processing parameters are listed in Table 

3.2.  

Screw speed 

(rpm) 

Output capacity 

(kg/hr) 

Residence time (sec.) Zone temperature (°C) 

1 2 3 4 5 

 Feed                             Die 

100 2.0 60 240 260 265 265 260 

Table 3.2 Processing parameters for the compounding process in the APV twin screw extruder. 
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Figure 3.2 The twin screw extruder (APV). 

 

Figure 3.3 Screw design. 
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Figure 3.4 The rotating angle of the mixing zones. 

To produce the nanocomposites of PET with different clay contents and types, a master 

batch was prepared (PET/nanoclay 20 wt.%) by mixing the nanoclay particles with 

dried virgin PET (vPET) pellets via twin screw extrusion. The dried master batch (dried 

at 80°C for 20 hrs in a vacuum oven) was then diluted by compounding with dried 

vPET via the same twin screw extrusion and the same extrusion parameters. All the 

extruded PET nanocomposites were quenched using a cold water bath prior to 

pelletizing using a Prism pelletizer (figure 3.5 A and B). 

 

Figure 3.5 (A) the Prism pelletizer and (B) Extruded nanocomposites exit from the die and are then 

quenched by cold water bath. 

 

The compounding processes produced 13 amorphous pellet samples (2 kg from each 

sample) in addition to one crystallised pellet sample. Table 3.2 describes the samples. 
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Sample 

No. 

Sample name  Description of the sample 

1 vPET Virgin PET (as received), crystallised 

2 Ext. vPET Extruded virgin PET (amorphous) 

3, 4, 5, 

6 

PET/MAE  

(1, 3, 5, 20 wt.%) 

4 PET nanocomposites produced from compounding 

vPET with Somasif MAE clay at various 

concentrations 

7, 8, 9, 

10 

PET/MTE  

(1, 3, 5, 20 wt.%) 

4 PET nanocomposites produced from compounding 

vPET with Somasif MTE clay at various 

concentrations 

11, 12, 

13, 14 

PET/Cloisite 25A (1, 3, 

5, 20 wt.%) 

4 PET nanocomposites produced from compounding 

vPET with Cloisite 25A clay at various 

concentrations 

Table 3.3 PET (un-filled) and PET nanocomposite sample descriptions 

 

3.4.2 PET cast film 

The process of casting film is important for many applications such as packaging and 

lamination. To produce films, the PET pellets were plasticated using a Betol 2525 (D= 

25mm) single screw extruder (see figure 3.6) prior to the melt being extruded through a 

vertical film die (width = 300mm), as shown in figure 3.7-A. The extruded polymer was 

then quenched between counter-rotating chill rolls (see figure 3.7-B). One of the 

advantages of feeding the extruded polymer between two rolls rather than over just one 

is that the two rolls will give a uniform cooling for the film from both sides, preventing 

inhomogeneous crystallisation and/or warpage. The rollers are chilled to below the Tg 

of the polymer (about 16°C). A schematic of the extrusion machine and chill rolls is 

shown in figure 3.8.  
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Figure 3.6 Cast film single screw extruder (Betol 2525) 

 

 

Figure 3.7 Vertical die (A) and chilled rolls (B). 
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Figure 3.8 Schematic representation of the PET cast film process, showing the single screw 

extruder and the chill rolls. 

 

In this project, films of 11 PET nanocomposites (thickness = 0.11 mm ±0.01) were 

produced via the single screw extruder. The processing parameters are shown in Table 

3.4. The vPET, ext. vPET and PET nanocomposite (1 wt.%) films were transparent but 

the PET nanocomposite films (3 and 5 wt.%) were translucent. The processing 

parameters are listed in Table 3.4. 

Barrel Temp. (°C) Die Temp. (°C) Screw 

speed 

(rpm) 

Haul off 

speed 

m/min 

Chiller 

Temp. 

(°C) Feed                                                                                        Die 

Zone1 Zone2 Zone3 Zone4 Zone1 Zone2 

240 255 260 260 255 255 80 5.5 15-17 

Table 3.4 PET nanocomposite film processing parameters 
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3.4.3    Micro-moulding process 

 

The Battenfeld Microsystem 50, shown in figure 3.10 (A) was used in this project to 

produce micro-specimens at various injection speeds to evaluate the effect of different 

shear rates on the mechanical properties of PET nanocomposites. The machine consists 

of three units (plasticating, metering and injection) as shown in figure 3.10 (B). There 

are many advantages from using this machine over the ordinary injection moulding 

machines such as the low cycle time for the process to minimise the degradation which 

is very important to avoid when processing PET nanocomposites.  One of the main 

advantages of using the micromoulding machine is the low sample volume requirements 

(30g) which allows many samples to be produced with varying set temperatures, piston 

speeds, mould temperature etc. A typical test specimen is shown in figure 3.9. 

 

The melted polymer is fed to the metering chamber where the exact quantity of the 

material is accurately controlled using the back pressure control of the metering piston. 

After the set filling level has been reached, a turn-lock fastener will prevent the molten 

polymer from back flow. The melted polymer is transferred from metering to injection 

zone when the injection piston is retracted. The metering piston then transfers the 

accurately determined material volume via the injection channel to the nozzle from 

where it is injected into the mould using the injection piston. The screw has been 

designed with three zones with an L/D ratio of 15 (D=14mm, figure 3.10 (C)) to melt as 

little polymer as possible to reduce the dwell time in order to minimise sample 

degradation. 

 

The processing parameters are listed in Table 3.5. 
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Temperature zone  

(°C) 

Mould temperature 

(°C) 

Injection speed 

(mm/s) 

Nozzle  Screw barrel 

60 

100 

400 

700 
315 300 280 

Table 3.5 Micro-moulding processing parameters 

 

 

 

 

Figure 3.9 Micro-moulding specimen picture and diagram. 

 



58 
 

 

 

 

Figure 3.10 Microsystem 50 (A), Plastication unit (B) and the used screw (C). 

 

Crystallised pellets of un-filled PET (vPET and Ext. vPET) and PET/clay (MAE, MTE 

and Cloisite 25A) at various clay concentration (1, 3, 5, 20 wt.%) were introduced to the 

Micro-moulding machine and processed at fixed temperature and different injection 
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speed to produce 42 samples. The tensile tests have been applied on these samples by 

using Bose machine (see section 3.5.7). 

3.5 Characterisation of PET nanocomposites 

Various characterisation tests were applied to the output of the extrusion processed 

samples (e.g. amorphous/crystallised PETNC and PETNC films). In this section all 

equipment used in this project will be covered. The results from these analyses are 

presented and discussed in chapter 8. 

3.5.1 Density 

An AccuPycTM 1330 Pycnometer (see figure 3.11) was used to measure the density of 

the raw materials (vPET pellets, nanoclay powder). 

I. Test procedure 

Calibrating the equipment prior to conducting the test is an essential step. The 

equipment measures density according to Boyle‘s law (see equation 3.1) [Gooch 

(2007)]:  

P1 V1 = P2 V2                                           Equation 3.1 

where P is the pressure and V is the volume. The equipment has a cup, 75% of which is 

filled with the weighed material and then inserted into the test chamber. The equipment 

uses the gas (Helium) displacement technique under 1.5 bar pressure. The equipment 

shows five readings of the density prior to showing the average density. 
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Figure3.11 AccuPyc
TM

 1330 Pycnometer 

 

II. Density results 

The average density results of the raw materials are listed in Table 3.6 and the detailed 

density results are listed in Table x3-1-x3.4 (appendix x3). 

 

 

 

 

 

Table 3.6 Density of the raw materials 

 

3.5.2  ThermoGravimetric Analysis (TGA) [Hatakeyama (1998), Gabbott (2007) 

and Menczel and Prime (2009)] 

Thermogravimetric analysis (TGA) is an analytical technique used to determine changes 

in the weight of material as a function of temperature under a controlled atmosphere. 

The following diagram (figure 3.12) shows a schematic of the TGA apparatus and 

figure 3.13 shows the TGA which was used. 

 

Samples Density (g/cm
3
) 

vPET (crystallised pellets) 1.4 

Somasif MAE 1.55 

Somasif MTE 1.73 

Cloisite 25A 1.76 
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Figure 3.12 Simple diagram for TGA 

 

 

Figure 3.13 TGA TA instruments Q5000. 

 

A Q5000 TGA from TA instruments was used to analyse the clays. Temperatures up to 

500°C under a nitrogen atmosphere with a heating rate of 10°C/min were applied to 

each sample to study the thermal stability of different types of nanoclays. 

3.5.3 Differential Scanning Calorimetry (DSC). [Gooch (2007), Gabbott (2007) and 

Menczel and Prime (2009)] 

Differential Scanning Calorimetry (DSC) was used to study the thermal properties of 

un-filled PET, extruder un-filled PET (amorphous pellets) and the amorphous PET 

nanocomposite pellets (PET/MTE, PET/MAE and PET/25A) at various loading 
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concentrations. The glass transition temperature, crystallisation temperature, melting 

temperature and crystallinity values were obtained from the DSC thermal scan. A TA 

instruments Q2000 DSC (see figure 3.14) was used in this study and the analysed 

results are presented in chapter 5. 

 

Figure 3.14 DSC TA Instruments Q2000. 

 

Differential Scanning Calorimetry (DSC) is a technique in which the difference in the 

heat flow into a substance and into a reference material is measured as a function of 

temperature while the substance and reference materials are subjected to a controlled 

temperature program. DSC is the simplest and most widely used thermal analysis 

technique for polymers as it enables the study of all major events (transitions) of interest 

in a polymeric system. The magnitudes of these transitions can be determined as well as 

the temperatures at which they occur. For instance, the glass transition of a PET 

material is a region where the material changes from a rigid glassy to softer amorphous 

form, and this is seen in DSC as a step change in the heat capacity baseline, usually at 

low temperature.   

Heat Flux DSC measures a defined exchange of heat with the environment, which takes 

place via a thermal resistance. The measurement signal is the temperature difference, 

which describes the intensity of exchange and is proportional to the heat flow rate. The 
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principal type of heat flux DSC is the disk-type measuring system with solid sample 

support. 

 

Figure 3.15 Schematic of Heat Flux DSC 

This measuring system is based on a design in which the main heat flow from furnace to 

sample passes symmetrically through a disk of good thermal conductivity. The samples 

are positioned on this disk symmetrically to the centre. The temperature sensors are 

integrated into the disk or fixed on the surface (see figure 3.15). 

When the furnace is heated, heat flows through the sample disk. Heat flows at 

proportional rates into the sample and reference container when the arrangement is 

ideally symmetrical. The difference between the electric potentials (or T) will be 

recorded as zero. Should an endothermic thermal event (H, which is the amount of 

heat released or observed when a positive chemical reaction occurs, such as melting) 

occur in the sample, the temperature of the sample, Ts, would lag behind the 

temperature of the reference, Tr, which follows the heating programme. However, if an 

exothermic process (H negative) occurs in the sample, the response will be in the 

opposite direction of the endothermic events. 

The output of a DSC is a plot of heat flux (rate) versus temperature at a specified 

temperature ramp rate. The heat flux can be converted to CP by dividing by the constant 

rate of temperature change. 
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Once the main features of the heat flux DSC curve have been established, attention can 

be directed to the correlation of the endothermic or exothermic peaks with thermal 

events in the sample.  

DSC procedure 

1. Weigh the pan and the lid for the reference and for the sample 

2. Weigh sample of PET sheet in aluminium sample pan 

3. Place sample on platform of DSC cell and empty sample pan on rear platform 

(reference pan). In the DSC Q2000 case, all samples can be loaded at the same 

time 

4. Heat sample in DSC cell from 35 to 300°C with heating rate 10°C/min 

5. Cool sample from 300 to 35°C with cooling rate 10°C/min 

6. Heat sample again to 300 with heating rate 10°C/min 

7. Stop the run 

3.5.4 Intrinsic viscosity (I.V.) 

The intrinsic viscosity of PET is measured in decilitres per gram (dl/g). The I.V. is 

determined by dissolving a small sample of PET or PETNC in an appropriate solvent 

[40-50mg. of PET and 10ml of solvent (60/40 phenol/1,1,2,2-tetrachloroethane)] then 

measuring the time required for 100ml of the solution to flow through a capillary 

viscometer (see figure 3.16) which is placed in a constant temperature water bath.  
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Figure 3.16 Schematic of capillary viscometer 

Under the same conditions, the flow time is compared to that for a standard solvent. 

Time and concentration are used to calculate the I.V. (ASTM D4603). 

3.5.5 Rheometry 

Cogswell (1998) defined rheometry as the art of making useful measurements of the 

deformation and flow properties of materials. A rheometer is a test instrument used to 

study these rheological properties of polymer melts. It is appropriate to define rheology 

before talking about the types of the rheometers. 

Mezger (2006) explained that the term ―rheology‖ came from the Greek word ―rheos‖ 

which means ―flowing‖. Thus, rheology means ―flow science‖. Dealy and Wissbrun 

(1990) defined rheology as the science that deals with the way materials deform when 

forces are applied to them. There are different branches of rheology classified according 

to the type of material used. Polymer rheology deals with polymeric materials, for 

biological fluids there is biorheology, and also there is lubricant rheology and 

suspension rheology to serve different materials. Due to the high demands on polymeric 

materials, polymer rheology has received the most attention among all these branches. 

Dealy and Wissbrun (1990) classified rheometers into two main types as follows: 
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1. Capillary rheometers 

2. Rotational rheometers, which can be divided into: 

a. Concentric cylinder rotary and rotating cylinder viscometers 

b. Cone-and-plate (CP) rheometers 

c. Parallel-plate (PP) rheometers 

1.  Capillary rheometer 

Whelan (1994) defined the capillary rheometer as a test instrument used to study the 

rheological properties of polymer melts by forcing the polymer melts through a 

capillary die. It is one of the simplest and widely available types of melt rheometer. 

 

Figure 3.17 Rosand RH10 (A), front view (B) and rods and reservoirs (C) 

A capillary rheometer (Rosand RH10) was used in this project (see figure 3.17) and the 

test procedure is introduced in chapter 4 (see section 4.2.1). 
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The capillary rheometer provides data in the shear rate range used in (low speed) 

injection moulding and extrusion. A capillary rheometer consists of a heated reservoir 

(barrel) and a piston that drives molten material through a calibrated die, as figure 3.18 

shows. 

 

Figure 3.18 The elements of the capillary rheometer. 

 

In addition to the most widely used single-bore configuration, there are also twin bore 

(dual barrel) instruments which can perform two simultaneous tests under different 

conditions. Cogswell (1998) recommended the use of one long die and an orifice (L/R ≈ 

0) as a shortcut method for determining reasonably accurate values for wall shear stress 

( w ). 

The capillary rheometer is used to calculate viscosity, so it is necessary to know the wall 

shear stress and wall shear rate. Dealy and Wissbrun (1990) calculated the true viscosity 

by equation 3.2: 
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𝜼 =  
𝝉𝝎

𝜸 
        Equation 3.2 

where η is the true viscosity, w  is the true shear stress at the wall and 𝛾  is the shear 

rate at the wall. 

The shear stress was obtained using the Bagley correction [Tadmor and Gogos (2006)] 

(equation 3.3): 

𝝉𝝎 =  
△𝑷

𝟐 (
𝑳

𝑹
+𝒆)

        Equation 3.3 

where P  is the pressure drop, L is the die length, R is the die radius, and e is the 

Bagley end correction [Whelan (1994) ] which is defined as a negative of the value of 

L/R at various values of the flow (Q) using a variety of capillaries with different 

lengths. Bagley plotted ∆P against L/R and drew a straight line through the points as 

shown in Figure 3. 19. 

 

Figure 3.19 Bagley correction curve. 

Bagley suggested this scheme as being able to infer viscosity from the simpler 

procedure of measuring the driving pressure for various flow rates. 

The shear rate was obtained and corrected using the Rabinowitch correction (equation 

3.4) [Whelan (1994) ]: 
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   𝜸 𝝎 =  𝜸 𝒂𝒑𝒑(
𝟑

𝟒
+  

𝟏

𝟒
 
𝒅 𝐥𝐧𝑸

𝟒 𝒅 𝐥𝐧 𝝉𝝎
)           Equation 3.4 

where Q is the volumetric output rate and 𝜸 𝒂𝒑𝒑 is the apparent shear rate, which can be 

obtained from equation 3.5: 

𝜸 𝒂𝒑𝒑 =  
𝟒 𝑸

𝝅 𝑹𝟑
        Equation 3.5 

II Oscillatory and rotational rheometer 

Cogswell (1998) reported that the rotational rheometer is operated at comparatively low 

shear rates and can have concentric cylinder rotary and rotating cylinder geometries, a 

Cone-and-plate (CP) rheometer or a Parallel-plate (PP) rheometer. Mezger (2006) and 

other have showed that the rotational tests typically can have two modes, controlled 

shear rate (CSR) and controlled shear stress (CSS). When the material to be investigated 

has no yield point, the CSR method is usually selected. The test method with controlled 

shear stress is the classic method to determine the yield point of the sample. One widely 

used rheometer is the MCR rheometer from Anton Paar GmBH, Austria. An MCR 501 

(parallel-plate) was used in this project (see figure 3.20) and the test procedure is 

presented in chapter 4 (see section 4.2.1). 

 

Figure 3.20 The Physica MCR rheometer 
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There are two modes of operation of the instrument, oscillation and continuous rotation 

modes. For plastic materials, the oscillation at a narrow angle is most often used, and 

this can provide information about molecular weight, polymer relaxation, molecular 

weight distribution and melt viscosity. The output data from this instrument illustrates 

the relationship between oscillation frequency in radians per second and storage and 

loss modulii for the sample under test. 

The material will gain energy from the rotation motion as long as this motion does not 

disrupt the structure. This energy is stored in the sample and is called the storage 

modulus (G'). A structured sample in a rotational shear will create motion between the 

molecules of the sample. This motion will cause energy to be lost as viscous heating and 

this is called the loss modulus (G"). The results are usually reported in the form of plots 

of storage and loss modulus or the complex viscosity (G*), as a function of frequency. 

Figure 3.21 shows the typical curve for the storage and loss modulus. 

 

Figure 3.21 The modulus curve. 

Loss angle (δ) is associated with the degree of viscoelasticity of the sample. A low 

value of δ indicates a higher degree of viscoelasticity. Dealy and Saucier (2000) 

calculated the storage, loss and complex modulus from equations 3.6, 3.9 and 3.10: 

𝑮′ =  
𝟐.𝑴.𝒉.𝐜𝐨𝐬(𝜹)

𝝅.𝑹𝟒.𝝓𝟎
       Equation 3.6 
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𝑮′′ =  
𝟐.𝑴.𝒉.𝐬𝐢𝐧(𝜹)

𝝅.𝑹𝟒.𝝓𝟎
        Equation 3.7 

  𝑮∗ =  
𝟐.𝑴.𝒉

𝝅.𝑹𝟒.𝑸𝟎.𝝎
      Equation 3.8 

where M is the torque amplitude, 𝑸𝟎 is the angular amplitude for oscillatory shear, R is 

the disk radius, h is the gap between the disks and 𝜔 is the angular frequency. 

A. Concentric cylinder rotary and rotating cylinder viscometers 

Cheremisinoff (1993) reported that cylinder viscometers are most often applied to 

solution viscosity measurements and are usually limited to shear rates <100s
-1

. Figure 

3.22 shows the basic elements of concentric cylinder rotary rheometry. 

            

Figure 3.22 The basic elements of the concentric cylinder rotary rheometer 

The unit operates by applying shear to a fluid located in the annulus between the 

concentric cylinders. The viscosity can be obtained via this instrument by equation 3.9: 

    𝜼 =  
 𝑹𝒆

𝟐− 𝑹𝒊
𝟐 

𝟒.𝝅 .𝑹𝒆
𝟐.𝑹𝒊

𝟐

𝑴

𝝎
     Equation 3.9 
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where Re is the radius of outer cylinder, Ri is the radius of inner cylinder and L is the 

length of the inner cylinder. 

B. Cone-and-plate (CP) rheometer 

Dealy and Wissbrun (1990) reported that the cone-and-plate rheometer is one of the 

most popular rheometers for studying the viscoelastic properties of molten polymers. 

The cone-and-plate measuring system consists of a circular disk and a small angle cone 

as figure 3.23 shows. 

 

Figure 3.23 The cone-and-plate rheometer. 

The sample is inserted between the disk and the cone and the small angle cone is rotated 

while the disk is held stationary. The cone-and-plate instrument is useful for finding the 

relationship between angular velocity and torque. 

The viscosity can be calculated from equation 3.10: 

𝜼 =  
𝟑.𝑴.𝜶

𝟐.𝝅.𝑹𝟑.𝝎
        Equation 3.10 

where 𝛼 is the cone angle and R is the radius. 
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C. Parallel-plate (PP) rheometer 

The Physica MCR 501 rheometer (see figure 3.24) was used as the parallel plate 

rheometer. It consists of two plates as figure 3.25 shows. Mezger (2006) explained that 

when performing oscillatory tests, a large gap dimension H may not be so critical for 

small angle oscillatory strain. 

 

Figure 3.24 The Physica MCR 501 rheometer. Front view for the equipment (A), the equipment 

located inside the cabinet (B) and the parallel plates (C) 

 

 

Figure 3.25 The parallel-plate rheometer. 
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The viscosity also can be calculated from equation 3.11: 

𝜼 =  
𝟐.𝑴.𝑯

𝝅.𝑹𝟒.𝝎
        Equation 3.11 

There are many reasons for the popularity of parallel-plates and cone-plate geometrics: 

o The small sample quantity needed 

o Easy loading and cleaning of the sample 

3.5.6 Permeability test 

A Mocon Ox-Tran (2/21 MH) permeability tester was used to test the permeability of 

the produced films at 23°C and relative humidity (RH) 50%. The test is similar to that 

used for ASTM F-1927-films. OTR (Oxygen Transmission Rate) is a measurement of 

the quantity of oxygen gas that permeates through a film over a given period under 

specific conditions of RH and temperature [Brody and Marsh (1997)]. 

The film sample was clamped into the diffusion cell and acted as the separating 

membrane. Moist nitrogen was used in the inside chamber (see figure 3.26) to purge 

residual oxygen. Pure moist oxygen was introduced into the outside chamber. The 

oxygen diffused through the film to the inside chamber and was carried through the 

nitrogen to the detector. The difference in pressure created a driving force for the 

oxygen to pass through the film [Mocon (2010)]. This test has been conduct at SABIC 

India laboratories. 

 

Figure 3.26 Cross section of OTR test cell. 
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3.5.7 Tensile tests 

The tensile tests were carried out using Instron 5564 and Bose ElectroForce 3220 test 

machines at room temperature. The tensile test for the samples produced from the 

Micro-moulding machine were carried out using the Bose ElectroForce 3220 (see figure 

3.27) with constant cross-head speed of 3mm/min while the samples obtained from the 

cast films were tested using an Instron 5564 (see figure 3.28) with constant cross-head 

speeds of 5mm/min and 50mm/min.  

 

Figure 3.27 Bose ElectroForce 3220 

In the Instron 5564, 11 amorphous film samples (un-filled PET and PET 

nanocomposites) were tested and each test was repeated at least six times at each speed. 

For the micromoulded samples, 42 amorphous tensile bar specimens were tested. 

The amorphous film samples obtained from the cast film process (see section 3.4.2) 

were cut manually by a hydraulic press machine to produce dumb-bell shapes (ASTM 

D638 type IV 1998). Their dimensions are illustrated in figure 3.28. 
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The output data from the machine‘s software included the load (Newtons, F) versus the 

displacement (Δl mm) of the specimens. The cross sectional area (A) of the specimen 

was considered to be a constant value during the test and was calculated by measuring 

the width (w) and thickness (t) of each specimen.  

From these data, stress-strain curves can be plotted where nominal stress (MPa) is 

calculated from the equation σ = F/A and strain is calculated from the equation ε = Δl/l. 

The tensile modulus (Young‘s modulus, MPa) was extracted from all stress-strain 

curves and analysed in order to investigate the effect of nanoclays on the PET films 

during the cold drawing. The output results are presented and discussed in chapter 6. 

 

Figure 3.28 Instron 5564 (A), sample dimensions and schematic of the clamp (C) 
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II Simultaneous equal biaxial stretch test 

 

Simultaneous equal biaxial stretching tests were carried out by using a biaxial testing 

machine housed at the University of Bradford (figure 3.29). Square specimens (61 x 61 

mm) were cut from the cast film samples. Each specimen was clamped into the machine 

by six grips from each side then heated at 90°C for 60 seconds. An air blower was used 

to blow hot air below and above the specimen to give the required heat temperature. 

After 60 second, the heating is stopped and the specimen stretched to a stretch ratio of 

2:1. 

 

Figure 3.29 Biaxial grips of stretching machine 

 

DSC was used to investigate the effect of biaxial stretch on the thermal properties of un-

filled PET and PETNC films. 

 

3.5.8 Transmission Electron Microscopy (TEM) 

One of the methods used to characterise the PET nanocomposite films was 

Transmission Electron Microscopy (TEM). While the wavelength of visible light is 

limited, electrons are used in this microscopy technique instead of light to get a 

resolution superior to that for visible light microscopy can present. The TEM 
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microscope‘s (see figure 3.30) emission source (electron gun) emits electrons which 

pass through a vacuum column and are focused into a very thin beam by 

electromagnetic lenses. This beam travels through the specimen (a PET nanocomposite 

film in our case). Some of the electrons are scattered then disappear from the beam, 

while some are not scattered, depending on the density of the material. A fluorescent 

screen is located at the bottom of the microscope and the non-scattered electrons hit this 

to produce an image with varying darkness, based on the disparity density of the sample 

matrix. 

 

Figure 3.30 Schematic structure of Transmission Electron Microscopy (TEM) 
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The TEM instrument used in this project is the Tecnai G2 model as shown in figure 

3.31. 

 

Figure 3.31 Transmission Electron Microscopy (TEM) apparatus 

 

The TEM specimen should be very thin so a microtoming method is necessary for 

sample preparation. A diamond blade is used to cut a small piece from the middle core 

of the sample as shown in figure 3.33. A Leica microtome (see figure 3.32) was used to 

prepare the specimens. The output results (images) of this test are presented and 

discussed in chapter 6. 
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Figure 3.32 Leica microtome 

 

Figure 3.33 Schematic of the Leica microtome 

 

3.5.9   X-ray diffraction 

Since the early 20
th

 century x-rays have been used by researchers to explore the 

structure of matter. Bruker D8 advance model (figure 3.34) was used in this project to 

measure the basal spacing for the nanoclay powder. The equipment parameters were as 

follows: wavelength of X-rays 0.154nm Cu source, voltage 40 kV, 175 and filament 

emission 40 mA. Samples were scanned from 2 to 10° (2θ) using a 0.01° step width and 
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a 1s time count. The receiving slit was 1° and the scatter slit was 0.2°. The output curve 

from measuring the nanoclay powders using the Bruker D8 is shown in appendix x3 

(figure x3.3.1). 

 

Figure 3.34 Bruker D8 advance model 
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Chapter Four 

4. Rheological behaviour of polyethylene terephthalate nanocomposites 

(PETNC) 

The main objective of this chapter is to study the rheological properties of unfilled PET 

and PETNC over a wide range of shear rates, as well as their behaviour on adding 

different clays with various concentrations. The chapter is divided into three sections: 

the first covers a literature view on the rheological behaviour of polymer 

nanocomposites, the second describes the rheological measurements and intrinsic 

viscosity (I.V.) test procedures, and the third, covers the current rheological and I.V. 

results and analysis.  

4.1  Literature review 

There are two main reasons to study the rheological properties of polymer 

nanocomposites (PNCs). First, since nanofillers have different particle sizes, structures 

and shapes, different rheological properties may be expected, which may provide a 

means to assess the nanofiller dispersion state. Second, the rheological properties of 

PNCs are indicative of the behaviour of the polymer melts during downstream 

processing (e.g. extrusion injection moulding) [Pavlidou (2008)]. 

Han (1976) reported that a good and deep understanding of rheological phenomena and 

of the behaviour of polymers leads to excellent polymer processing. Bhattacharya et al. 

(2010) attributed the complications of polymer processing to the fact that polymers 

exhibit viscoelasticity during melt processing. 
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The main reason for studying the rheology of polymers is that rheological science 

provides a clear understanding of the effects of molecular weight of polymers under 

different flow conditions, and this allows optimised control of melt processing and the 

creation of a good final product. 

Wang and Xie et al. (2006) studied the rheology of Polycarbonate (PC)/CaCO3 

nanocomposites by using a capillary rheometer. The author observed that the viscosity 

of nanocomposites reduces with an increase in CaCO3 content and this viscosity 

reduction can be attributed to CaCO3 enhancing the chain mobility of the PC in the 

melt. Giannelis et al. (1998) also reported that the nanoparticles do not chemically 

change the structure of the polymer matrix, but they reduce polymer viscosity in the 

melt by enhancing chain mobility. 

Cho and Paul (2001) studied the rheological properties of nylon-6/organoclay 

nanocomposites at high shear rates. The authors showed that nylon 6 NC viscosity 

decreases with increasing nanoclay content over a similar range of shear rates. The 

authors assumed two mechanisms caused this reduction: first, the slip between the clay 

platelets and the polymer matrix, and second, degradation of the polymer which can 

lead to this viscosity reduction. 

Yao et al. (2009) identified three types of interaction between PET chains and silica. 

Firstly a branched structure occurs between silica and PET forming a primary 

entanglement. Secondly a lightly crosslinking structure between silica and PET chains. 

Thirdly a secondary entanglement occurs in the free PET chains. The authors proposed 

a collapse in the primary and secondary entanglements at high shear rates which may 

lead to weak connections between the polymer chains themselves or between polymer 
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chains and the silica. These weak connections were counted as one of the main reasons 

for viscosity reduction. 

Potschke et al. (2002) investigated the rheological behaviour of PC/Multiwall nanotube 

(MWNT) nanocomposites. The experiments were carried out in an oscillatory 

rheometer (ARES, parallel plate, 260°C). Masterbatches of PC/CNT (15%) were 

prepared and then diluted in neat PC to produce PC/CNT nanocomposites of 0.5 to 5 

wt.% content. The authors observed that increasing the aspect ratio of the filler led to 

increases in the melt viscosity of polymer nanocomposites. The authors reported that 

using carbon nanotubes as an additive increased the melt viscosity of the polymer 

nanocomposites more than for carbon nanofibres or other nanofillers, due to the high 

aspect ratio of the nanotube. Their results show that the complex viscosity of neat PC 

does not exhibit any shear rate dependency, while on increasing the shear rate the 

master batch (PC/CNT (15 wt.%)) exhibits strong shear thinning behaviour. This study 

also shows that on adding more CNT (2, 5 wt.%) the composite tends to exhibit shear 

thinning behaviour and an increase in shear rate dependency. PC/CNT at 0.5 and 1wt.% 

loading did not show any significant change in complex viscosity with increasing shear 

rate. The authors also investigated storage (G') and loss (G") modulus behaviour with 

changing shear rate for PC/CNT nanocomposites. They found that G' and G" increased 

with increases in filler content as well as with increases in shear rate. The G' and G" 

behaviour for the master batch exhibited an independence of shear rate and this 

phenomenon was attributed to the increase in filler-filler interaction on increasing the 

filler content (e.g. 15wt.% CNT). The Cole-Cole plot (G' vs. G") for PC/CNT 

nanocomposites shows that the melt elasticity increased after adding 5 wt.% and higher 

of CNT. This plot is a useful way to show the differences initiated in the polymer 

nanocomposite structure due to adding more filler content to the matrix. 
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In 1987, Nakayama and Harrell used Cole-Cole plots to investigate the effect of 

branching and broadening of the distribution of polyethylene molecular weight on the 

microstructure [Potschke (2002)]. They found that G' (for a given value of G") 

increased with increases in the degree of long chain branching. Also, the viscoelastic 

behaviour of poly(ε-caprolacton) (PCL)/attapuligite (AT) nanocomposites was studied 

by Liu and Chen (2008). The authors used Cole-Cole plots to investigate the structural 

differences between the PCL matrix and AT systems at fixed temperatures. They found 

that the slope of the storage modulus (G') versus the loss modulus (G") decreased on 

increasing the filler (AT) content. Furthermore, at a given G", increasing the AT content 

led to increases in G'. The interaction between the polymer matrix and the filler can be 

observed from the changes in the slopes of the curves of G' vs. G", and this change was 

magnified on adding further AT. 

Wu et al. (2007) investigated the relationship between the crystallisation temperature 

and the clay dispersion of Polybutylene terephthalate (PBT)/Montmorillonite (MMT) 

nanocomposites. They found that a sample isothermally crystallised at a high 

temperature exhibited high dispersion. They also observed that the storage modulus 

increased on increasing the crystallisation temperature (Tc). The authors reported that 

the value of G' for the sample crystallised isothermally at 210°C was higher than the 

value of G" at a lower shear rate, indicating a solid-like rheological phenomenon. This 

phenomenon was attributed to the fact that network percolation had occurred. The TEM 

images showed that the clay had delaminated and became distributed within the matrix 

for the sample crystallised isothermally at 210°C, compared with a sample crystallised 

under normal processing. 



86 
 

Shen et al. (2005) explored the rheological behaviour of polyamide-attapulgite fibre 

(modified) nanocomposites. The authors observed that the composites‘ rheology 

became shear rate dependent at low shear rates as well as when the clay content 

increased. They found that at high frequencies the samples take on a liquid-like 

behaviour, and they attributed this phenomenon to the fact that the clay particles could 

be oriented in the flow direction. 

Ammala et al. (2008) investigated the effect of two different types of clay (Cloisite 10A 

and Somasif MEE) on a PET matrix. The clays were modified to improve their affinity 

prior to mixing with PET. The samples were characterised by many techniques in order 

to explore dispersion level, thermal stability and rheological behaviour. In the 

rheological terms, the neat PET exhibited Newtonian behaviour in the relationship 

between the steady shear viscosity and shear rate. The PET nanocomposites exhibited 

higher shear viscosities and tended to take on shear thinning behaviour. The authors 

attributed this to the fact that the clay plates hinder the free rotation of PET chains (a 

percolated network structure). The authors took the higher shear viscosity for modified 

clay as evidence that excellent clay dispersion and exfoliation occurred, and this 

suggestion was supported by TEM images. The results and observations found by 

Ammala et al. (2008) are in agreement with Anoop et al. (2007), who studied the 

rheological behaviour of PET/single-walled carbon nanotube (SWNT) nanocomposites. 

The nanofillers were compounded with PET via a melt extrusion method at different 

concentrations. The authors found that the storage and loss moduli and complex 

viscosity increased on increasing the SWNT loading. They observed strong shear 

thinning behaviour for PET/SWNT (3%) at low shear rate and attributed this to the fact 

that the carbon nanotubes act as effective entanglements during the melt state. 
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Durmus et al. (2007) studied the effects of compatibilizer polarity and structure on the 

physical properties and rheological behaviour of linear low density polyethylene 

(LLDPE)/clay nanocomposites. The authors state that the storage modulus (G') is a 

rheological factor sensitive to any change in polymer nanocomposite structure, more 

than the loss modulus (G"). They found that the storage modulus becomes independent 

of frequency in the low shear rate region. This is indicative of pseudo-solid-like 

behaviour, or ‗yielding solid-like behaviour‘. This behaviour has been referred to as a 

strong interaction between the LLDPE matrix and clay layers. The authors observed that 

increasing the compatibilizer polarity led to a high storage modulus, indicative of good 

dispersion. 

Drozdov et al. (2008) studied the pseudo-solid-like behaviour of low density 

polyethylene (LDPE)/MMT nanocomposites, which they observed in low shear rate 

oscillatory tests. The storage and loss moduli started to lose their frequency dependency 

on increasing the nanoclay loading. The increases in G' and G" led to increases in the 

complex viscosity at low frequencies. The authors proposed three reasons for this 

phenomenon: first, the frictional interactions between the silicate layers, second, the 

stock of polymer chains within the layers, and third, the clay platelets stacking onto one 

another, which may lead to the formation of a percolated network. 

Kracalik and Kovarova et al. (2007) studied the effect of additional organoclays 

(Cloisite 25A, 10A and 30B) on the rheological properties of recycled PET (rPET). The 

complex viscosities of all rPET nanocomposites exhibited shear thinning behaviour. 

This phenomenon can be attributed to the clay particles which tend to orient in the flow 

at high shear rates, while the network structures are disrupted at low shear rates. The 

authors observed that Cloisite 25A showed the best dispersed organoclays in rPET 
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compared with Cloisite 10A and 30B. The rheological results were complemented by 

TEM, WAXD, DSC and TGA techniques. G' and G" results inferred internal changes in 

the structure of rPET nanocomposites. Both moduli increased on increasing the 

organoclay concentration till the moduli exhibited weak frequency dependency. The 

authors attributed this to exfoliation occurring in the organoclays in the polymer matrix.  
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4.2 Experimental process 

4.2.1 Rheological behaviour 

A. Materials 

The rheological properties of crystallised and dried pellets of unfilled polyethylene 

terephthalate (PET) and PET nanocomposites (PETNCs) were studied. Fourteen 

samples were used in this study. Each test was repeated 3 times and showed good 

repeatability. The rheological properties of vPET pellets (as received) and extruded 

vPET (ext. vPET) and PETNCs pellets, produced during the compounding processes 

(see Chapter 3), were studied using capillary and oscillatory rheometers over a wide 

range of shear rates. The details of the samples are listed in Table 4.1. 

Sample (pellets) Description 

vPET PET as received (crystallised) 

Ext. vPET Extruded PET, unfilled (amorphous) 

PET/MAE (4 samples) PET/MAE (1, 3, 5 and 20wt.%), (amorphous) 

PET/MTE (4 samples) PET/MTE  (1, 3, 5 and 20wt.%), (amorphous) 

PET/Cloisite 25A (4 samples) PET/Cloisite 25A (1, 3, 5 and 20wt.%), (amorphous) 

Table 4.1 Description of the samples used in the rheological study 

All amorphous pellets were recrystallised in the vacuum oven for 20 hrs at 150°C (dried 

in the case of vPET) prior to rheological testing. 

B. Procedure and parameters 

The rheological behaviour of all samples was studied using a capillary rheometer and 

oscillatory rheometer; both items are discussed in chapter 3 (see section 3.5.6). The 

capillary rheometer (Rosand-RH10) was used to study the rheological properties of the 
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samples over a ‗high‘ shear rate range (50–5000s
-1

) at 260°C. Furthermore, the 

oscillatory rheometer (Anton Paar  MCR 501) with parallel-plate geometry (25mm 

diameter) was used to measure the complex viscosity, storage modulus and loss 

modulus as a function of shear rate (0.1–100s
-1

). All measurements in the oscillatory 

rheometer were performed at 260°C under an air atmosphere. The gap between the 

plates was 1mm and the strain rate was 0.5%, this having been determined to lie within 

the linear viscoelastic range for all samples through amplitude sweep testing. Prior to 

measurement all samples were placed in the oscillatory and capillary rheometers at the 

measurement temperature for 3 and 8 minutes (respectively) to allow the samples to 

relax and become isothermal throughout. The measurements were carried out in the IRC 

Laboratories at the University of Bradford. 

4.2.2 Intrinsic viscosity 

A. Materials 

The intrinsic viscosity (I.V.) of all samples used in the rheological study was measured 

(Table 4.1). In additional to these samples, the I.V. of the films produced during the cast 

film process (see section 3.4) was measured. Table 4.2 lists the amorphous film 

samples. 

Sample (films) Description 

vPET PET film, unfilled (amorphous) 

Ext. vPET Extruded PET film, unfilled (amorphous) 

PET/MAE (3 samples) PET/MAE films (1, 3, and 5wt.%), (amorphous) 

PET/MTE (3 samples) PET/MTE films (1, 3, and 5wt.%), (amorphous) 

PET/Cloisite 25A (3 samples) PET/Cloisite 25A films (1, 3, and 5wt.%), (amorphous) 

Table 4.2 Description of the film samples used in intrinsic viscosity (I.V.) analysis 
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B. Procedure 

The intrinsic viscosity tests were performed in SABIC Laboratories at Riyadh, Saudi 

Arabia. The procedure was covered in section 3.5.4. 
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4.3 Results and discussion: 

In this section, the results of the rheological properties virgin PET (vPET), extruded 

virgin PET (ext. vPET) and PET nanocomposites (PETNCs) for all clays (Somasif 

MAE, Somasif MTE and Cloisite 25A) at various concentration (1, 3, 5 and 20  wt.%) 

are presented and discussed. As mentioned in previously in section 4.2, all samples were 

dried (in vPET case) or re-crystallised (in amorphous ext. vPET and PETNC cases) 

prior to the tests. The importance of this step will be explained in this section. 

Furthermore the question why the oscillatory test procedure started from high frequency 

to low and not vice versa was answered. This section is divided into five subsections as 

follows:  

I. The rheological behaviour of the samples at high shear rate (50s
-1

 to 5000s
-1

). 

II. The rheological behaviour at low shear rate (0.1s
-1

 to 100s
-1

).  

III. Investigation into the Cox-Merz rule for PETNCs over wide shear rate range. 

IV. The shear viscosity behaviour at fixed shear rate and varying clay concentration. 

V. The intrinsic viscosity (I.V.) of PETNCs. 

4.3.1 Capillary rheometer (High shear rates): 

The importance of drying or re-crystallising samples is presented in section A. Section 

B shows the effect of adding clay to the PET matrix on the rheological phenomena. 

Section C shows the rheological behaviour of the samples at the same concentration 

levels for the various clays. 
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A.  Shear rate (1/s) vs. shear viscosity (Pa.s) for virgin PET, extruded vPET (re-

crystallised and amorphous). 

 

Figure 4. 1 Shear rate vs. shear viscosity for neat PET (vPET) and extruded PET (re-crystallised 

and amorphous) 

 

Figure 4.1 shows the viscosity of amorphous PET over high shear rates and compares it 

with that for crystallised PET. The purpose of the experiment was to prove the 

importance of re-crystallising amorphous pellets prior to investigation of the rheological 

properties of PET. This result also shows the essential requirement of re-crystallising 

the amorphous PETNC pellets prior to any downstream melt processing (e.g. extrusion 

or injection). Applying high shear rate (over 200s
-1

) cause a huge reduction in the 

viscosity of amorphous pellets material. 
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B. Shear rate (1/s) vs. shear viscosity (Pa.s) for all PET nanocomposites at different 

clay loadings: 

At high shear rates, figures 4.3 - 4.5 show the rheological behaviour of PETNC for each 

nanoclay (MTE, MAE and Cloisite 25A) with different weight loading of clays (1, 3, 5 

and 20 wt. %). It is clear that the absolute value of the melt viscosity of PETNC is 

significantly lower than for un-filled PET, and the extent of this reduction increases 

with adding more nano-filler at a given shear rate. These figures confirm of shear 

thinning behaviour (i. e. pseudoplastic) and illustrate the dependence of the shear 

viscosity for the un-filled PET and PETNC on the shear rate. Generally speaking, shear 

thinning behaviour can be explained by two mechanisms which can occur 

simultaneously. The first mechanism proposed is that some polymer has entangled and 

few oriented molecular chain at rest. When applying high shear rates, the level of 

entanglements is reduced and the molecular chains tend to orient with the flow 

direction. The other mechanism which may cause pseudoplastic behaviour is caused by 

the presence of the nanoparticles. The nanoparticles align with the flow direction at high 

shear rate. The combined two mechanisms or either one of them in isolation reduce the 

viscosity of the polymer matrix [Muksing et al. (2008)]. 

The status of the PET chains, the nanoclay plate to plate variation and the interactions 

between the PET chains and the nanoclay prior to and during melt processing are 

illustrated in figure 4.2. 
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Figure 4.2 Sketch map exhibiting the different types of PET-nanoclay interactions. (a) Interactions 

at rest state. (b) Interaction during flow. 

 

Figure 4.2 includes the two PETNC matrix statuses, at rest (a) and during melt flow (b). 

Five cases have been assumed to occur during both states. Case (1) defines the direct 

bridge between the PET chains and the nanoclay plates (crosslink structure). Cases (2 

and 3) show the primary and secondary entanglements respectively. Case (2) occurs 

between PET chains which have already interacted with the nanoclay plates from both 

ends. Case (3) illustrates the interaction between the free PET chains. Case (4) assumes 

some stacking or connection between the nanoclay plates though this phenomenon is 

not always exhibited in the nanocomposites unless poor dispersion remains. Case (5) 

defines the PET chains when unoriented. Figure 4.2 shows how these cases behave 

during melt flow. Cases 2 and 3 interactions collapse and become weak under high 

shear rates while case 1 shows the interaction between the PET chains and nanoclay 

b 

a 
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plates. For case 4, interactions the plates tend to align in the flow direction and the 

stacked plates tend to diverge. In case 5, interaction the un-oriented chains become 

oriented and less resistant to flow. 

 

 

Figure 4. 3 Shear viscosity variation of PET/MAE nanocomposites at different MAE concentration 

with shear rate. 
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Figure 4. 4 Shear viscosity variations of PET/MTE nanocomposites at different MTE concentration 

with shear rate. 

 

Figure 4. 5 Shear viscosity variations of PET/Cloisite 25A nanocomposites at different Cloisite 25A 

concentration with shear rate. 
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Figures 4.3 - 4.5 illustrate that the viscosity of unfilled PET and PETNC decrease 

monotonically with increasing clay loading and decrease substantially with increasing 

shear rate. While this reduction in the viscosity of most PETNCs is exhibited from the 

onset of the shear rate, figure 4.5, shows that the rheological behaviour of 

PET/Cloisite25A (1 wt.%) shows similar behaviour between unfilled PET (ext. vPET) 

which may be attributed to delays in the particle alignment process. It is also clear in the 

same figure at 20 wt. % loading a delay in the viscosity reduction at the onset of the 

shear rate can also be observed. 

PET/Cloisite 25A (3 wt.%) shows a big reduction in the melt viscosity, to almost the 5 

wt.% values. The size of the reduction may infer that some relatively poor dispersion 

occurred in the Cloisite 25A (3 wt.%) compounding. 

It seems that apparent unusual behaviour of the PET/Cloisite 25A (3 wt.%) samples can 

be attributed to relatively poor dispersion of the nanofiller. The consistent results of 

PET/Cloisite 25A (3 wt.%) seem to suggest good distribution, but not good dispersion. 

Having said that, others analytical results also exhibit similar anomalies. Fornes et al. 

(2001) observed a similar rheological behaviour trend with Nylon 6 NC. Wang and Xie 

et al. (2006) also presented some rheological results in agreement with our own when 

investigating the rheological behaviour of PC/CaCO3.  

C. Shear rate (s
-1

) vs. shear viscosity (Pa.s) for different types of PET 

nanocomposites with the same nanofiller content 

This section presents the differences in the effects of each nanoclay at the same level of 

content. It is clear from figures 4.6 – 4.9 that Somasif MAE clay exhibits the maximum 

reduction in the shear viscosity of PET compared with the other clays used (Somasif 

MTE and Cloisite 25A). This observation may be attributed to either the fast alignment 
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of MAE plates with the flow direction due to the big gap (d-spacing) between the 

platelets compare with other nanoclays used, or to the higher degradation level of 

PETNC in the presence of MAE due to the high surfactant content, or to both causes.  

 

Figure 4.6 Shear viscosity variation of PET NC with different nanofillers (MTE, MAE and Cloisite 

25A) with 1wt.% clay concentration. 
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Figure 4.7 Shear viscosity variation of PET NC with different nanofillers (MTE, MAE and Cloisite 

25A) with 3 wt.% clay concentration. 

 

Figure 4.8 Shear viscosity variation of PET NC with different nanofillers (MTE, MAE and Cloisite 

25A) with 5wt.% clay concentration. 
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Figure 4.9 Shear viscosity variation of PET NC with different nanofillers (MTE, MAE and Cloisite 

25A) with 20 wt.% clay concentration. 
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4.3.2 Oscillatory rheometer (low shear rate) 

 

This section investigates the rheological behaviour of PETNCs at low shear rates. Prior 

to conducting the tests with the oscillatory rheometer, the linear viscoelastic (LVE) 

range should be defined. Amplitude sweep tests were performed at constant frequency 

and variable amplitudes (strains). As shown in figure 4.10, a strain rate of (0.5 wt.%) 

was chosen as the ideal strain rate. In choosing the right strain it is not enough to define 

LVE for unfilled PET, and that is proved by analysing the LVE range of PET/MTE (5 

wt.%) as figure 4.10 shows. Determination of the rheological properties of PETNC 

requires a lower value of strain. 

 

Figure 4.10 Strain amplitude sweep of vPET and PET/MTE (5 wt.%) nanocomposites at 260°C, ω= 

10rad/sec. 
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Figure 4.11 Complex viscosity of vPET tested under shear rates from 0.1 to 100 s
-1

and 100 to 0.1s
-1

. 

 

As mentioned before (see section 4.2), the shear rates for the oscillatory rheometer 

ranged from 0.1–100s
-1

 though in reality the test was run from 100 to 0.1s
-1

. This action 

was taken after studying the residence time of the melt sample over the shear rate range. 

It was found that the melt PET spent longer in the range 0.1–1s
-1

 compared to 1–100s
-1

. 

Spending time in the range from 0.1 upward can lead to more degradation of the 

material. Figure 4.11 shows the viscosity trend of vPET as a function of shear rate going 

from 0.1 to 100s
-1

. It is obvious that the viscosity tends to lose Newtonian behaviour 

and decreases with increases in the shear rate. On other hand, the viscosity of vPET 

under the same shear rate but going from 100 to 0.1s
-1

 exhibits Newtonian behaviour all 

the time. 
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Figure 4.12 complex viscosity vs. shear rate for Ext. vPET (amorphous and re-crystallised). 

Sufficient drying as described before (section 3.3) is an important step prior to any PET 

melt processing to avoid hydrolysis degradation. To assess the importance of the drying 

stage, the rheological properties of dried and un-dried vPET were studied. Figure 4.12 

shows how the absence of a drying step affects the PET viscosity. A big reduction in 

viscosity was observed and this reduction being magnified at lower shear rates (longer 

times). This reduction can be attributed to hydrolysis degradation of the PET matrix due 

to moisture content in the pellets. 

One mistake often made during investigations of the rheological properties of PET is to 

analyse the amorphous PET (e.g. amorphous film or amorphous pellets) in its state. This 

procedure may be valid for other polymers (e.g. PP) but not for PET. Figure 4.12 also 

shows the rheological 104ehavior of amorphous PET compared with 104ehavior104zat 

PET. It is clear that the drying of 104ehavior104zat PET or re-crystallised amorphous 

PET is an essential step that must be taken prior to studying the rheological properties 

of PET. 
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A. Shear rate (s
-1

) vs. complex viscosity (Pa.s) for PET nanocomposites with 

different clay contents 

This section shows the 105ehavior of the complex viscosity of un-filled PET and 

PETNCs in various composites over low shear rates (0.1 – 100s
-1

).  

 

Figure 4.13 Complex viscosity variation of PET/MAE nanocomposites at different MAE 

concentrations with low shear rate. 
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Figure 4.14 Complex viscosity variation of PET/MTE nanocomposites at different MTE 

concentrations with low shear rate. 

 

 

Figure 4.15 Complex viscosity variation of PET/Cloisite 25A nanocomposites at different Cloisite 

25A concentrations with low shear rate. 
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Figures 4.13 – 4.15 show the shear rate dependency of the complex viscosity of 

different nanocomposites at different clay concentrations. The magnitudes of the 

complex viscosity are clearly dependent on the nanoclay concentrations and processing 

shear rate. In terms of PET nanocomposites, the nanoclay leads to increases in complex 

viscosity with increases in nanoclay concentration over 1 wt.%. The vPET, ext. vPET, 

and PET nanocomposites (1 wt.%) and PET/MTE (3 wt.%) exhibit Newtonian 

107ehavior for low shear rate ranges. The complex viscosity for PET/MTE deviated 

from Newtonian 107ehavior and behaved in a shear thinning manner at 5 and 20 wt.% 

loading of nanoclay, while Cloisite 25A and MAE started to deviate at a 3 wt.% 

concentration. For example, at a shear rate of 0.1 s
-1

, PET/Cloisite 25A (20 wt.% 

loading) showed 575 times the complex viscosity of vPET. 

B. Shear rate (s
-1

) vs. complex viscosity (Pa.s) for different types of PET 

nanocomposites with the same nano-filler content 

 

This section includes plots showing the viscosity 107ehavior of PETNC at the same 

content level for various clays over low shear rates. As seen in the previous section, 

PETNC at 1 wt.% does not exhibit any significant change in its polymer viscosity 

matrix compared to un-filled PET (see figure x4.10 in appendix x4). However the 

nanoclay at this low loading (1 wt.%) act nucleation agent to increase the 

107ehavior107zation rate and temperature (see chapter 5). 

Figures 4.16 – 4.18 reveal that the PET nanocomposites exhibit Newtonian 107ehavior 

at low nanoclay content and tend to show shear thinning 107ehavior with increasing 

clay content. A PET/Cloisite 25A nanocomposite was the first to respond to increasing 

the content followed by PET/MAE and lastly PET/MTE nanocomposites. Usually the 

formation of aggregates is responsible for an increase in complex viscosity.  
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Figure 4.16 Complex viscosity variation of PET nanocomposites at the same concentration (3 wt.%) 

with low shear rate. 

 

 

Figure 4.17 Complex viscosity variation of PET nanocomposites at the same concentration (5 wt.%) 

with low shear rate. 
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Figure 4.18 Complex viscosity variation of PET nanocomposites at the same concentration (20 

wt.%) with low shear rate. 

 

These results match the results obtained by Jin et al. (2007). The rheological properties 

of PET/MWCNT (multi-walled carbon nanotube) were studied using oscillatory 

rheometry. It was found that the complex viscosity increased on increasing the 

nanofiller content. Also, at higher content, the shear rate curve showed non-Newtonian 

109ehavior. Reinking and Rufener (2005) reported that the complex viscosity of an 

HDPE/clay nanocomposite increased in a low shear rate range. Also Kim et al. (2008) 

reported that a PET/AM-POSS-1 (aminoisobutyl-polyhedral oligomeric silsequioxane) 

nanocomposite leads to an increase in the complex viscosity with increases in the POSS 

concentration 

C. Storage modulus (Pa) vs. shear rate (s
-1

)  for PET nanocomposites with 

different clay contents 

This section shows the 109ehavior of the storage modulus over low shear rates (0.1-100 

s
-1

). It has been reported that the storage modulus is very sensitive to any change in 
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polymer structure [Durmus et al. (2007)]. Therefore this factor can be plotted against 

shear rate to investigate the internal change in the structure of a PET matrix with adding 

a nanoclay. It is believed that the effect of the nanoclay on the viscous properties of the 

polymer nanocomposites can be defined in terms of the degree of dependence of the 

storage modulus (G‘) on the low shear rates at very low shear rates [Wu et al. (2005)]. It 

is clear in figures 4.19 – 4.21 that the dependency of the storage modulus (G‘) on the 

shear rates at low nanoclay loading (1 wt.%) is similar to that of the vPET, while the 

dependency of G‘ on the shear rate decreased with loadings of 3 wt.% and above.  

Figures 4.19–4.21 show increases in the storage modulus of PETNC especially at the 

lowest shear rates studied. The increase in G‘ means the PETNC matrix has a strong 

tendency to store energy which suggests increases in the composite relaxation time. The 

slopes of log (G‘) vs. log (shear rate) are less than 2 which means that a network 

structure has been formed during the melt processing due to the presence of the clay. 

Usually the non-crosslinked polymer exhibits a value of 2 during the melt process 

[Yoon et al. (2003) and Kim (2009)]. The figures showing the loss modulus (G‖) vs. 

shear rate  are presented in appendix x4 (see figures x4.4 – x4.6). The slopes of log (G‖) 

vs.  (log) shear rate curves are less than unity which is also an indication of the 

formation of a network structure during melt processing. G‘ and G‖ for PETNC show a 

significantly diminished shear rate dependence and this becomes obvious on increasing 

the clay content. When the polymer 110ehavior transfers from fluid-like to solid-like 

110ehavior at a certain filler concentration, the phenomenon is known as the percolation 

threshold [Krishnamoorti (2001) and Cassagnau (2008)]. It seems clear that the 

percolation threshold in figures 4.19 – 4.21 is reached at 3 wt.% loading. 
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Figure 4.19 Storage modulus behaviour for PET/MAE NC at different clay concentrations with low 

shear rate. 

 

Figure 4.20 Storage modulus behaviour for PET/MTE NC at different clay concentrations with low 

shear rate. 
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Figure 4.21 Storage modulus behaviour for PET/Cloisite 25A NC at different clay concentrations 

with low shear rate. 

D. Storage modulus as a function of shear rate for different nano-fillers at certain 

loading concentrations  

 

 

Figure 4.22 Storage modulus behaviour for PETNCs at 3 wt.% loading with low shear rate. 
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As discussed in section C and as figures 4.19 – 4.21 show, the percolation threshold 

started at a clay loading of around 3 wt.%. The percolation threshold decreases with 

increasing exfoliation [Cassagnau (2008)]. Figure 4.22 shows which clays form the 

network structure faster and have an absolute storage modulus value higher than other 

clays at the same concentration loading (3 wt.%). It is clear that PET/MTE shows the 

lowest G‘ value among the PETNCs at the same concentration (3 wt.%) which can be 

attributed to excellent exfoliation in the MTE case. This observation is further assisted 

by the good dispersion for MTE into the PET matrix shown by TEM images (see 6.4.1). 

Similar plots but at 1, 5 and 20 wt.% are presented in figures x4.7-x4.9 in appendix x4. 

 

E. The Cole-Cole plot (G’ vs. G”) for PET/CNT nanocomposites 

 

This section shows the Cole-Cole plots (G‘ vs. G‖) for PET/nanoclay nanocomposites at 

various concentrations. This plot is an effective method to explore the influence of 

adding a nano-filler on the structure of a PET matrix at a fixed temperature. 

Figures 4.23–4.25 show a decrease in the slope of G‘ vs. G‖ on increasing the nanoclay 

content and significantly increasing the storage modulus G‘ at a certain loss modulus 

G‖. The change in the slope of the curves is an indication of increasing the interaction 

between the PET matrix and the nanoclay platelets. For example the slope of the curve 

at content 3wt.% is near unity which implies that the PETNC at this point is 

rheologically heterogeneous and further energy can be dissipated. Furthermore, some 

slopes of the curves at high shear rates are nearer 2 which indicates that the rheological 

back to homogenous system, and this can be attributed to the effect of a high shear rate 

on the network structure, or in other words, the high shear rate induces a collapse in 

some interactions.   
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Figure 4.23 Cole-Cole plot for vPET, ext. vPET and PET/MAE nanocomposites at different clay 

concentrations. 

 

Figure 4.24 Cole-Cole plot for vPET, ext. vPET and PET/MTE nanocomposites at different clay 

concentrations. 
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Figure 4.25 Cole-Cole plot for vPET, ext. vPET and PET/Cloisite 25A nanocomposites at different 

clay concentrations. 

 

F. Storage and loss modulus 115ehavior over low shear rates 

This section shows the plots of the complex shear modulus (G‘ and G‖) versus the shear 

rate. Figures 4.26 – 4.28 illustrate this relationship for all PET nanocomposites at 

various concentrations (3, 5 and 20 wt.%). Since the percolation threshold started at 3 

wt.%, the un-filled PET and PETNC at 1 wt.% are not included in these figures. In 

general, figures 4.26 and 4.27 show that the absolute values of the storage modulus G‘ 

are always lower than those of the loss modulus G‖, indicating that the PET matrix is 

still dominant in determining the viscoelastic properties of PET nanocomposites (fluid-

like 115ehavior). However, figure 4.28 shows that PET/Cloisite 25A (20 wt.%) has an 

absolute value of G‘ that is always higher than that of G‖, which indicates strong solid-

like 115ehavior. In the same figure, this PETNC at 5 wt.% also tends to exhibit solid-

like 115ehavior at very low shear rates, but this changes on increasing the shear rate. 

This phenomenon may be due to the formation of a percolation network.  



116 
 

Some crossover occurs on increasing the shear rate, which can be observed at the higher 

clay loadings when loss modulus G‖ becomes higher than storage modulus G‘, resulting 

in a change from solid-like 116ehavior to liquid-like 116ehavior. This phenomenon can 

be attributed to the orientation of the nanoclay plates in the flow direction. 

These results are in agreement with results presented by other researchers, such as Wu 

et al. (2005) and Tang et al. (2011). 

 

Figure 4.26 Storage and loss modulus 116ehavior on increasing the shear rate for PET/MAE 

nanocomposites. 
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Figure 4.27 Storage and loss modulus 117ehavior on increasing the shear rate for PET/MTE 

nanocomposites. 

 

Figure 4.28 Storage and loss modulus 117ehavior on increasing the shear rate for PET/Cloisite 25A 

nanocomposites. 
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G. The relaxation time (λ) of PET nanocomposites at various nanoclay 

concentrations  

Another important rheological property is the relaxation time of the polymeric material. 

The relaxation time (λ) of the polymer can be calculated from the following equation 

(Equation 4.1) [Chae and Kim (2007)]: 

𝝀 =  
𝐆′

(𝜼 .  𝜸 𝟐)
     Equation 4.1 

where η is the complex viscosity, 𝑮′ is the storage modulus and 𝜸  is the shear rate.  

Chae and Kim (2007) studied the rheological and thermal properties of PET/ferrite 

nanocomposites. The authors reported that the relaxation time of PET nanocomposites 

increased on increasing the ferrite content at very low shear rates, even with high ferrite 

content. They attributed this to the reduction in the polymer chain mobility at very low 

shear rates. 

When the storage modulus G‘ of the polymer nanocomposites is higher than that for 

pure polymer this indicates the polymer NC matrix has big tendency to store energy 

rather than lose it as compared to the pure polymer. This behaviour tips about a 

possibility increase in relaxation time [Bhattacharya et al. (2010)].  

Ray et al. (2005) studied the rheological behaviour of Poly [(butylenes succinate)-co-

adipate] (PBSA)/Cloisite 30B. They found that the PBSANC (6 and 9 wt.%) tended to 

have a long relaxation time which suggests pseudo-solid-like behaviour. Krishnamoorti 

and Yurekli (2001) observed solid-like behaviour when the relaxation time was over 

1000s and the filler content was greater than 6.7 wt.%. The authors attributed this 

phenomenon to the anisotropic nature of the silica layer which tends to form a 

percolation network at very low shear rates. 
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As figures 4.29 – 4.31 show, the relaxation time increased with decreasing shear rate, 

and this can be attributed to the reduction in PET chain mobility at low shear rates. The 

physical interaction between the PET chains and nanoclay platelets can be broken with 

increases in the shear rate, which can lead to shorter relaxation times. 

While the relaxation time of PET/(MTE or MAE) at 20 wt.% is lower than that for 

PETNC at 5 wt.% at the lowest shear rate (0.1s
-1

), as figures 4.29 and 4.30 show, the 

relaxation time of PET/Cloisite 25A at the same concentration and shear rate remain 

constant (see figure 4.31). This phenomenon can define the phase of the PETNC during 

the rheology test and can be correlated with the 119ehavior of G‘ and G‖ over low shear 

rates, as discussed in the previous section. Focusing on figures 4.29 and 4.26 (from the 

previous section), at a certain shear rate (0.1 s
-1

) it is clear from figure 4.29 that the 

relaxation time of PET/MAE (5 wt.%) is higher than the relaxation time of PET/MAE 

(20 wt.%), and it is obvious for the same points in figure 4.26 that G‘ is higher than G‖ 

for PET/MAE (5 wt.%) and lower than G‖ for PET/MAE (20 wt.%). This indicates 

solid-like 119ehavior of the material at a loading of 5 wt.%, while the PET/MAE (at 

shear rate 0.1s
-1

) tends to exhibit fluid-like 119ehavior at a loading of 20 wt.%. The 

same results have implications for PET/MTE relaxation time 119ehavior as shown in 

figure 4.30. 

On the other hand, at the same shear rate (0.1s
-1

) and the same concentrations (5 and 20 

wt.%) for PET/Cloisite 25A, the relaxation time did not decrease after a loading of 5 

wt.%, and at the same time G‘ is greater than G‖ for both loading concentrations at very 

low shear rates (figure 4.28). Increasing the shear rate leads to a change in the 

119ehavior of PET/Cloisite 25A (5 wt.%) from solid-like 119ehavior to fluid-like 

119ehavior, and also a decrease in relaxation time, while for the same NC but at (20 
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wt.%) the NC kept its solid-like 120ehavior even on increasing the shear rate as shown 

in figure 4.30. 

 

Figure 4.29 Relaxation time of PET/MAE nanocomposites at different composite loadings over 

several shear rates. (window, Figure 4.26) 

 

Figure 4.30 Relaxation time of PET/MTE nanocomposites with different composite loadings over 

several shear rates. (window, Figure 4.27) 
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Figure 4.31Relaxation time of PET/Cloisite 25A nanocomposites with different composite loadings 

over several shear rates. (window, Figure 4.28) 

 

4.3.3 The Cox-Merz Rule 

Generally for many polymer melts there is a close relationship between the shear 

viscosity 𝜼(𝜸 ) and complex viscosity 𝜼∗(𝝎). In 1958 Cox-Merz introduced the 

following rule (Equation 4.2) [Mezger (2006)]: 

𝜼(𝜸 ) =   𝜼∗(𝝎)      Equation 4.2 

The Cox-Merz rule is of great value in polymer rheology. It can be used in many 

applications for many reasons such as: 

- If an expensive oscillatory rheometer is not available, the complex viscosity can 

be predicted from the shear viscosity measurement. 

- It is difficult to measure the shear viscosity for many polymers at high shear 

rates due to secondary flows, sample fracture etc., so the shear viscosity can be 

predicted from oscillatory measurements by the Cox-Merz rule. 
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- How close to or far from the rule the materials behaviour is can be used as an 

analytical tool to give a sense of the material structure. 

Kelly et al. (2009) observed that polypropylene (PP) exhibits a correspondence between 

complex viscosity and shear viscosity as shown in figure 4.32. 

 

Figure 4.32 Shear viscosity of high density PP at 200 °C [from Kelly et al. (2009)]. 

Also Han et al. (1995) observed a good agreement with the Cox-Merz rule in 

homopolymer Polystyrene (PS), as shown in Figure 4.33. 
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Figure 4.33 Plot of log   vs. log 𝜸  for homopolymer PS [from Han et al. (1995)]. 

The Cox-Merz rule is not useful for complex structured fluids, such as liquid crystalline 

polymers, crosslinked polymer or gels [Larson (1999)]. 

Many researchers have proved the failure of the Cox-Merz rule in polymer 

nanocomposites and blends [Fornes et al. (2001)]. Han et al. (1995) studied the effect of 

flow geometry on the rheological properties of PS/PMMA (poly (methacrylate)) blends. 

They found that the logarithmic plots of shear rate vs. shear viscosity obtained by a 

capillary rheometer do not overlap those obtained by a cone-plate rheometer, and this is 

due to the difference in morphological states of PS/PMMA blends in the non-uniform 

shear flow in a capillary rheometer (due to the effects of die exit and entrance) versus 

the uniform shear flow in a cone-plate rheometer. No big changes were observed when 

the Bagley correction was used. Also, it was reported that the blends do not obey the 

Cox-Merz rule because the flow geometry affected the rheological behaviour of the 

blends, which exhibited different morphological states in the two rheometers. 

Krishnamoorti et al. (2001) observed a failure in this rule in polystyrene-polyisoprene 

block copolymer nanocomposites. Nakajima et al. (1977) reported deviations from the 
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Cox-Merz rule in carbon black/rubber composites. They observed that the complex 

viscosity obtained by dynamic shear measurements was higher than the shear viscosity 

measured by capillary rheometer, and attributed this to strain hardening with extension 

in the oscillatory rheometer. 

Ray and Okamoto (2003) proposed two reasons to explain the deviations of polymer 

nanocomposites from the Cox-Merz rule. First, the nanocomposites tend to change the 

structure formation of the matrix when applying a dynamic oscillatory test. Second, 

while the Cox-Merz relation applies for many homogenous systems, polymer 

nanocomposites are a heterogeneous system. The Cox-Merz rule works for many 

polymers but the relation is not supported by a theoretical background that shows it 

must be obeyed by all polymers. 

Figure 4.34 illustrates the shear viscosity vs. shear rate over a wide range of shear rates 

for vPET, ext. vPET and PET nanocomposites. 

 

Figure 4.34 Plots of shear rate vs. shear viscosity for PET nanocomposites at 5 wt.% nano-filler 

concentrations. 
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The result revealed in figure 4.34 (also see figures x4.1-x4.3 in appendix x4) matches 

the results obtained by others [Nakajima et al. (1977) and Krishnamoorti and Yurekli 

(2001)] proving that the Cox-Merz rule does not hold for PET nanocomposites. 

However, un-filled PET also does not obey the Cox-Merz rule, as observed in previous 

figures, and this result is in agreement with the results of Xanthos et al. (2000). 

4.3.4 Shear viscosity behaviour at fixed shear rates and varying clay 

concentrations. 

 

Figure 4.35 Shear viscosity as a function of nano-filler concentration at two constant shear rates 

(100 and 2000s
-1

). 

 

The aim of this section is to study the effect of adding different nanofillers at a variety 

of fill levels on the shear viscosity of PET at a constant shear rate. The shear rates were 

chosen (100 and 2000s
-1

) to cover the range of shear rates in normal melt processing 

such as sheet extrusion and preform injection. The relationship between shear viscosity 

and clay content for different PET nanocomposites at shear rates 100 and 2000s
-1 

is 

shown in figure 4.35. It is obvious that the shear viscosity decreases on adding more 
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nanofillers. For example, a 5 wt.% MAE loading gives a one-fold decrease in shear 

viscosity compared to ext. vPET at shear rate 100s
-1

. Furthermore, increasing the shear 

rate leads to a decrease in shear viscosity for the same PETNC and loading level. For 

example, the shear viscosity for PET/MTE (3 wt.%) reduced by 55% when the shear 

rate increased from 100 to 2000s
-1

. So prior to processing PETNC, knowing the shear 

rate is essential in predicting the viscosity of the melt in order to achieve a good final 

product.  

Increasing the nanofiller content means increasing the small platelet size quantity, 

which means the platelets can easily align in the matrix on applying the shear rate. 

Therefore the viscosity slightly drops when compared to vPET or ext. vPET. Also due 

to working under high temperatures (260°C) there exists a possibility of degradation 

which may lead to a reduction in the molecular weight, and therefore a reduction in 

viscosity. 

 

4.3.5 The intrinsic viscosity (I.V.) of polyethylene terephthalate (PET) 

nanocomposites 

 

Intrinsic viscosity (I.V.) is one of the simplest, cheapest and most precise measurements 

in polymer science and it is one of the most important characteristics descriptors of 

PET. Intrinsic viscosity is related to the composition and molecular weight of the PET 

resin and it is a common description of PET flowability. When the PET has high I.V. 

the material becomes stiffer which means the chains are longer. During the 

polymerization process, the average chain length can be controlled and that affects the 

final I.V. value.  
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Mark-Houwink‘s equation (Equation 4.3) is used to calculate the molecular weight from 

the intrinsic viscosity value [Culbert and Christel (2003)].  

 𝜼 =  𝑲 𝑴𝒂    Equation 4.3 

 

where  𝜼  is the intrinsic viscosity (I.V.), M is the molecular weight, and K and a are 

known as Mark-Houwink constants. There is a specific constant value for each solvent-

polymer combination so it is not possible to use this equation to calculate the molecular 

weight of a newly invented polymer. On top of that, the constant (a) is affined to the 

stiffness of the polymer chains. So the polymer nanocomposites need another (a) value 

different from that of the un-filled polymer due to the presence of nanoclay platelets. 

Sanches et al. (2005) evaluated the molecular weight of PET using different techniques 

such as solution intrinsic viscosity, intrinsic viscosity from melt flow (MFI) and size 

exclusion chromatography (SEC). The aim of their study was to obtain a correlation 

between the viscosity of diluted solutions and molecular weight. One of the main 

restrictions on obtaining this correlation is the presence of branched chains in the 

polymer structure. The authors found that the molecular weights measured by SEC and 

the M-H equation were different. This difference in the values was attributed to the 

different test parameters such as the temperature and solvents used in the tests. Based on 

their observations, the molecular weight of PETNC (pellets or film) cannot be 

calculated from the I.V. data obtained in this project. 

Figure 4.36 shows the intrinsic viscosity (I.V.) of crystallized vPET and amorphous 

pellets of ext. vPET and PETNC at various clay concentrations. The test procedure is 

covered in section 3.5.4. It is worth mentioning that the I.V. measurement method for 

vPET at the Tergal Fibre Ltd. Company (PET supplier) is different from the method that 

SABIC used to measure the I.V. It is therefore not surprising that different values for 
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same material were observed. For example, the I.V. of vPET was found to be 0.8 dL/g 

at the producer‘s laboratory (Tergal) and 0.77 dL/g at the external laboratory (SABIC). 

This difference may come from the differences in solvent mixture ratios. While Tergal 

used 50/50 %, SABIC used 60/40 %. 

The I.V. of the pellets was measured while in the amorphous phase (except vPET which 

was in the crystallized phase) in order to see the effect of the compounding process and 

avoid any inconsistency in the re-crystallisation process. The absolute value of I.V. of 

ext. vPET is expected to drop (see figure 4.36) compared with vPET for two reasons: 

first, the state of the pellets is amorphous, and second, the pellets were exposed to 

thermal processing which means a possibility of thermal-oxidative degradation during 

the compounding process, leading to a reduction in molecular weight. Furthermore, the 

absolute value of I.V of PETNC reduced on increasing the clay concentration, and this 

reduction can be attributed to two reasons: first, the presence of clay platelets which 

align with the flow and increase the flowability of the dissolved solution during the I.V. 

test, and second, the possibility of thermal-oxidative degradation of nanoclay during the 

compounding, which can increase the magnitude of this reduction. 
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Figure 4.36 Absolute values of intrinsic viscosities (I.V.) of PET nanocomposites (pellets) at 

different clay concentrations. [Figure 4.35 in the window]. 

 

Figure 4.37 Absolute values of intrinsic viscosities (I.V.) of PET nanocomposites (amorphous films) 

at different clay concentrations. 

The trend of the I.V. reduction is quite similar to the trend in the melt viscosity 

behaviour of PETNC which was obtained from the rheological behaviour of PETNC 

(figure 4.36 has both plots). Based on this observation, the capillary rheometer curves 
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can be used to predict the behaviour of the I.V. trend, but not the absolute values. 

Furthermore, figure 4.37 shows the intrinsic viscosity of amorphous films of un-filled 

PET and PETNC. It is clear that adding more clay leads to a reduction in the I.V. 

values. It is worth mentioning that the reduction in the I.V. values of the films compared 

to those of the pellets is due to the fact that the films were exposed to two melt 

processing stages (compounding and film casting), while the pellets were exposed only 

to the compounding process, which means more clay platelet alignment and an 

increased possibility of thermal-oxidative degradation. The absolute values of vPET 

film and ext. vPET film are quite similar, indicating the importance and the good 

efficiency of the re-crystallisation process carried out prior to the cast film processing 

for ext. vPET and PETNC amorphous pellets (see figure 4.37). 
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4.4 Conclusions 

 Studying the rheological properties of unfilled PET and PET nanocomposites 

over a wide range of shear rates, as well as their behaviour on adding different 

clays with various concentrations were the main objective of this chapter. 

 The importance of re-crystallising the amorphous pellets prior to investigation 

the rheological properties of PET was proved. 

 At high shear rates, it is clear that the absolute value of the melt viscosity of 

PETNC is significantly lower than for un-filled PET, and the extent of this 

reduction increases with adding more nano-filler at a given shear rate. This 

reduction follows the shear thinning behaviour which shows the dependence of 

the shear viscosity for the un-filled PET and PETNC on the shear rate. 

 Shear thinning behaviour occurred at high shear rate can be explained by two 

mechanisms which can occur simultaneously. The first mechanism proposed is 

that some polymer has entangled or oriented molecular chain at rest. When 

applying high shear rates, the level of entanglements is reduced and the 

molecular chains tend to orient with the flow direction. The other mechanism is 

the presence of the nanoparticles. The nanoparticles align with the flow direction 

at high shear rate. 

 At high shear rate, Somasif MAE clay exhibits the maximum reduction in the 

shear viscosity of PET compared with the other clays used. This observation 

may be attributed to either the fast alignment of MAE platelets with the flow 

direction due to the large gap (d-spacing) between the platelets when compared 

to the other nanoclays used, or to the higher degradation level of PETNC in the 

presence of MAE due to high surfactant content, or to both causes. 
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 The rheological test shown a big reduction in the viscosity of amorphous pellets 

or un-dried crystallised pellets which prove the importance of re-

crystallised/dried the pellets prior the melt processing. 

 At low shear rates, the magnitudes of the complex viscosity are dependent on the 

nanoclay concentrations and processing shear rate. The nanoclay leads to 

increases in complex viscosity with increases in the clay loading above 1 wt.%. 

The vPET, ext. vPET, and PET nanocomposites (1 wt.%) and PET/MTE (3 

wt.%) exhibit Newtonian behaviour for low shear rate ranges. The complex 

viscosity started to deviate from Newtonian behaviour and behaved in a shear 

thinning manner at a 3 wt.% concentration. Usually the formation of aggregates 

is responsible for an increase in complex viscosity. 

 Storage and loss moduli for the PETNCs show a significantly diminished shear 

rate dependence and this becomes more obvious on increasing the clay content. 

The polymer transfers from fluid-like to solid-like behaviour at certain filler 

concentrations, this phenomenon being known as the percolation threshold. 

From the results presented it seems that the percolation threshold is reached 

approximately at 3 wt.% loading. 

 PET/MTE shows the lowest storage modulus value among other PETNCs at the 

same concentration (3 wt.%) or in other word lowest percolation threshold, 

which can be attributed to an excellent exfoliation occurs in MTE case. 

 Cole-Cole plots has been used to explore the influence of adding a nano-filler on 

the structure of a PET matrix at a fixed temperature. The change in the slope of 

the curves is an indication of increasing interaction between the PET matrix and 

the nanoclay platelets. The slope of the curve at 3 wt.% content is near unity 

which implies that the PETNC at this point is rheologically heterogeneous and 
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further energy can be dissipated. Furthermore, some slopes of the curves at high 

shear rates are nearer 2 which indicates that the rheology is that of a 

homogenous system, and this can be attributed to the effect of a high shear rate 

on the network structure, or in other words, the high shear rate induces a 

collapse in some interactions. 

 The behaviour of storage and loss modulus over low shear rate used to explore 

the behaviour of the PETNC. When the storage modulus higher than the loss 

modulus indicates strong solid-like behaviour and the opposite case indicates 

that the PET matrix is still dominant in determining the viscoelastic properties of 

PET nanocomposites (fluid-like behaviour). 

 The relaxation time of the PETNCs increased with decreasing shear rate, this 

being attributed to the reduction in PET chain mobility at low shear rates. The 

physical interaction between the PET chains and nanoclay platelets can be 

broken with increases in the shear rate, which can lead to shorter relaxation 

times. 

 The rheological results over a wide range of shear rates show that the Cox-Merz 

rule does not hold for PET nanocomposites or induced for unfilled PET. 

 The absolute value of intrinsic viscosity (I.V.) of PETNC reduced on increasing 

the clay concentration, and this reduction can be attributed to two reasons: first, 

the presence of clay platelets which align with the flow and increase the 

‗flowability‘ of the dissolved solution during the I.V. test, and second, the 

possibility of thermal-oxidative degradation of nanoclay during the 

compounding, which can increase the magnitude of this reduction. 
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Chapter Five 

5. Thermal properties of polyethylene terephthalate (PET) 

The thermal properties of PET nanocomposites (PETNCs) in the amorphous, semi-

crystalline and melting phases on adding nanoclay content were studied and the results 

presented and discussed in this chapter. In order to understand these results, it is 

appropriate to present some introduction and definitions regarding the fundamental 

features of these polymer phases.  

5.1 Introduction 

Polyethylene terephthalate (PET) exhibits three phases on increasing the temperature 

from ambient temperature to 280°C as follows: firstly an amorphous phase, secondly a 

semi-crystalline phase and third the melt phase. Prior to presenting the results on 

thermal properties, the fundamental qualities of these phases are discussed. Since the 

semi-crystalline structure can affect the properties of the final product significantly and 

the nanoclay can have a significant effect on the crystallisation temperature and overall 

crystallinity, most attention has been given to this state. 

5.1.1 Amorphous phase 

There are two types of polymer morphology in the solid state: that for a semi-crystalline 

polymer and that for an amorphous polymer. Sperling (2006) reported that the older 

literature often referred to the amorphous state as a liquid state. In an amorphous 

polymer, the molecules are twisted together and oriented randomly. A polymer with an 

amorphous morphology tends to have a transparent appearance. If the amorphous 

polymer is linear, it will flow above the glass transition temperature (Tg). It is usually a 

hard, clear, rigid material with low shrinkage and low impact strength; examples are 
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polystyrene (PS) and polycarbonate (PC). Semi-crystalline polymers are made up of 

discrete crystal structures in coexistence with regions of amorphous chains. In this 

amorphous region, the polymer does not contain any crystalline structure and does not 

exhibit any crystalline pattern upon application of x-ray diffraction techniques. 

 

Figure 5.1 Schematic representation of the different types of amorphous chain. 

For a semi-crystalline polymer the amorphous region different chain types, as shown in 

figure 5.1. Some kinds of chain connect between two different crystal regions while 

others have a loose loop state. 

Usually, amorphous PET (e.g. amorphous pellets, bottles etc.) have left the brittle glassy 

state and take on a tough and brittle state as the temperature is raised above the glass 

transition temperature (Tg). When there is sufficient thermal energy in the polymer 

matrix to create enough free volume to allow sequences of a few chains of the polymer 

to move as a unit, the glass transition occurs. Actually, it is more important to know and 

understand the glass transition temperature (Tg) than the melting point, because 
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knowing Tg tells us how the polymer behaves at ambient temperature and about the 

limitations of the PET application temperature. The Tg for PET is about 75°C. 

5.1.2 Melting phase 

The melt phase of polyethylene terephthalate (PET) is an amorphous state and an 

isotropic liquid. PET transfers from solid phase (semi-crystalline) to a molten phase as 

the temperature is raised above the melting temperature (Tm) which is around 250°C. 

The melting temperature and melt state of PET have received relatively good attention 

in the polymer science literature, probably because PET is very sensitive to high 

temperatures which may lead to thermal degradation. Furthermore, the melting step in 

polymer processing is usually the rate-controlling step. In other words, the melting 

process consumes 70-80% of the energy used in the processing.  

5.1.3 Semi-crystalline polymers 

Usually, polymers have some irregularity in their structure so they cannot be 100% 

crystallised. The amount of the crystalline material is expressed as a percentage. Semi-

crystalline polymers have both regions (amorphous and crystalline) and combine the 

flexibility of the amorphous state with the strength of the crystalline forms.  

PET is a semi-crystalline polymer whose morphology can vary widely depending upon 

the fabrication process. Amorphous thermoplastic materials such as polycarbonate tend 

to be transparent, while crystalline thermoplastic materials such as polyethylene tend to 

be opaque. PET is a unique thermoplastic material. Since depending on the processing 

conditions, PET can be an amorphous or semi-crystalline material. Furthermore, the 

crystalline structure of PET material can exist in a clear or opaque state. 
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The crystal structures of PET materials are either rod-like in shape (small size) or 

spherulitic (large size). The spherulitic shape is induced by heating the amorphous 

region while the rod-like shape is induced by biaxial orientation or molecular strain. The 

rod-like crystal has a wavelength smaller than light and the spherulitic form has a 

wavelength larger than light. Consequently, light passes through the rod-like crystal 

shape without any reflection which gives it transparency while the spherulitic crystal 

shape reflects most of the light trying to pass through the wall [Brody and Marsh 

(1997)]. 

The polymer can be obtained as a ―glassy‖ or ―amorphous‖ transparent solid by rapidly 

quenching the melt below the glass transition temperature. However when the polymer 

is heated above its Tg, it crystallises rapidly forming an opaque material exhibiting 

spherulitic crystalline morphology. This morphology can also be obtained by slow 

cooling of the polymer melt. The crystallinity is usually induced by heating from the 

glassy state and is often accompanied by orientation. The conversion of PET into most 

commercial products requires that the polymer be highly crystalline. Fast crystallization 

melt becomes a crucial factor when these systems are processed from the melt. A fast 

crystallization response is favourable from an economic perspective as it leads to lower 

cycle times.  

Ke et al. (2007) reported that PET has molecular chains connected with aromatic ethyl 

and ester groups. The twist or torque motion between PET rigid aromatic segments and 

the ethyl connector greatly slows down its crystallization rate and prolongs its 

processing cycle. Xanthos et al. (1997) reported that the maximum growth rate of the 

spherulites for PE is 5000μm/min while it is only 10μm/min for PET. 
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In the injection moulding process, a polymer melt is injected into a cold mould and 

crystallisation occurs during cooling in the mould. When a polymer has a fast 

crystallisation, it is an ideal candidate for injection moulding applications. Many factors 

affect the final crystalline morphologies such as the cooling and shearing conditions of 

the injection step. Thus it is essential to understand the crystallization process and to be 

able to predict it under different moulding conditions. 

Crystallization consists of nucleation followed by crystallite growth. Nucleation is very 

important in determining the final crystalline morphology. In many cases where there is 

a deliberate attempt to control the properties of a given polymer by manipulating its 

morphology, it has been achieved via the use of nucleating agents.  

In general, nucleation represents the initial step of a phase transformation and can be 

defined as ―The formation of short range ordered polymer aggregates in a melt or 

solution, which act as growth centers for crystallization.‖ [Gooch (2007)].  

The first step crystallization is the formation of the primary nuclei. This is followed by 

the continuation of the crystallisation process on the growth surface by induction of 

more polymer molecules. Nucleation at an edge is called tertiary nucleation. 

When all nuclei start forming at approximately the same time, this is called athermal 

nucleation, and it leads to spherulites of roughly the same size. When the nuclei start 

forming at different times, this is called thermal nucleation, and leads to different 

spherulitic sizes. 
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I. Nucleation classification 

Sharples (1966) classified nucleation into two types: homogenous and heterogeneous. 

A. Homogeneous nucleation 

The homogenous nucleation process occurs with much more difficulty in the 

interior of a uniform substance. Homogenous nucleation phenomena occur when 

there is no second surface or existing nuclei present, and the nuclei formation 

takes place spontaneously due only to supercooling. 

 

B. Heterogeneous nucleation 

Chatterjee et al. (1975) reported that heterogeneous nucleation arises from 

adventitious impurities, either randomly distributed throughout the bulk, or 

possibly localized on a surface. Crystallization of polymers usually takes place 

via heterogeneous nucleation, because of the large amount of impurities (catalyst 

residues, etc.) present that act as substrates for nucleation. 

In the case of PET some chemical interaction has been observed between the 

polymer melt and certain nucleating agents. Whelan (1994) defined a nucleating 

agent as an additive used to increase the crystallization rate in the polymers by 

increasing the number of nuclei at which crystal growth is initiated (nucleation 

density). In this project, the nanoclay additives were used as nucleating agents; 

therefore the nucleation of PET can be categorized as heterogeneous. 

For thermodynamics, it is useful to consider the Gibbs free energy of any system 

related to the enthalpy and entropy (Equation 5.1): 
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G = H – T.S                                        Equation. 5.1 

where G is Gibbs free energy, a thermodynamic quantity which can be used to 

determine if a reaction is spontaneous or not, H is the enthalpy, S is the entropy 

and T is the temperature. 

In the nucleation step, a few molecules pack together to form a crystalline 

embryo. This process will change the Gibbs free energy; the incorporation of 

molecules in the crystal will cause a decrease in G, while the creation of a 

crystal surface will cause an increase in G, as Figure 5.2 shows. 

 

Figure 5.2 The change in free energy for the nucleation process during polymer 

crystallisation. 

 

The peak in the curve may be regarded as an energy barrier. The stable nucleus 

in primary or secondary nucleation needs to overcome the free energy 

crystallisation barrier in order for formation to take place. 

Once the nucleus is greater than the critical size it will grow spontaneously as 

this will cause G to decrease. 
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II. Structure of semi-crystalline polymers 

Historically, the study of polymer crystallinity was important in proving the 

macromolecular hypothesis developed in 1922 by Staudinger [Mulhaupt (2004)].  

Daubeny et al. (1954) found that the pure polyethylene terephthalate (PET) crystal 

belongs to the triclinic system (Figure 5.3). The cell dimensions are [Daubeny et al. 

(1954)]: 

a= 4.56 nm, b= 5.94 nm, c= 10.75 nm with the angles being α= 98.2°, β= 118°, γ= 112°.  

               

Figure 5.3 The triclinic crystal structure of PET. 

Goltner (2003) reported that the triclinic crystal structure for the PET gave a crystalline 

density of 1.455g/cm
3
, while the amorphous density is 1.335g/cm

3
.  

III. Crystallization from the melt 

The lamellar shaped single crystals are formed when polymers are crystallized from the 

melt. In most polymers processing, the most obvious of the observed structures are the 

spherulites. Odian (2004) described spherulites as having a complex, polycrystalline 

structure, as shown in figure 5.4. As the name implies, spherulites are sphere-shaped 

crystalline structures that form in the bulk [Sperling (2006)]. 
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Figure 5.4 Structural organization within spherulites in melt-crystallized polymers [Odian 2004]. 

 

The spherulites are really spherical in shape only during the initial stages of 

crystallization, while during the later stages the spherulites impinge on their neighbours. 

When the spherulites are nucleated simultaneously the boundaries between them are 

straight, but if the nucleation happens at different times the boundaries form hyperbolas, 

due to their different sizes when impinging on one another. 

On cooling from the melt, the single crystal structure is the first structure formed. 

During the early stages of the growth of polymer spherulites, the single crystal 

structures divert into sheaf-like structures, and this represents an intermediate stage in 

the formation of spherulites. Figure 5.5 shows the development of a spherulite. Row (a) 

represents the edge-on view of the growth of a spherulite while row (b) represents the 

flat-on view. Row (a) column (III) and row (b) column (III) illustrate the intermediate 

stage (sheaf-like structure). 
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Figure 5.5. Schematic development of a spherulite from a chain-folded precursor crystal. Rows (a) 

and (b) represent, respectively, edge-on and flat-on views of the evolution of the spherulite 

[Sperling (2006)]. 

  

IV. The mechanism of PET crystallization 

In the PET crystallisation mechanism, Brink (2003) proposed that the effective 

nucleation was either due to hydrolysis of PET or to the localized supercooling of PET 

by released water in the vicinity of the particles. 

Two regions can describe the crystallization rate of polyethylene terephthalate. Figure 

5.6 illustrates the spherulitic growth curve as a function of temperature. 

 

Figure 5.6 Spherulitic growth as a function of temperature [ Brink (2003)].  
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As the PET cools from the melt during the moulding process, it is obvious that it first 

transitions into the nucleation-controlled region and the crystallization process begins. 

Often in a spherulitic microstructure, the crystal lamellae structure grows from each 

nucleation site. In this region, the lamellar growth rate is the slow step in the overall 

crystallization process. 

For better mechanical properties and more rapid crystallization a high level of nuclei is 

needed [Brink (2003)]. Some PET chains incorporate into more than the lamellae due to 

the growth and impingement of spherulites on one another. These chains are called ―tie 

chains‖ which can concentrate and distribute stresses throughout the material, 

effectively increasing the toughness of the resin. 

The crystallization of PET first involves the formation of nuclei and their subsequent 

growth, whether heating amorphous PET from the glassy state or cooling from the melt 

state. The lamellae form by radiating outward from the nucleus by chain folding normal 

to the direction of growth, as figure 5.7 shows. 

 

 

 

 

 

 

Figure 5.7 Illustration of a spherulite growing into a melt [Culbert and Christel (2003)]. 
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The spherulites spread at the expense of amorphous material until surface impingement 

with other spherulites occurs, thereby limiting further growth. 

Crystallizing the PET from a glassy state by the thermal method leads to an isotropic 

structure while the anisotropic structure can be achieved by drawing, as Kattan et al. 

(2001) reported. 

5.2. Thermal properties of the polymer nanocomposites (literature review) 

The thermal properties of polymer nanocomposites have received wide attention in the 

literature because changing any thermal properties of the polymer (e.g. glass transition 

or crystallisation temperature) affects the melt processing parameters and the properties 

of the final product.  

Natarajan and Wu (1994) stated that the slow crystallisation rate of PET hindered 

crystallisation at low moulding temperatures (below glass transition (Tg)). Injecting 

PET melt in a mould at low temperatures (e.g. 27°C) leads to completely amorphous 

PET products, and reheating above Tg reduces the dimension stability of the final part. 

In order to avoid sticking of the PET inside the hot mould (above the Tg), it is necessary 

to increase the crystallisation rate. However, some undesired properties of the PET final 

product can result, due to over-increasing the crystallisation rate. When the 

crystallisation rate becomes too fast, the final product is hazy, especially at high 

nanofiller concentrations. Therefore it is very important to control the crystallisation 

rate of PET nanocomposites by controlling the nanofiller loading level or the nanofiller 

type, or by modifying the nanofiller. 
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Recently, many researchers have given attention to the thermal behaviour of polymer 

nanocomposites. The incorporation of nanofillers (e.g. MMT, CNT) not only enhances 

the properties of the polymer but it also alters the crystallisation properties. 

Chan et al. (2002) studied the thermal and mechanical properties of a polypropylene 

(PP) nanocomposite (CaCO3). They observed that the melting temperature of the PP did 

not change on adding CaCO3 while the crystallisation temperature significantly 

increased by 10°C. They attributed this to the filler acting as a nucleating agent. The 

absolute value of the crystallisation did not change with adding the filler. Cho and Paul 

(2001) investigated the rheological, mechanical and thermal properties of nylon 6 

nanocomposites (MMT, organoclay and glass fibre). Differential Scanning Calorimetry 

(DSC) results exhibited a slight (negligible) change in the glass transition temperature 

(Tg) and melt temperature (Tm) in the presence of fillers. The fillers acted as nucleation 

agents, leading to increases in the crystallisation rate and crystallisation temperature 

(Tc) compared with neat nylon 6.  

PET/silica nanocomposites were prepared and characterized by Liu and Tian et al. 

(2004). The PETNC was prepared via in-situ polymerisation at two low silica contents 

(0.5 and 2.5 wt.%) and the thermal properties were analysed using DSC. The authors 

observed significant changes in the thermal properties with the crystallisation 

temperature increasing by 15 and 18°C for PET/silica (0.5 and 2.5 wt.%) respectively, 

compared with neat PET. They found that the melting temperature of PETNC increased 

by 9 and 11°C with adding 0.5 and 2.5 wt.% respectively. The authors attributed this 

significant change in Tm to the good dispersion of the fillers which can enhance the 

PET segment during crystallisation and lead to formation of a good crystal structure. An 

increase in the melting temperature was also observed by Mucha and his co-workers in 

a study of the crystallisation of isotactic PP on adding carbon black [Mucha et al. 
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(2000)]. The authors attributed the increase in Tm to the iPP chains forming perfectible 

crystals on adding carbon black, which may lead to a hindrance or delay in the 

beginning of Tm. 

Li et al. (2006) however did not observe any significant change in the melting 

temperature of PET when compounded with carbon nanotubes (CNT). The obvious 

change was in the crystallisation temperature (Tc) because the nanotubes act as 

nucleating agents for the crystallisation. Moreover, this change was obvious with lower 

carbon nanotube contents (0.5 wt.%) in PET, and the increases in crystallisation 

temperature became slower with adding more CNT. Increasing the concentration of 

CNTs means that most of the CNTs will form networks. 

Kracalik and Kovarova et al. (2007) studied the rheological, mechanical and thermal 

properties of recycled PET (rPET) and its behaviour on adding nanoclays, and 

compared this with virgin PET (PET) nanocomposites. The authors did not report any 

remarkable decrease in the glass transition (Tg) or melting temperature (Tm). On the 

other hand, they observed an increase in the crystallisation rate and temperature on 

adding more clay and attributed this to the nanoclay (silica platelets) acting as a 

nucleating agent in the heterogeneous crystallisation of the PET matrix. The rPET 

exhibited a faster crystallisation rate than PET and this was attributed to the fact that the 

melt viscosity of rPET is lower and thus allows an easier arrangement of polymer chains 

into a lamellar structure. On the other hand, Bizarria and co-workers (2007) studied the 

morphology of recycled PET (rPET)/ organoclay [MMT (Dellite 67G)] nanocomposites 

and did not observe any differences in the crystallisation rate or temperature of an rPET 

nanocomposite matrix. Only slight (negligible) decreases were found in the glass 

transition temperature and melting temperature, and the authors attributed this to clay 

agglomeration and degradation. The authors compounded the nanocomposites via twin 
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screw extruder at a screw speed of 250rpm and high processing temperatures (up to 

285°C) which may slightly damage the nanoclay before the DSC measurement. A TGA 

test is convenient if applied to investigate the thermal stability of the nanoclay. With the 

same process and materials, Girald et al. (2008) found that a lower screw speed 

(150rpm) achieved higher mechanical properties and better dispersion as well as 

observing changes in the crystallisation temperature. 

Chung et al. (2002) modified a surface fume silica filler then compounded it with PET 

via a melt compounding process to investigate the effect of various nano fume silicas on 

PET polymers at various concentrations. The authors observed that the crystallisation 

temperature from solid (Tgc) decreased on increasing the nano fume silica content, 

which indicated that the filler acted as a nucleating agent in the PET matrix. On the 

other hand, there were no significant changes in the melting temperature or glass 

transition temperature with adding more filler. They also found that the crystallinity of 

the PET nanocomposites increased on increasing the filler loading. Furthermore, the 

crystallinity and crystallisation rates of PET nanocomposites are more proportional to 

filler content than filler type with the range studied. 

Guan et al. (2008) investigated the crystallisation behaviour of PET/clay which was 

prepared through in situ synthesis. The study was conducted in terms of POM, SEM and 

DSC. The surface of the clay (Na-MMT) was modified by 

Hexadecyltriphenylphosphonium (HTPP) and 1-hexadecyl-2,3-dimethylimidazolium 

(HDMI) salts to produce HTPP-MMT and HDMI-MMT. The authors did not find any 

significant change in the melting temperature but observed that the crystallisation rate of 

PETNC (MMT) was highly dependent on the surface modification of the clay (MMT). 

Frounchi and Dourbash (2009) studied the permeability properties of PET/clay (Cloisite 

15A and Nanolin) film nanocomposites. They found a significant decrease in the glass 
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crystallisation temperature (Tgc) on adding nanofillers and no change in the glass 

transition (Tg). Furthermore the nanofillers increased the melting temperature, and this 

was attributed to the dispersion of the platelets in the polymer matrix hindering the heat 

from conducting the crystallized matrix. This study is covered in more detail in chapter 

8 (Permeability of PET nanocomposites). Calcagno et al. (2007) studied the effect of the 

organic modifiers of clays (Cloisite 10A, 15A and 30B) on the crystallization and 

morphology properties of PET nanocomposites. The crystallization temperature (Tc) of 

the pure PET was lower than that for the PET nanocomposites which possibly means 

that the nanoclay had a nucleation effect on the PET. It was also found that the PET 30B 

and PET 10A nanocomposites exhibited exfoliated and intercalated morphologies due to 

many reasons, including the polarity of the surfactant and its chemical structure. In 

addition, the authors reported that the nanocomposites showed smaller mean spherulite 

size and more nuclei than for pure PET. Anoop et al. (2006) used single-walled carbon 

nanotubes (SWNTs) in a study of their influence on PET crystallization. The authors 

observed that SWNTs at low concentration (0.03%) enhance the crystallization 

temperature during melt cooling by increasing the value from 200 to 210°C. They 

showed that the oriented SWNTs in the PET melt enhanced the oriented crystallization 

of PET. 

Wang and Gao et al. (2006) used XRD, TEM, DSC and TGA to study the thermal 

stability, crystallization behaviour and mechanical properties of PET/organic 

Montmorillonite nanocomposites (the trade name of the organic MMT was DK2; it has a 

cation exchange capacity of 120meq/100g and is supplied by Zhejiang Fenghong Clay, 

Chemical Co. Ltd. (China)). The composite was prepared via melt-blending through the 

clay and the PET was pre-mixed in a high speed mixer prior to twin screw extrusion. 

This may lead to non-uniformity in clay dispersion and could cause a variation in 
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results. They observed that adding DK2 increased the crystallization temperature from 

the melt (Tmc), and decreased the half peak width and sharpness in the crystallization 

rate curve. The researchers attributed these phenomena to PET molecules stacking on 

each other to grow into crystals, due to the fact that DK2 itself helps in this stacking. 

Also this may occur because DK2 acts as an effective heterogeneous nucleation agent. 

In addition to enhancing the crystallization rate, DK2 can increase the heat distortion 

temperature (HDT) possibly due to the higher crystallinity for the nanocomposites or 

the high interaction force between the PET matrix and the DK2. Most of the results 

showed that the composite had optimum mechanical properties when the DK2 content 

was approximately 1%. 

Ke et al. (1999) studied the effect of the clay on the crystal morphology and 

crystallisation processes. The nanocomposites were prepared via the in-situ method. The 

results showed that the clay content affects crystallisation as the clay acts as a 

nucleating agent. Also Ke et al. (2002) discussed the relationship between the 

distribution of intercalated or exfoliated clay and the crystallization of PET. They 

reported that the increased intercalation with the large number of clay platelets leads to 

a decrease in crystallization. In the same study, it was observed that the dispersion of 

the clay platelets was controlled by the polymerization methods as well as the surface 

modification. 

Chen et al. (2007) prepared PET/antimony doped tin oxide (ATO) through an in situ 

polymerisation method and studied the effect of ATO loading on electrical properties, 

dynamic mechanical properties and crystallisation behaviour. The authors observed that 

the ATO nanoparticles increased the crystallisation temperature from the melt (Tmc) 

and the crystallisation rate. This phenomenon may be attributed to the fact that the ATO 

has a very large surface area which can lead to the formation of strong heterogeneous 
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nucleation in the polymer crystallisation. It was also found that ATO decreased the 

crystal size of PET. Chae and Kim (2007) also noticed an increase in the crystallisation 

temperature of PET/ferrite nanocomposites. The effect of treatment of MMT on the 

crystallisation behaviour of PET/MMT nanocomposites was investigated by Yin and his 

team in 2009. They observed, using DSC, SEM and POM, that the MMT acted as a 

heterogeneous nucleating agent and impeded the crystal growth of PET no matter how 

the MMT was treated. The physical impeding of the clay was negligible when the MMT 

agglomerated in the PET matrix so the PET/MMT nanocomposites had too fast a 

crystallisation rate. 

5.3 Experimental work 

A. Materials 

Semi-crystallised PET pellets as received from the supplier (Tergal F9) were used to 

investigate the double endotherm melting temperatures exhibited in the first heating 

stage of the DSC test and the results presented in section 5.4.7. 

Extruded vPET amorphous pellets and PET nanocomposite amorphous pellets produced 

during the compounding processes (see chapter 3) were used to investigate the effects of 

the nanoclays (MAE, MTE and Cloisite 25A) on the thermal properties of PET. 

Between four and six pellets were chosen from each batch (from the beginning, middle 

and end of the compounding run) to measure their thermal properties and compare them 

with unfilled PET. 

In order to study the effect of nanoclays on the thermal properties of stretched films, un-

filled PET and PET/MTE (1, 3 and 5 wt.%) films were analysed by DSC before and 

after the equal biaxial stretch. These films were produced by the film cast process and 
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the equal-biaxial stretch films were additionally processed using the biaxial stretcher at 

90°C as discussed in section 3.5.7. 

B. Procedure 

The thermal properties of the un-filled PET and PET nanocomposites (pellets and films) 

(including crystallisation temperature, glass transition temperature and melting 

temperature) were investigated by TA Instruments Q2000 DSC. The amorphous pellets 

and films were investigated during the first heating stage from 30 to 280°C at a heating 

rate of 10°C/min, and during the first cooling stage from 280 to 30°C at a cooling rate 

of 10°C/min, while a second heating stage was applied to the semi-crystallised PET 

pellets (vPET) from 30 to 280°C, in addition to the first heating and cooling stages. 

The degree of crystallinity (Xc) of the samples was calculated by using the following 

equation [Karagiannidis et al. (2008)]: 

𝑿𝒄 % =  

∆𝑯𝒎 − ∆𝑯𝒎𝒄

𝟏 − 𝒙
∆𝑯𝒎

𝟏𝟎𝟎
 .𝟏𝟎𝟎 

Where Xc is the degree of crystallinity, ΔHm is the enthalpy of melting, ΔHmc is the 

enthalpy of crystallinity in cooling stage, ΔHm
100

 is the theoretical enthalpy of melting 

when the PET 100% crystallised (140 J/g) [Mehta (1978) and Bizarria et al. (2007)] and 

x  fraction weight of nanoclay. 
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5.4 Results and discussion 

The objective of this chapter is to analyse the thermal property results obtained from 

analysing PET nanocomposites using DSC in order to study the effect of adding 

nanoclays on the thermal behaviour of PET. The first section in this chapter (5.4.1) 

presents some typical DSC curves for amorphous and semi-crystalline PET, and also 

defines some abbreviations used during the discussion of the results. Sections 5.4.2, 

5.4.3 and 5.4.4 cover the thermal property diagrams for PETNCs (PET with MAE, MTE 

and Cloisite 25A). Section 5.4.5 covers the comparative study between PET 

nanocomposites with different nanoclay types and constant loading concentrations. 

Section 5.4.6 investigates the thermal behaviour of PET/MTE films before and after the 

equal-biaxial stretch. It was noticed that the vPET (Tergal F9, as received) showed 

double melting endotherms, so this phenomenon is discussed in section 5.4.7. 

Furthermore, a preliminary study was conducted on some PET nanocomposite sheets 

obtained from Queens University. These sheets were prepared under the EPSRC funded 

QBOX project by blending PET pellets (Tergal F9) with nanoclays (Somasif MAE and 

MTE).  This mini-study was initiated to study the effects of cooling rates on the 

crystallisation properties, and also to compare other thermal properties such as glass 

transition temperature (Tg), melting temperature (Tm), and crystallization temperature 

from the solid (Tgc) and from melting (Tmc), of the PET nanocomposite sheets (QBOX 

project) with PET nanocomposites prepared at Bradford. This preliminary study is 

covered in appendix 5 (see appendix x5.4). 
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5.4.1. Introduction 

Amorphous PET exhibits different thermal behaviour to semi-crystallised PET. During 

the heating of the amorphous sample from ambient temperature to melting temperature, 

it goes through three zones: first the glass transition zone, second the cold crystallisation 

zone and third the melting zone. Semi-crystalline PET, however, exhibits only one zone 

in the first heating stage (melting zone) and two zones in the second heating stage (glass 

transition and melting zones). During the cooling stage, only one zone appears for both 

PET states (amorphous or semi-crystallised) which is called the melt crystallisation 

zone.  

Each zone has a peak and starting point so it is appropriate to define these zones and 

points prior to the discussion. 

 

Figure 5.8 Typical DSC curve for PET amorphous. 

The DSC curve for amorphous PET is shown in figure 5.8. This shows the thermal 

behaviour of amorphous PET during the first heating and cooling. Some abbreviations 
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are used to explain temperature points observed during the thermal measurements and 

can be defined as: 

 Tg: Glass transition temperature. 

 Tgc: Crystallisation temperature from solid. 

 Tgc1: Onset crystallisation temperature from solid. 

 Tm: Melting temperature. 

 Tmc: Crystallisation temperature from melt. 

 Tmc1: Onset crystallisation temperature from melt. 

 

Figure 5.9 DSC curve for crystallised PET pellets (Tergal F9) 

The thermal behaviour of semi-crystallised vPET (Tergal F9) is different from the 

amorphous PET, as mentioned before, and this is obvious from a comparison of figures 

5.8 and 5.9. The unusual thing here is the double melting endotherm which PET Tergal 

F9 exhibits (this phenomenon is covered in detail in section 5.4.7).  
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Figure 5.10 DSC curve for amorphous PET film 

 

It is obvious in figure 5.10 that the Tgc peak disappeared from the curve in the second 

heat run, hence the first heating and cooling were used to analyse the thermal properties 

of amorphous PET.  
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5.4.2. PET/MAE nanocomposites 

The objectives of this section are to study the effects of the nanoclay (Somasif MAE) 

with different clay contents on the thermal properties of PET and compare it with un-

filled PET.  

 

Figure 5.11 DSC results for 6 samples from the same run to produce PET/MAE (1 wt.%). 

 

Six samples from the same run were taken at different times (from the beginning, 

middle and end of the compounding run of PET/MAE 1 wt.%) then analysed by the 

DSC. Figure 5.11 (each sample weight was about 3mg ±0.5) shows the consistency of 

the results of the nanocomposites (NC) (1 wt.% MAE), which can be attributed to good 

nanoclay distribution. The effect of the nanoclay on Tg and Tm was negligible while a 

significant change occurred in Tgc and Tmc. The small increase in Tm can result from a 

good dispersion of the nanoclay. During the crystallisation, the good dispersion of 

nanoparticles into the polymer matrix can make the PET to form crystals in perfectible 
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structure, as observed by Liu and Tian et al. (2004) in their study of PET/silica 

nanocomposites. Mucha et al. (2000) attributed the increase in Tm in PP/carbon black to 

some hindrance at the beginning of the melting process. 

The repeatability of the thermal property results of PET/MAE (3, 5 and 20 wt.%) is 

shown in appendix 5 (see figures x5.1-x5.3). These results show good repeatability and 

close results for all thermal temperatures which again indicates good nanoclay 

distribution. Regardless of the small variation between some samples of PET/MAE (5 

wt.%) indicated in Tgc, all samples started to crystallise (Tgc1) at similar temperatures, 

indicating good sample homogeneity and that the nanoclay changed the crystallisation 

temperature and crystallisation rate. The acceptable repeatability of most of the sample 

results may be attributed to a good mixing process. The Tg even at high contents did not 

show any significant decrease above 1 wt.% MAE content. 

 

Figure 5.12 Average of thermal analysis results of PET nanocomposites (MAE) for various MAE 

contents. 
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Figure 5.12 is a combination of the average values shown in figures (5.11 and x5.1 - 

x5.3) indicating the relationship between the PET nanocomposites at various nanoclay 

contents (0, 1, 3, 5 and 20 wt.%) and the thermal analysis temperatures. It is clear that 

the absolute values of the crystallisation temperatures (Tgc and Tmc) follow a certain 

trend in decreasing or increasing with the addition of clay. While Tm did not show any 

significant change, it is observed from the Tg results that the nanoclay has a limitation 

in increasing the flexibility between the PET molecules (decrease Tg) which can be 

achieved by adding 1 wt.% MAE. It was found that adding 5 wt.% MAE to the PET 

matrix produced more change in the crystallisation temperatures (Tgc and Tmc) than 

adding 1 or 3 wt.% of MAE. Furthermore, PET/MAE (3 wt.%) exhibited differences in 

Tgc and Tmc larger than those of PET/MAE 1 wt.%, and all crystallisation temperatures 

(Tgc or Tmc) showed significant changes compared with the un-filled PET, which can 

be attributed to the fact that the nanoclays acted as nucleation agents for crystallisation. 

Tmc showed further increases but with small values for PET/MAE nanocomposites at 

concentrations over 5 wt.%,  while Tgc did not exhibit further decreases for PETNC 

with clay contents over 5 wt.%. 
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Figure 5.13 Tmc curves obtained from the DSC for all NC (PET/MAE). 

 

In figure 5.13 the location and the shape of the curves for Tmc indicates that the 

crystallisation rate improved in the case of the PET/MAE nanocomposites curves. The 

exothermal peaks tend to become sharper with adding clay content, which has been 

observed by many researchers such as Xue and Hara (2006). 
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Figure 5.14 Crystallisation half-time for crystallisation from melt states for PET/MAE 

 

It is evident that Tmc shifts to higher temperatures and the half peak width reduces 

(becomes sharper), indicating higher crystallization rate with increasing clay content as 

figure 5.13 shown. PET/MAE (1 wt.%) shows the shortest half-time for crystallisation 

(figure 5.14) but the PET/MAE (3, 5 and 20 wt.%) commence the crystallisation process 

earlier. There are many reasons for the enhancement of the crystallisation rate in 

nanocomposites. One is that the structure of the nanoclay can help the molecules of PET 

to stack on each other to grow into crystallites, and that leads to the high crystallisation 

rate. Another possible reason is that the clay may act as an effective heterogeneous 

nucleating agent. Similar results have been found by many researchers such as Wang 

and Gao et al. (2006). 
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5.4.3. PET/MTE nanocomposites 

The objective of this section is similar to the previous section but with a different 

nanoclay Somasif MTE. 

 

 

Figure 5.15 DSC results for 5 samples from the same run to produce PET/MTE (20 wt.%) 

 

Similar analyses were applied to the nanocomposites of PET/MTE for the same 

purpose. Figure 5.15 shows the excellent repeatability for 5 samples of the masterbatch 

of PET/MTE (20 wt.%) nanocomposites. Tmc (+ 10°C) and Tgc (- 10°C) were affected 

by adding 20 wt.% of MTE to the PET matrix. The glass transition temperature of the 

PET/MTE masterbatch was reduced by 5°C and this may be attributed to the high 

amount of nano-platelets in the MTE increasing the mobility and the flexibility of the 

PET chain, which can lead to Tg reduction. 
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Though the results for the five samples indicate good mixing, there were no sizeable 

benefits from adding more clay to the PET matrix since the crystallisation temperatures 

did not improve significantly, while the Tg dropped by around 6°C.  

The repeatability results for PET/MTE at 1, 3 and 5 wt.% were plotted and are shown in 

appendix 5 (see figures x5.4 – x5.6). These figures also exhibit good stability in the 

results. 

 

Figure 5.16 Average of thermal analysis results of PET/MTE nanocomposites for various MTE 

contents 

  

The average results for all PET/MTE nanocomposites are combined in figure 5.16. The 

slight change in melting temperature is negligible, especially given that the processing 

temperatures are around 260°C. The Tgc and Tmc of PET/MTE at various contents 

exhibit a similar trend in both temperatures for PET/MAE nanocomposites. The changes 

in crystallisation temperatures are evidence that the MTE clay works as a nucleating 

agent for the crystallisation. 
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Figure 5.17 Tmc curves obtained from the DSC for all NC (PET/MTE) 

 

Figure 5.17 shows symmetrical crystallisation peaks and distinct exothermic peaks. 

With increasing clay content, the curve moves to the right (higher Tmc temperature) and 

gets sharper (decrease in the t
1/2

) which indicates the crystallization rate is increased 

(see figure 5.18). Chen et al. (2007) and others have reported similar results. 
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Figure 5.18 Crystallisation half-time for crystallisation from melt states for PET/MTE 

  

5.4.4. PET/Cloisite 25A nanocomposites 

 

Figure 5.19 DSC results for 5 samples from the same run to produce PET/Cloisite 25A (3 wt.%) 
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The repeatability of thermal temperatures of PET/Cloisite 25A nanocomposite pellets 

after the compounding process is represented in figure 5.19 at loading 3 wt.%, and in 

appendix 5 for the other clay concentrations (see figures x5.7 - x5.9). It is apparent that 

fair consistency in the DSC results has been achieved. 

 

Figure 5.20 The average of thermal analysis results of PET/Cloisite 25A nanocomposites for various 

Cloisite 25A contents 

 

Figure 5.20 represents the behaviour of the thermal properties of PET/Cloisite 25A 

nanocomposites at various nanoclay concentrations. It is obvious that the Cloisite 25A 

acts as a nucleating agent for crystallisation by changing the absolute values of Tgc and 

Tmc. It is worth mentioning that the Cloisite 25A continues to increase the Tmc even at 

high clay content (20 wt.%). As observed with MTE and MAE, the melting temperature 

did not show any significant change. The distinctive effect of Cloisite 25A on the 

thermal properties of PET is that the reduction in Tg is less than 1°C, even at 20 wt.%. 
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Figure 5.21 Tmc curves obtained from the DSC for all NC (PET/Cloisite 25A) 

  

Figure 5.21 illustrates the curves of Tmc for PET/Cloisite 25A at various clay 

concentrations. The addition of more clay leads to an increase in the Tmc value and 

higher crystallisation rates. The exothermic peaks tend to become sharper with adding 

clay content which mean decreasing in the half-term of crystallisation as figure 5.22 

shown. 
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Figure 5.22 Crystallisation half-time for crystallisation from melt states for PET/Cloisite 25A 

 

It seems apparent after reviewing the results of the thermal properties of PET 

nanocomposites with three different nanoclays at various concentrations that the 

nanoclay acts as a nucleation agent for the crystallisation process by increasing the Tmc 

and decreasing the Tgc, while causing no constant trends in the absolute crystallisation 

values (Table 5.1). The final application of PETNC depends on whether this change is a 

disadvantage or an enhancement. Some applications require a high crystallisation rate 

and others a lack of crystallinity in the matrix. For example, hot filling of PET requires 

a heat setting treatment for PET bottles, which also requires high crystallisation rates, 

especially for the bottle neck. However, controlling the crystallisation rate is an 

essential factor. High crystallisation rates can lead to opaque PET products.  
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Sample name Xc (%) 

Ext. vPET  10.06 

PET/MTE (1%)  11.61 

PET/MTE (3%)  11.4 

PET/MTE (5%)  11.12 

PET/MTE (20%)    8.41 

PET/MAE (1%)    8.65 

PET/MAE (3%)  10.29 

PET/MAE (5%)  10.1 

PET/MAE (20%)    8.96 

PET/Cloisite25A (1%)    9.42 

PET/Cloisite25A (3%)  11.36 

PET/Cloisite25A (5%)    9.76 

PET/Cloisite25A (20%)  10.73 

Table 5.1 Crystallinity degree of PET nanocomposites 

Generally, the melt processing temperature of PET is about 10°C above the melting 

temperature. However it is preferable in some regions to avoid a big reduction in the 

glass transition temperature (Tg), and this is a crucial issue in hot countries. For 

example, the distribution of carbonated soft drink (CSD) bottles in some hot countries is 

carried out via uncovered vehicles, which exposes the bottles to the sun. This can raise 

the bottle temperature above 60°C, reaching the deformation stage. 
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5.4.5. Comparative study of PET nanocomposites with different clay types and 

the same loading concentrations 

Figures 5.23 - 5.26 and figures x5.14 - 5.17 (see appendix 5) summarise the effect of all 

three clays (MTE, MAE and Cloisite 25A) at 1, 3, 5 and 20 wt.% contents. From these 

figures, it can be observed which clay exhibits faster and greater changes in thermal 

temperatures or crystallization rates of PET nanocomposites when compared to other 

clays or un-filled PET. For example, an earlier crystallisation onset temperature (e.g. 

high Tmc1) does not mean a higher Tmc. 

 

Figure 5.23 DSC results of PET nanocomposites at 1 wt.% for all nanoclay types 
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Figure 5.24 Tmc curves obtained from the DSC for all clays at 1 wt.% 

  

Figure 5.23 illustrates the DSC results for PET nanocomposites (MAE, MTE and 

Cloisite 25A) at loading concentration 1 wt.%. It is apparent that the Tm and Tg did not 

show any significant variation among the PET nanocomposites themselves or compared 

with unfilled PET. Furthermore, it was found that the MTE (1 wt.%) started the 

crystallisation from melt earlier than the other clays (higher Tmc1), but spent longer in 

reaching the peak of the curve (Tmc), while the other nanoclays (MAE and Cloisite 

25A) at the same concentration started late but recorded a higher Tmc (figure 5.24 

shows this phenomenon clearly). This means that the crystallisation rate of PET 

nanocomposites with MAE or Cloisite 25A is faster than PETNC with MTE, although 

all nanoclays similarly reduced Tgc by around 10°C compared with the un-filled PET. 

However figure x5.14 exhibits similar conclusion for PET nanocomposites at a loading 

concentration of 3 wt.% and the rheological behaviour for the same materials as 

presented before in figure 4.16 assist this observation showing Cloisite 25A responds to 

form a network earlier than the other two nanoclays.  
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Figure 5.25 DSC results of PET nanocomposites at 20 wt.% for all nanoclay types 

 

 

Figure 5.26 Tmc curves obtained from the DSC for all clays at 20 wt.% 

  

A comparison of the thermal properties of PET nanocomposites at the masterbatch 

concentration of 20 wt.% is illustrated in figures 5.25 and 5.26. Cloisite 25A again 
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exhibits a faster crystallisation rate with MTE being the slowest to crystalline. MTE 

shows the lowest Tg, and this may be attributed to the MTE increasing the PET chain 

flexibility more than the other nanoclays. The same comparison study but for levels 3 

and 5 wt.% is shown in figures x5.14-x5-17 with similar conclusion. Most of these 

results agree with other studies of PET nanocomposites or general polymer 

nanocomposites, such as Cho and Paul (2001), Chen et al. (2002), Lie et al. (2006), 

Kracalik and Kovarova et al. (2007), and Calcagon et al. (2007). 
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5.4.6. Thermal properties of PET/MTE films (un-oriented and equal-biaxial 

stretch) 

In this study, un-filled PET and PET/MTE nanocomposite (1, 3 and 5 wt.%) films 

before and after biaxial stretch were analysed using DSC to investigate the effect of the 

equal biaxial stretch film process on the thermal properties of the film. Generally, un-

oriented PET films are in an amorphous state while oriented films (stretched) have a 

partially crystallised state (anisotropic structure) which is formed during the stretching 

process [Kattan (2001)]. The film was stretched at 90°C, above Tg but below Tgc, to 

avoid spherulitic crystallisation [Joel et al. (2007)]. 

The area under the glassy crystallisation curve indicates the quantity of crystallisation 

formed by thermal treatment (during DSC) for PET film. While the oriented film 

already exhibits anisotropic crystallisation and amorphous structure, a lower area under 

the glassy crystallisation curve was expected for an oriented PET film, and that is 

clearly apparent from Table 5.2. 

Film type ΔHgc (oriented) ΔHgc (un-oriented) 

Ext. vPET 28.09 19.07 

PET/MTE (1 wt. %) 27.32 19 

PET/MTE (3 wt. %) 26.92 16.48 

PET/MTE (5 wt. %) 27.63 16.06 

Table 5.2 The enthalpy of crystallinity in heating stage for un-oriented and oriented of un-unfilled 

PET and PET/MTE films at various concentrations. 

It was mentioned earlier that the crystallinity value did not significantly change due to 

the presence of nanoclay, and here the stretch process shows a similar result.  
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Figure 5.27 Part of the DSC curves for extruded vPET film (un-oriented and equal biaxial stretch) 

showing the Tg and Tgc curves 

 

 

Figure 5.28 Part of the DSC curves for extruded PET/MTE 1 wt.% film (un-oriented and equal 

biaxial stretch) showing the Tg and Tgc curves 
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It is apparent from figure 5.27 that stretching the un-filled PET decreased chain 

flexibility and this is indicated by the increase in glass transition temperature (Tg). 

Stretching the film also accelerates the crystallisation temperature of the film from the 

solid phase (Tgc). Similar behaviour was found in PET/MTE at low loading content (1 

wt.%) as figure 5.28 shows.  

 

Figure 5.29 Part of the DSC curves for extruded PET/MTE 3 wt.% film (un-oriented and equal 

biaxial stretch) showing the Tg and Tgc curves 
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Figure 5.30 Part of DSC curves for extruded PET/MTE (5 wt.%) film (un-oriented and equal 

biaxial stretch) showing the Tg and Tgc curves  

Adding further MTE filler (e.g. 3 or 5 wt.%) leads to the MTE starting to build up 

crystallinity immediately after the glass transition temperature in the case of the 

stretched film, as figures 5.29 and 5.30 show. 

This confirms that the stretch process forms crystalline structures inside the PET matrix. 

The above figures show that the stretching accelerated Tgc and this acceleration 

increases in the presence of a nanoclay. The faster start in building the crystallisation 

structure in the presence of the nanoclay could be attributed to the fact that the stretch 

process expands the gallery space (d-basal), which means a high contacting surface 

between the nanoclay platelets and the PET matrix, which may lead to an earlier 

nucleation process. 

The decrease in crystallisation temperature from solid (Tgc) for un-filled PET films (see 

figure 5.27) agrees with other researchers‘ results, such as Zaroulis and Boyce (1997), 

who investigated the effect of uniaxial stretch on the crystallisation temperature (Tgc) of 
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PET films at various stretch ratios and different temperatures. The Tgc decreased 

markedly on increasing the stretch ratio, and the authors attributed this to the orienting 

of the macromolecular network leading to the formation of the crystallisation structure. 

The changes in thermal temperatures of the film due to stretching were only seen in the 

glass transition temperatures (Tg) and crystallisation temperatures from the solid (Tgc), 

while no significant change occurred in melting temperatures (Tm) or crystallisation 

temperatures from melt (Tmc). The full DSC curves for the un-filled and PET/MTE 

films are shown in appendix 5 (see figures x5.10 - x5.13). 
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5.4.7. Double melting endotherm behaviour of PET 

I. Introduction 

Multiple melting endotherms have been observed with many semi-crystalline polymers, 

copolymers and blends. Many reasons have been invoked to explain this phenomenon 

and it seems clear that this can be explained by one of the following mechanisms: the 

presence of more than one polymorphism; changes in morphology; and/or the effect of 

molecular weight distribution [Kong (2003)]. 

Bell and  Murayama (1969) and Bell and Dumbleton (1969) observed two endotherms 

and proposed that the lower represented the melting of imperfect or smaller crystals 

with partially extended chains while the higher was associated with the melting of 

folded chain crystals. Also they considered in their results that more extended crystals 

were preferred kinetically and the folded chain crystals converted to extended chain 

crystals, on annealing during heating.  

Furthermore, Roberts (1969) observed two endotherms and proposed that the lower 

melting endotherm represented the melting of folded chain crystals and the higher 

represented bundle-like crystals. Both Bell‘s and Robert‘s conclusions were based on 

the assumption that the melting endotherms were directly related to the structures that 

developed on crystallisation. These authors did not consider the effect of the heating 

rates.  

Holdsworth and Turner-Jones (1971) observed two endotherms and suggested that the 

lower endotherm was due to the melting of crystals formed at the crystallisation 

temperature while the higher endotherm was due to annealing on heating. Zhou and 

Clough (1988) were the first to report three melting endotherms in the melting of PET 
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and they labeled the endotherms I, II and III. They attributed endotherm I to the melting 

of crystals formed during secondary crystallisation, endotherm II to the melting of 

crystals formed during primary crystallization, and endotherm III to those formed as a 

result of re-crystallisation on heating.  

Medellin-Rodriguez et al. (1996; 1997) reported a different view from that of Zhou and 

Clough. The melting behaviour of PET was studied using DSC, polarised light 

microscopy and small angle x-ray scattering (SAXS). They found that melting was the 

morphological reversal of crystallisation with respect to the primary and secondary 

structures produced. They considered that endotherm I occurred in metastable 

crystalline material when the small branches melted, endotherm II resulted from the 

melting of metastable secondary branches, and endotherm III was associated with 

dominant branches, which underwent some recrystallisation on heating. 

Normally, PET pellets (e.g. bottle grade) have one melting temperature around 250°C. 

The double melting endotherm is generally caused by an insufficient solid state 

polymerisation (SSP) process treatment for the PET pellets. During the standard SSP 

process, the material goes through certain stages and each stage exhibits a typical DSC 

profile, as shown in figure 5.31 [Culbert and Christ (2003)]. 
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Figure 5.31 Schematic of DSC diagram for PET pellets during SSP process 

 

It can be seen in figure 5.31 that the exothermic peak of the PET pellets caused by 

primary crystallisation before the crystallisation stage (figure 5.31-A) has disappeared 

and an endothermic low melting peak has taken its place (figure 5.31-B) due to crystals 

formed in the crystallisation section. This is necessary to raise the temperature above the 

intended SSP temperature before processing at a higher SSP temperature. This action 

can reduce the risk of sintering later on the SSP column. Also the polymer has a 

tendency to stick at lower temperatures and so this higher range is again preferred. The 

phenomenon of sticking is a very severe engineering problem in SSP and indeed in any 

drying process. This low melting peak (figure 5.31-B) tends to move to a higher 

temperature and its size increases during drying which obviously leads to the formation 

of a double melting peak (figure 5.31-C). With sufficient SSP processing through the 

SSP reactor, the double melting behaviour becomes a single melting peak (figure 5.31-

D).  
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Jabarin and Lofgren (1986) studied the effect of SSP processing parameters on melting 

endotherms and they found that the temperature and residence time have major effects. 

Table 5.3 summarises their results. 

 

Table 5.3 First and second melting endotherms under various SSP processes. 

 

As Table 5.3 shows, on increasing the temperature and time for the SSP process the first 

endotherm will disappear. A typical residence time in the SSP process is in the range of 

10 – 20 hrs at a temperature of 210°C. 

II. Study of the experimental technique for double melting endotherms 

Polyethylene terephthalate (PET) resin was supplied by Tergal Industries (France) at 

grade F9 and intrinsic viscosity 0.8dl/g. A Differential Scanning Calorimeter (DSC) was 

used with different scenarios as follows: 

[A] Heat from 35 to 300°C with heating rate 20°C/min. 

[B] Heat from 35 to 300°C with heating rate 10°C/min. 

[C] Heat from 35 to 190°C with heating rate 10°C/min, then keep isothermal for 

20mins, then heat from 190 to 300°C with heating rate 5°C/min. 

[D] Heat from 35 to 300°C with heating rate 0.5°C/min. 

[E] Heat from 35 to 300°C with heating rate 0.1°C/min. 

SSP process T̀m°C (1
st
 endotherm) Tm°C (2

nd
 endotherm) 

200°C for 4 hrs 233 254 

210°C for 4 hrs 239 254 

220°C for 4 hrs 245 248 

225-230°C for 8 hrs --- 246 
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Furthermore, a Modulate Differential Scanning Calorimeter (MDSC) was used for 

further investigation with an experimental protocol of: 

 [F] Heat from 35 to 300°C with heating rate 4°C/min and modulation of (± 0.4°C) 

every 40seconds. 

III. Results and discussion of the double melting endotherms study  

Figure 5.32 shows the DSC curves for scenarios A–E. It is clear that each curve shows 

two melting endotherms. Also it is clear that on decreasing the heating rate the two 

endotherms tend to separate from each other to form individual peaks, and the first 

endotherm peak tends to disappear. 

 

Figure 5.32 Double melting endotherm behaviour with different heating rates 
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Figure 5.33 Shape of double melting endotherms for heating rates of 20°C/min and 0.5°C/min, in 

sequence 

 

Figure 5.33 shows that on decreasing the heating rate the two endotherms mentioned 

earlier become clearer, tending to form separate peaks, while the first peak tends to 

disappear 

 

Figure 5.34 MDSC curves for the [F] scenario. 

  

From the MDSC curves (figure 5.34) the total heat flow curve (green line) confirms the 

availability of double melting endotherms, which means the material has more than one 
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polymorphism. The non-reversible heat flow (brown line) shows that the non-stable or 

imperfect crystals start to melt at a low temperature and simultaneously the melt 

recrystallises until the temperature rises to around 243°C, where the polymer 

completely melts the stable crystal or the crystal forms as result of recrystallisation 

during heating. The reversible curve (blue line) averment the simultaneously melting 

crystallinity by showing that the melt starts at a low temperature and continues till the 

polymer completes melting, which means while the recrystallisation occurs the melting 

also occurs. 
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5.5 Conclusions 

 

 The main objective of this chapter is to analyse the thermal property results 

obtained from analysing PET nanocomposites using DSC in order to study the 

effect of adding nanoclays on the thermal behaviour of PET. 

 It was observed that all three nanoclays used in this project (MAE, MTE and 

Cloisite 25A) act as nucleation agents for the crystallisation process by 

increasing the Tmc and decreasing the Tgc, while causing no consistent trends in 

the absolute crystallisation values. 

 It also noticed that the change in the Tg and Tm in the presence of nanoclay was 

small. 

 With increasing clay content, the curve moves to the right (higher Tmc 

temperature) and gets sharper (decrease in the t
1/2

) which indicates the 

crystallization rate is increased. 

 Unfilled PET and PET/MTE nanocomposite (1, 3 and 5 wt.%) films before and 

after biaxial stretch were analysed using DSC to investigate the effect of the 

equal biaxial stretch film process on the thermal properties of the film. 

 Stretching the un-filled PET film decreased chain flexibility and this is indicated 

by the increase in glass transition temperature (Tg). Stretching the film also 

accelerates the crystallisation temperature of the film from the solid phase (Tgc). 

 Adding further MTE filler (e.g. 3 or 5 wt.%) leads to the MTE starting to build 

up crystallinity immediately after the glass transition temperature in the case of 

the stretched film. This confirms that the stretch process forms crystalline 

structures inside the PET matrix. It is also observed that the stretching 

accelerated Tgc and this acceleration increases in the presence of a nanoclay. 
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The more rapid start in building the crystallisation structure in the presence of 

the nanoclay could be attributed to the fact that the stretch process expands the 

gallery space (d-basal), which means a high contact surface between the 

nanoclay platelets and the PET matrix, which may lead to an earlier nucleation 

process. 

 Semi-crystallised PET pellets as received from the supplier (Tergal F9) were 

used to investigate the double endotherm melting temperatures exhibited in the 

first heating stage of the DSC test. With sufficient SSP processing through the 

SSP reactor, the double melting behaviour becomes a single melting peak. 
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Chapter six 

6. The cold drawing of polyethylene terephthalate (PET) amorphous film: 

The objectives of this chapter are to investigate the mechanical properties of the 

amorphous film of PET nanocomposites which are produced via cast film extrusion (see 

section 3.3.2) and amorphous micro-size samples of PET nanocomposites which have 

been prepared by a micromoulding injection machine (see section 3.3.3) using tensile 

testing or cold drawing. The injection speed in the injection processing of polymer 

nanocomposites can have major implications for the mechanical properties of the 

polymer NC product and the dispersion of the nanofiller into the polymer matrix. The 

micromoulding injection process has been run under various injection speeds to 

investigate this injections‘ effect on the final product mechanical properties. The final 

PET forming process (e.g. for bottles, films etc.) exposes the material to some physical 

effects such as biaxial tension for film packaging or bottle production so this study may 

give an indication on nanoclay effects on these properties. 

The effect of uniaxial stretch ratio on the tensile modulus of the amorphous films has 

been studied. The tensile modulus results of PETNC films are correlated to the TEM 

images results for the same films.  This chapter starts with a brief introduction about the 

mechanical properties and then presents the observations and outputs of some previous 

studies on the effect of nanofillers on the mechanical properties of the polymer. Prior to 

the discussion of this study‘s results, the experimental procedures of the tests are 

presented. 
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6.1 Introduction: 

Polymer matrices have much lower modulus than the hard particles and this can be 

derived from the Halpin-Tsai equation [Ke et al. (1999)].  In general, it has been found 

that mechanical properties of polymer nanocomposites are greatly improved when the 

nanoclay particles have a high degree of exfoliation and have good affinity with the 

matrix polymer. [Sanchez-Solis et al. (2003)]. 

Some polymers (have high modulus at room temperature) such as polystyrene, 

polymethyle methacrylate and amorphous PET (when quenched from the melt state) but 

other polymers have low modulus at room temperature such as natural rubber. 

Stretching the amorphous PET can produce orientation and this orientation leads to 

juxtaposition of the molecules to produce small regions in three-dimensional orders 

known as crystallinity. [Ward and Sweeney (2004)] 

Brittleness of polymer nanocomposites is a common problem. The impact strength 

decreases with increases the tensile modulus [Utracki et al. (2007) and Pavlidou 

(2008)]. The nanometric scale additive may lead to restriction in the mobility of the 

PET molecules.  

Direct evidence of the dispersion of the nanoclay into the polymer matrix can be 

provided by TEM technique. TEM images cannot be taken individually as evidence of 

good dispersion of the platelets but can assist other results especially the tensile test. 

Because the images represent a very small area the dispersion within the whole matrix 

can still be unclear. The distinguish and unique of TEM test is that it can be used to 

demonstrate whether the platelets are exfoliated or intercalated. 
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6.2 literature review: 

Brandao et al. (2006) reported a successful attempt to prepare PET nanocomposites with 

lamellar zirconium phosphorous via twin-screw extrusion at 280 °C with a screw speed 

of 90 rpm in order to investigate the mechanical and thermal properties of the 

composites. It was observed that the moduli increased with addition of filler, this being 

attributed to the enhancement of crystallinity degree which was induced by the 

nanofiller nucleation, and the presence of the inorganic phase. It was found that 

increasing filler level from 2 to 5 wt.% did not show any significant increase in the 

mechanical modulus. Usuki et al. (1995) ascribed the enhancement of the mechanical 

properties to the strong interaction between the filler layers and the polymer molecules 

while Wang and Gao (2004) attributed this phenomenon to decrease in spherulite size as 

well as physical crosslinking associated with the nanofiller. 

Frounchi and Dourbash (2009) studied the permeability properties of PET/ (Cloisite 

15A and Nanolin DK2) nanocomposites prepared by twin screw extrusion (this paper is 

covered in detail in chapter 7). In additional to the barrier properties presented, the 

authors reported that the tensile modulus of PET were nanocomposites enhanced 

compared with un-filled PET. PET/Cloisite 15A shows fluctuation in the tensile results 

with increasing tensile modulus at 1 wt. %; this decreasing at 2 and 3 wt.% prior to an 

increase for 4 wt.%. This may be attributed to many reasons such as the incompatibility 

of Cloisite 15A with the PET matrix due to the differences in the polarity or the high 

thermal processing temperature used during preparation of the films (melted at 275 °C 

for a long time). DK2 addition increased the tensile modulus gradually at 1 and 2 wt. % 

but to lower than values for the Cloisite 15A nanocomposites. The authors state that 
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adding the nanoclay at high concentrations may lead to reduction in the tensile modulus 

due to aggregation of the nanoclay. The organic montmorillonite (DK2) has been also 

used by Wang and Gao et al.  (2006) in order to prepare PET nanocomposites via twin 

screw extrusion.  

 

 
Figure 6.1 Tensile strength vs. DK2 content. [Wang and Gao et al. (2006)] 

 

The authors observed that adding greater that 1 wt.% of DK2 decreased the tensile 

modulus of the PET (figure 6.1). It was reported by the authors that the large specific 

area of DK2 leads to a strong interaction between PET matrix and the organoclay and 

this interaction is not complete at high organoclay concentrations. 

Fornes et al. (2001) studied the effect of the molecular weight of nylon 6 on the 

nanocomposites properties. Three different molecular weights (Mw) of nylon 6 (Mn(low) 

= 16400, Mn(medium)= 22000 and Mn(high) = 29300 g/mol) were compounded with 

organoclay via a twin screw extruder then the nanocomposite pellets were injection 
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moulded into tensile specimens. The authors observed that adding the organoclay 

enhanced the stiffness of the nylon 6 nanocomposites for all molecular weights. The 

improvement continued with adding more nanoclay. It was found that at any given 

nanoclay concentration, the stiffness increased with increasing Mw of nylon 6. 

A studying on the effect of ionic groups on PET/nanoclay nanocomposites was 

conducted by Barber and co-workers (2005). Three different types of nanoclay (Cloisite 

Na, 10A and 15A) at the same concentration (5 wt.%) were compounded via melt 

extrusion process (twin screw extruder) with PET-ionmers (ionic content 1.8, 3.9 and 

5.8 mol %). The authors reported that the mechanical properties of non-ionic PET 

increased with adding nanoclay and Cloisite 10A NCs exhibited the highest tensile 

modulus. Furthermore, adding ionic to the PET nanocomposites further enhanced the 

tensile modulus.  

 

 
Figure 6.2 Tensile modulus vs. ionic content for nanocomposites made with different types of 

nanoclays. No Cloisite (♦), 5% Cloisite Na (●), 5% Cloisite 10A (▼) and 5% Cloisite 15A (■). 

[Barber et al. (2005)]. 
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As figure 6.2 shows, the tensile moduli of PET ionomers/nanoclay nanocomposites 

exhibit greater improvement compared with PET nanocomposites without ionomers and 

the authors attribute this to strong interactions between the silicate layers and the 

sulfonic acid groups in the PET ionomers which leads to a high degree of exfoliation. 

This conclusion was backed up with TEM and XRD results. 

Enhancing the mechanical properties of recycled PET (rPET) by adding nano-fillers has 

been studied and reported in many papers. Bizarria et al. (2007) prepared 

rPET/nanoclay nanocomposites by twin screw extruder and generally found that 

nanoclays enhance the tensile strength and stiffness of rPET compared with un-filled 

rPET. This enhancement was attributed to a good clay dispersion as observed in TEM 

and WAXS results. Figure 6.3 shows the Young‘s modulus of rPET/nanoclay 

nanocomposites. 

 

 
Figure 6.3 Tensile modulus of rPET/clay nanocomposites [Bizarria et al. (2007)]. 

 

It seems clear from figure 6.3 that nanoclay levels greater than 1 wt.% did not show any 

further significant enhancement in the tensile modulus. Preparing the rPET 

nanocomposites tensile specimens under high processing temperature during the 

compounding and then the injection processes may have degraded the rPET matrix and 
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the nanoclay which may hinder further investigation of the rPET nanocomposites tensile 

modulus. 

  

Kim et al. (2009) introduced carboxylic acid groups on the surface of carbon nanotubes 

(CNT) prior to compounding with high intrinsic viscosity PET (I.V approximately 1.07 

dl/g). The authors aimed to increase the interaction between the PET matrix and the 

nanotubes through modification since the mechanical, thermal and rheological 

properties mainly depend on the interfacial interaction between the nanotubes and the 

PET matrix. It was observed that the modified CNTs achieved higher mechanical 

properties more than un-modified CNT. Furthermore, adding more modified CNT 

significantly increased the mechanical properties of PET nanocomposites and this was 

attributed to the possibility of interaction occurring between the ester groups in the PET 

and the carboxylic acids groups which can lead to better interfacial adhesion between 

the CNT and PET matrix. Adding CNT to the PET matrix leads to increase in the 

stiffness of the matrix which results in the decrease of elongation at break. 

Tarverdi and Sontikaew (2008), aimed in their work to study the effect of using 

different concentrations of modifier on the rheology, morphology and product tensile 

properties, also studying the effects of different process melt temperatures on these 

properties. Cloisite 10A and Nanofil-2 (N2) organoclays were used in this study as both 

of them are coated with the same surfactant but the percentage of surfactant in 10A (125 

meq/100g) is greater than for N2 (75 meq/100g). It was observed that the processing 

temperature (255 and 280 °C) did not produce different effects on the tensile properties 

of un-filled PET and PET nanocomposites amorphous films. The PET/Cloisite 10A 

nanocomposite exhibited better tensile modulus enhancements compare with PET/N2 

nanocomposite though both were improved upon un-filled PET. Furthermore, SEM 
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results showed the degree of Cloisite 10A dispersion in the PET matrix to be greater 

than for N2. 

Sanchez-Solis et al. (2003) added compatibilizer to increase the compatibility between 

the PET matrix and nanoparticles (Cloisite 15A) and studied the thermal behaviour and 

the mechanical and rheological properties of the PET nanocomposites. The authors 

reported that even without reaching the complete exfoliation, the tensile and strength 

modulus increased by 32% and 30 % respectively with increasing the clay concentration 

in the presence of the compatibilizer. 

Pegoretti et al. (2004) prepared and characterized recycled PET/clay nanocomposites. 

Recycled PET (rPET) pellets and two montmorillonite clays (Cloisite Na
+
 and Cloisite 

25A) were used to produce PET nanocomposites with 1, 3 and 5 wt.% via melt 

compounding with a co-rotating screw extruders. Scanning Transmission Electron 

Microscopy (STEM) was used to evaluate the dispersity of the nanocomposites and it 

was found that the Cloisite 25A gave much better dispersion compared to Cloisite Na
+
. 

Also Wide Angle X-ray Scattering (WAXS) measurements indicated increased lamellar 

periodicity of Cloisite 25A in the composition which implies intercalation occurred.  It 

was observed that both nanoclays enhanced the modulus of rPET nanocomposites. 

 

The micromoulding process becomes a key process for the manufacture of very small 

scale polymer nanocomposite products. Nanocomposites are suitable for micromoulding 

applications since they provide benefits in terms of ease of processing as well as 

enhanced final properties. Polymer materials are exposed to harsh process conditions in 

the micromoulding process compared with conventional injection moulding [Zhao et al. 

(2003)]. 
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By controlling the orientation of the polymer chains during the injection moulding 

process, the mechanical properties of the polymer product can be enhanced. The shear 

extension flow of semi-crystalline polymers during injection moulding can induce high 

molecular orientation [Zhong et al. (2006)] 

Wang et al. (2004) studied the effect of the shear rate on clay dispersion in a 

polypropylene matrix during the injection moulding process. The authors observed that 

using chemical modification of the clay with shear, the dispersion of the clay into 

polymer matrix was enhanced exhibiting an exfoliated morphology within the core and 

an intercalated morphology in an oriented zone. Yalcin et al. (2003) investigate the 

effect of processing conditions and nanoparticles on local microstructure of nylon 6 by 

variation of the injection speed and mould temperature. The samples were prepared at 

two different injection speeds (2.02 and 17 cm/s) and mould temperatures (50 and 

130°C). The authors found that the orientation of the polymer matrix can be enhanced 

by the nanoplatelets throughout the mould thickness due to the effect of shear 

amplification that occurs in the narrow gap between the tightly packed nanoplatelets at 

different speeds. The authors also observed high orientation levels in the core of 

moulded parts. 

Hsiung et al. (1993) and Hsiung and Cakmak (1993) observed similar behaviour for 

liquid crystal polymers. Furthermore Yalcin and his team (2003) presented schematics 

of the organization and orientation of the nanoplatelets from skin to core for the samples 

moulded at 50 and 130°C as shown in figures 6.4 and 6.5. 
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Figure 6.4 Schematic of nanoplatelets orientation from skin to core for specimens moulded at 50°C 

 

 
Figure 6.5 Schematic of nanoplatelets orientation from skin to core for specimens moulded at 

130°C 
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6.3 Experimental work: 

The tensile tests in this study were applied on samples produced via both extrusion and 

injection moulding process. The method of producing the un-filled PET and PETNC 

films using the cast film extrusion was covered in section 3.4.2 while section 3.4.3 

covered the micro-moulding injection process used to prepare the micro-size tensile 

bars. 

Tensile tests applied on the film and micro-size samples. An Instron 5564 tensile test 

machine was used to test the mechanical properties of the films PET and a Bose 

ElectroForce machine was used to test the mechanical properties of the micro-size 

tensile bars. Section 3.5.7 described these equipments in detail. 

Transmission Electron Microscopy (TEM) was used to characterise the PET 

nanocomposite films as described in section 3.5.8. These TEM micrographs of PET 

nanocomposites were used to assist the results from the tensile tests. 
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6.4. Results and discussion: 

In this section, the results of the tensile tests of un-filled PET and PET nanocomposites 

films (using Instron 5564) are discussed to show the effect of nanoclays on the 

mechanical properties of the samples. The tensile tests of un-filled and PET 

nanocomposites micro-moulded samples (using the Bose Electroforce (see 3.5.7)) are 

also discussed to investigate the effect of injection speed on the mechanical properties 

of the samples. 

6.4.1 Tensile testing for un-filled PET and PET nanocomposites films 

 

Figure 6.6 Typical stress-strain curve for cold drawing of PET film. (window shows method for 

calculation of tensile modulus) 

 

Figure 6.6 shows a typical cold draw plot for PET films obtained from our tensile tests. 

The stress increases linearly with strain as load is applied to reach the maximum point 

prior to necking occurring which leads to a drop in the stress to a local minimum. The 

necking is associated with an initial maximum point in the stress-strain curve. This 
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necking phenomenon can not be attributed to the changes in the sample geometry alone. 

Whitney and Andrews (1967) and Brown and Ward (1968) showed that the stress used 

for initiation of the yield is greater than the stress required for yield propagation. 

 

Figure 6.7 Tensile modulus of PETNCs films vs. clay contents at tensile test speed of 5 mm/min 

 

The tensile test for the PET nanocomposite films was conducted at two different 

crosshead speeds; 5 and 50 mm/min. The influence of adding nanoclay to the PET 

matrix on the tensile modulus of un-filled PET and PETNC films at different test speeds 

is illustrated in figures 6.7 and 6.8. At the lower speed test (5 mm/min), Somasif MTE 

exhibits the greatest increase in the tensile modulus. In contrast Cloisite 25A (1 wt.%) 

reduced the tensile modulus then enhanced these values at higher loadings.  

It is enlightening to consider the reasons leading to these results. The improvement in 

the tensile modulus when adding MAE or MTE can be attributed to many reasons such 

as the good dispersion of these clays within the PET matrix as the TEM images in 

figures 6.9 and 6.10 show. The good compatibility between the PET chain and MTE or 
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MAE clays contribute to this improvement. The large intergallery spacing and greater 

aspect ratio of the MTE and MAE platelets compared with the Cloisite 25A platelets 

may increase the diffusion rate of PET macromolecules into the Somasif (MAE and 

MTE) intergallery space compared to the Cloisite 25A. This may enable the Somasif 

clays to enhance the interfacial adhesion between the clay platelets and the PET matrix. 

The orientation of the PET chain which occurs during the tensile stretch also increases 

the strength of the material as well as aligning the nanoclays‘ platelets. 

Although the poor dispersion may lead to a reduction or very small increase in the 

mechanical properties of the polymer. Here we have Cloisite 25A as good example to 

show what is the effect of relatively poor dispersion (little intercalation around tactoids 

area) on the polymer behaviour especially the mechanical properties. The drop in the 

tensile modulus of PET/Cloisite 25A (1 wt.%) may be attributed to the agglomeration of 

the nanoclay within the PET matrix as TEM images show (see figure 6.11) and the 

orientation of the PET chain eliminates some of the failure caused by the nanoclay by 

increasing the strength of the chain and aligning the nanoclay‘s platelets. The small d-

space and the shorter aspect ratio of the Cloisite 25A platelets may also be counted as 

one of the reasons. Nevertheless the failure to enhance the mechanical properties does 

not necessarily means corresponding deterioration in other properties. PET/Cloisite 25A 

films exhibit excellent gas barrier improvements (see chapter 7) and act as nucleation 

agents as seen in the crystallisation temperature and rate results shown in chapter 5. 
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Figure 6.8 Tensile modulus of PETNCs films vs. clay contents at tensile test speed of 50 mm/min 

 

The higher speed tests may be expected to produce high modulus values because it will 

simulate stiffer molecules while the slower speed will allow the molecules to respond 

flexibly and exhibit lower tensile modulus. Un-filled PET and PET/MAE 

nanocomposites films tested at 50 mm/min show increases in the tensile modulus 

compare to the same samples tested at the lower speed (5 mm/min). However PET/MTE 

nanocomposites films exhibited higher modulus values at the lower speed, this being 

attributed to excellent dispersion of the MTE within the PET matrix or, in other words, 

the dispersion aspect was few exfoliations around intercalation and the slower speed 

gave more time to the nanoclay platelets to align and reinforce the matrix. This 

phenomenon was not observed for PET/MAE while it exhibit a good dispersion aspect, 

may be because the dispersion aspect did not hold any exfoliation aspect so most of the 

platelets already align.  
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The above results are further presented in figures x6.1-x6.12 showing the tensile 

modulus vs. clay content at the two crosshead speeds (5 and 50 mm/min.). 

 

Figure 6.9 TEM micrographs for PET/MAE nanocomposites films at various clay concentrations 

 

 

Figure 6.10 TEM micrographs for PET/MTE nanocomposites films at various clay concentrations 

 

 

Figure 6.11 TEM micrographs for PET/Cloisite 25A nanocomposites films at various clay 

concentrations 
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All TEM micrographs have been taken at one resolution and the scale bars (0.5 μm) are 

specified for each image. From the TEM images, it seems clear that the use of the 

synthetic clay (Somasif MAE or Somasif MTE) provides better dispersion when 

compared to Cloisite 25A. This can be attributed to smaller the gallery space for 

Cloisite 25A, the larger aspect ratio of the Somasif clays as well as the organic modifier 

used in the synthetic clays which can help ‗bond‘ the clay to the polymer matrix and 

thus enhance the affinity more than for the non-synthetic Cloisite 25A. Also as 

mentioned before (see section 2.4), the synthetic clay has well controlled chemical and 

physical properties while the nature clay shows variability with properties of polymer 

nanocomposites. 

TEM images shown in figure 6.11 show PET containing various Cloisite 25A loading 

which show large grouping of Cloisite 25A platelets appearing as dark spots or, in other 

words the images show a tactoid morphology. Little intercalation occurs around these 

tactoid regions. 

Figure 6.10 contain 3 images of PET/MTE nanocomposites films and demonstrate that 

the MTE nanoparticles exhibit good dispersion with in the PET matrix without large 

tactoids being present. 
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6.4.2 The interplay of injection speed and nanoclay levels on the mechanical 

properties of PET nanocomposites 

In this section the stress-strain curves obtained from the Bose Elctroforce are discussed. 

The effects of nanoclay on the tensile modulus of the PETNC were covered in section 

6.4.1 so we will focus this discussion on the area after the yield point until the break 

point. Due to the limitation of tensile elongation that the equipment can offer (12 mm), 

the break point for some samples was not reached. Figures 6.12 - 6.15 show the stress-

strain curves for extruded vPET and some PETNCs at various injection speeds (100, 

400 and 700 mm/s). The rest of the PETNC stress-strain curves are shown in appendix 6 

(see figures x6.13-x6.18). 

 

Figure 6.12 Stress-strain curve for extruded vPET micro size sample prepared at different injection 

speeds 

The stress-strain curves for extruded vPET are shown in figure 6.12 and it is clear that 

the samples at various injection speeds exhibit such long elongation that the equipment 

did not allow the materials break point to be reached. The extruded vPET samples 
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produced at injection speed 400 mm/s show the highest stress values and the samples 

produced at injection speed 100 mm/s record the lowest stresses. 

 

Figure 6.13 Stress-strain curve for PET/MTE (1 wt.%) micro size sample prepared at different 

injection speeds 

 

Moreover the stress-strain curve for PET/MTE (1 wt.%) exhibits the same trend and 

phenomenon as the ext. vPET samples (figure 6.13). It is again clear that the samples 

produced at 400 mm/s exhibit the higher stress of the three samples. 
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Figure 6.14 Stress-strain curve for PET/Cloisite 25A (3 wt.%) micro size sample prepared at 

different injection speeds 

 

 

Figure 6.15 Stress-strain curve for PET/MAE (5 wt.%) micro size sample prepared at different 

injection speeds 
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Figures 6.14 and 6.15 show the stress-strain curves for PETNC at 3 and 5 wt.%. It is 

clear that the nanoclay increases the brittleness of the polymer nanocomposites. 

Although the difference with injection speeds exhibit a variety response to the tensile 

tests. Figures 6.12 to 6.15 represented random results of the tensile test from each 

PET/clay nanocomposites and the rest results have been plotted and listed in appendix 6 

(see x6.13 to x6.18). 

These results show that there appears to be an optimal injection speed and this 

observation in agreement with other studies‘ observations such as Ulcer et al. (1996) 

and Chan et al. (2002). It also show that the processing conditions such as injection 

speed are crucial factors affecting the mechanical properties of injection moulded 

products. 

The normal phenomenon of micro-moulding skin/core structure for injection moulded 

samples may be expected to occur in our samples. As PET is a semi-crystalline 

polymer, it is expected for the molecular chains to orient in the flow direction and form 

shish-kebab crystalline structures in the skin layer due to the high injection speeds and 

rapid cooling as observed by Fujiyama et al. (1998) and Viana (2005). On the other 

hand, the chains of the PET molecules have less orientation and may present a mixture 

of shish-kebab and spherulite crystalline structure. In micro-size samples, as for thin 

wall mouldings the thickness is usually very small so the local cooling rates are very 

high which means the relaxation time is very short. 

In the low injection speed samples (100 mm/s) the microstructure of the sample may 

consist of two thick skin layers surrounding a thin core layer so the orientation of the 

samples is very high in the skin layer and low in the core. In contrast the skin layer is 

very thin and the core thick in the case of samples injected at 700 mm/s.  
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It would be interesting to examine these layer sizes using Polarised Optical Microscopy 

(POM) but this was not achieved owing to time constraints. 

The stress-strain curves results in presence of nanoclays are shown in figures 6.13 to 

6.15 and show that the brittleness increases with increasing clay content. Furthermore 

the nanoplatelets may be expected to induce the orientation of the polymer matrix as a 

result of the effect of the shear amplification that occurs in the narrow gap between the 

close nanoplatelets in addition to the orientation created by the shear rate. The core of 

the moulded PETNC samples may be expected to have bit high orientation level due to 

the presence of nanoplatelets. 
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6.5 Conclusion 

 The uniaxial tensile properties of un-filled PET and PET nanocomposites for 

films produced by cast extrusion and specimens produced from micro-moulding 

injection machine were tested. 

 The objectives of this study were to investigate the effect of nanoclay on the 

tensile modulus of the PET product and the effect of nanoclay and the injection 

speed on the resultant stress-strain curves. 

 The mechanical properties results of PET nanocomposite films correlated well to 

the TEM micrographs for the same films. 

 At the lower speed film sample test (5 mm/min), Somasif MTE exhibits the 

greatest increase in the tensile modulus compared with the other nanoclays. 

Cloisite 25A (1 wt.%) reduced the tensile modulus prior to enhancement at 3 and 

5 wt.% levels. 

 The improvement in the tensile modulus when adding MAE or MTE can be 

attributed to many reasons such as the good dispersion of these clays within the 

PET matrix as the relevant TEM images show. 

 The good compatibility between the PET chain and the MTE and MAE clays 

contributed to this improvement. The large inter-gallery spacing and greater 

aspect ratio of the MTE and MAE platelets when compared with Cloisite 25A 

increases the diffusion rate of the PET macromolecules into the inter-gallery 

space which enabled the Somasif clays to enhance the interfacial adhesion 

between the clay platelets and the PET matrix 

 The drop in the tensile modulus of PET/Cloisite 25A (1 wt.%) may be attributed 

to agglomeration on the nanoclay within the PET matrix as shown in TEM 

images while the orientation of the PET chains reduces some of the failure 
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caused by the nanoclay by increasing the strength of the chain and aligning the 

nanoclay‘s platelets 

 The failure to enhance the mechanical properties does not necessarily mean a 

reduction in other important properties. 

 The tensile test results for the micro-moulded parts show that the processing 

conditions such as injection speed are crucial factors affecting the mechanical 

properties of polymer injection moulded products. 

 The nanoplatelets counted as molecular chains orientation inducer when the PET 

molecules penetrate between the narrow gaps of the platelets at high speed. 

 It was shown that a ‗medium‘ injection speed (400mm/s) gave the best 

mechanical properties in terms of elongation to break as well as ultimate tensile 

strength. 
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Chapter seven 

7. The permeability of PET nanocomposites 

The main objective from this chapter is to study the effect of adding nanoclay on the 

barrier properties of PET film. The permeability of the PETNC films which produced 

via cast film extruder were measured. This chapter is divided into four sections: the first 

covers an introduction and a literature review on the barrier properties of PET 

nanocomposites, the second describes the barrier measurement procedure, the third 

covers the current barrier results and analysis, and the fourth is the conclusion. 

7.1. Introduction 

Traditionally materials such as glass and metal were the major materials for the 

packaging markets especially for food and beverages. Currently, polymeric materials 

such as PET have overtaken these materials owing to their lighter weight, flexibility and 

toughness. 

Recent improvements in permeability properties for polymer products have further 

increased their advantages. Mark (2004) defined permeability as the steady state rate of 

mass transport or penetration of molecules through a polymer. 

PET has good permeability properties. When PET is used in carbonated soft drink 

(CSD) packaging or oxygen-sensitive material packaging, it does not form a good 

barrier to carbon dioxide or oxygen. The diffusion of oxygen into the bottle and the loss 

of carbon dioxide or aroma from the bottle content depend on the barrier properties of 

the bottle wall, which is therefore an important factor in PET packaging production. 

Many applications require a long shelf life (e.g. carbonated soft drink (CSD), baby food 

and fruit juices) and PET cannot be a suitable material for these applications unless it 
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has good enough barrier properties. Therefore researchers driven by the needs of PET 

manufacturers have used different materials and techniques to enhance the barrier 

properties of PET for there applications. Using a polymer which has good barrier 

properties with PET (e.g. EVOH, PVDC or MXD6) to produce a multilayer structured 

product is one method that has been used to enhance the barrier properties of PET 

packaging without affecting other important properties such as transparency (see figure 

7.1).  

 

Figure 7.1 Schematic of 5-layer bottle. 

This method gives a significant reduction in gas permeability. Its disadvantages are the 

difficulty of preform production using co-extrusion and co-injection technologies, 

operation and energy costs, lengthy processing time, and the difficulty of stretching and 

blowing the multilayer preforms. Another method of extending the shelf life of sensitive 

drinks is to apply an internal and external coating to the bottle using vacuum or plasma 

coating technology (figure 7.2), which sprays on a thin layer of barrier material. This 

thin layer can enhance the barrier properties of PET packages with regard to gases. The 

Sidel company uses a process called ACTIC
TM

 (Amorphous Carbon Treatment on 

Internal Surface) to enhance the barrier properties of PET packages. The US FDA (Food 

and Drug Administration) and TNO (Technische National Onderzoek) have issued no-
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objection letters for the use of ACTICTM in PET packages for food applications [Sidel 

(2010)].  

The main problem with this method is its high energy consumption and the new 

equipment and skills required. Adding nanofillers to the PET matrix to produce PET 

nanocomposites is another important method used to achieve the same goal. PET can be 

compounded with the nanofiller at a low level (e.g. 5%) to produce a PET 

nanocomposite which has good enough barrier properties. The benefit of this method 

compared to the others is that the nanofiller usually enhances the polymer‘s physical 

and thermal properties as well as its barrier properties. 

Increasing crystallinity improves the barrier properties of polymers, as Hedenqvist 

(1996) reported. Lasoski and Cobbs (1959) presented an equation that describes the 

relationship of water vapour permeability to the permeability of the un-oriented PET 

film (equation 7.1): 

𝑃 = 𝑃𝑎  𝑋𝑎
2      Equation 7.1 

where P is the water vapour permeability, Pa is the permeability of the fully amorphous 

polymer and Xa is the volume fraction of the amorphous polymer. The equation shows 

that an increase in crystallinity (a decrease in Xa) leads to a decrease in the permeability 

of the water vapour. Frounchi and Dourbash (2009) reported that the permeability of 

oriented PET films is lower than that for un-oriented films. 
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Step: 1 Step: 2 

 

 
Create a vacuum (inside and outside the bottle) Spray acetylene into the bottle 

Step: 3 Step: 4 

 

 

Acetylene reaches plasma state using microwave 

energy 

Let the carbon deposit on the inner wall prior to 

releasing the pressure. 

 

Figure 7.2 Plasma coating method. (e.g. Actic from Sidel) 

 

According to Chanda and Roy (1993), ―Diffusion occurs as a result of natural processes 

that tend to equalize the concentration gradient of a given species in a given 

environment‖. Choudalakis and Gotsis (2009) reported that Fick‘s law describes the 

diffusion mechanism within a polymer matrix. Fick‘s Law can be stated as: ―The net 

diffusion rate of a gas across a membrane is proportional to the difference in partial 
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pressure, proportional to the area of the membrane and inversely proportional to the 

thickness of the membrane‖ (equation 7.2) [Gooch (2007)]. 

𝒅𝒎 = −𝑫
𝝏𝒄

𝝏𝒙
 𝑨 𝒅𝒕     Equation 7.2 

where 𝒅𝒎 is the number of grams of the diffusing material crossing area A (cm
2
) of the 

other material in time 𝒅𝒕 (sec.), D is the diffusion coefficient (cm
2
/sec.) and 

𝝏𝒄

𝝏𝒙
 is the 

concentration gradient [Chanda and Roy (1993)]. 

A regular arrangement of platelets in a parallel array is a simple permeability model (see 

figure 7.3) and this model has been proposed by Nielsen (1967). The Nielson model 

shows an approximation for estimating the effective ‗tortuosity‘ of a matrix containing 

filler particles: 

𝝉 = 𝟏+  
𝑳

𝟐𝒕
 ∅          Equation 7.3 

 

where: 𝝉 is tortuosity, L is length, ∅ is the volume fraction of the filler and t is the 

thickness of the plate. Increasing the volume fraction and the aspect ratio of the clay 

 
𝑳

𝟐𝒕
  leads to an increase in the tortuosity path which reduces the permeability of the 

film to the gas. 

In general, the permeability of a nanocomposite is influenced by three factors: the 

orientation of the nanoplatelets relative to the diffusion direction, their volume fraction, 

and the aspect ratio of the nanoplatelets [Choudalakis and Gotsis (2009)]. 
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Figure 7.3 The regular arrangement of platelets in a parallel array. 

 

Due to a more tortuous path, which is related to the shape and the degree of dispersion 

of the nanoplatelets, the decrease in diffusion coefficient is higher than the decrease in 

solubility coefficient, which is due to the reduction in the volume fraction of 

nanoplatelets, which is indeed low. This exfoliated dispersion of the nanoplatelets is a 

more effective way to enhance the barrier properties of the polymer because it produces 

higher values for the aspect ratio and the tortuosity factor compared with intercalated 

nanocomposites. Natu et al. (2005) studied the barrier properties of PET sheets and how 

morphology can affect the permeability of the sheet to oxygen. The authors found that 

tortuosity path of the gas through the sheet is affected by the size of the spherulites. 

Large spherulite size increases the tortuosity of the path more than does small spherulite 

size. It has also been observed that molecular orientation is an important factor 

controlling the gas permeability properties of a stretched PET sheet. 

Furthermore, aggregation of silicate layers will decrease the aspect ratio of 

nanoparticles which means poor barrier property enhancement. This phenomenon is 

clear for high clay contents due to the difficulty of keeping a good degree of platelet 

dispersion. This phenomenon can be attributed to the agglomerates, which form large 
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scale pores in the matrix. These pores form a short pathway for gas diffusion within the 

polymer nanocomposites. 

𝒕𝒂𝒄𝒕𝒊𝒗𝒆 =  
𝒅𝒇𝒊𝒍𝒎
𝟐

𝑫𝒇𝒊𝒍𝒎
      Equation 7.4 

where 𝒕𝒂𝒄𝒕𝒊𝒗𝒆 is working time, 𝒅𝒇𝒊𝒍𝒎 is the thickness of the film and 𝑫𝒇𝒊𝒍𝒎 is the 

diffusion coefficient [Choudalakis and Gotsis (2009)]. The working time can increase 

when the diffusion coefficient is reduced. 

Frounchi and Dourbash (2009) studied the oxygen barrier properties of PET 

nanocomposite films. Two different Montmorillonite-based organoclays (Cloisite 15A 

and Nanolin DK2) were used to produce PET nanocomposite pellets using a co-rotating 

twin screw extruder. In order to produce the film the pellets were melted at 275°C for 5 

min. in a compression moulding machine, and to avoid holes in the film this procedure 

was repeated a number of times prior to quenching the molten film at 15°C in a water 

bath. The PET nanocomposites showed a reduction in permeability for a 1 wt.% 

PET/Nanolin nanocomposite film which was about half that of the vPET. The same film 

showed the lowest permeability compared with 2 and 3 wt.% nanocomposites. The 

authors attributed this to an excellent dispersion of nanoclay at 1 wt.% (exfoliated) 

compared with 2 and 3 wt.% nanocomposites. The nanocomposites were exposed to 

harsh processing during the compounding process. The processing temperatures along 

the extruder were below the melting temperature of the PET and the screw speed was 

comparatively high, such that the nanocomposite pellets were exposed to a high 

temperature (275°C) many times in order to form the films. These two processes can 

degrade the polymer, destroy the silicate layers, and burn the surfactant of the nanoclay, 

which may explain why adding more nanoclay did not improve the barrier properties. 

The results also show that the Nanolin nanocomposites have lower permeability 
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compared with Cloisite nanocomposites, and the researchers attributed this to the better 

dispersion (exfoliation) of Nanolin with PET. The relatively poor affinity of Cloisite 

15A with PET as discussed before (section 2.7) could be another reason.  

Soon et al. (2009) characterised a PET/synthetic mica [MAE 3 wt.%)] nanocomposite 

sheet and observed an improvement in the barrier to oxygen by 29%. This enhancement 

was attributed to good dispersion of the nanoclay in the PET. 

Ke and et al. (2005) added modified MMT into PET resin by in situ polymerisation 

prior to using the nanocomposite material to produce bi-axial oriented film. The result 

showed a small enhancement in the barrier property of the film and permeability was 

reduced to half that of pure PET film when the clay content reached 3%. 

Lewis and co-workers (2003) studied the solubility and diffusion of mixtures of two and 

three gases (oxygen, carbon dioxide and nitrogen) for PET film. In terms of oxygen 

diffusion, the results showed that the presence of carbon dioxide or nitrogen has a slight 

effect on oxygen diffusion and solubility. Usually, the oxygen is preferable to use in 

permeability tests because of the following features. Firstly, the O2 diffusion coefficient 

is greater than that for CO2 and N2. Secondly, CO2 solubility is greater than that of O2 or 

N2 which may affect the results by increasing the thickness of the film [Lewis et al. 

(2003)]. Choi et al. (2006) found that increases in clay content reduced the oxygen 

permeability of PET nanocomposite. 
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7.2. Experimental work  

Un-filled PET (vPET) and PET nanocomposite PETNC films were tested. These films 

were produced via cast film extrusion (see section 3.2.4). The films were un-oriented 

and had a thickness of 0.11 ± 0.01mm. A MOCON OX-TRAN (2/21 MH) barrier test 

instrument was used to test the permeability of these films. The description of the 

equipment and the test procedure were covered in section 3.5.6. 
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7.3 Results and discussion 

The absolute permeability values of virgin PET (vPET), extruded vPET (Ext. vPET) 

and PET nanocomposites (PETNCs) are listed in Table 7.1. As expected, the nanoclay 

enhanced the barrier properties of the PET film. The enhancement in the permeability of 

PET film is apparent even at low nanoclay content (1 wt.%) as Table 7.1 and figure 7.4 

show. When the content of the Cloisite 25A reached 5 wt.%, the gas permeability 

reduced to half that of the extruded vPET film (figure 7.4). The MTE and MAE showed 

a linear reduction in the permeability of oxygen on adding more clay (1, 3 and 5%) 

while Cloisite 25A (3%) did not show a significant reduction in permeability compared 

with 1% Cloisite 25A. 

The improvement in the barrier properties of the PET films on adding nanoclays can be 

attributed to the good distribution of nanoclays within the PET matrix. 

Film type Permeability 

(cc/m
2
/day) 

Barrier enhanced by 

(%) 

vPET 25.77 - 

Ext. vPET 29.51 - 

PET/MAE (1%) 26.92 8.7 

PET/MAE (3%) 23.82 19.3 

PET/MAE (5%) 19.99 32.26 

PET/MTE (1%) 25.46 13.7 

PET/MTE (3%) 21.26 27.96 

PET/MTE (5%) 17.29 41.41 

PET/Cloisite 25A (1%) 25.08 15.0 

PET/Cloisite 25A (3%) 23.78 19.42 

PET/Cloisite 25A (5%) 14.76 49.98 

Table 7.1 Permeability results for PET nanocomposite films 
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Figure 7.4 Reductions in PET film permeability on adding nanoclay. 

 

Even when comparing vPET with PET nanocomposites, the nanocomposites show 

enhancements in the barrier properties of the film, as figure 7.5 shows. Producing the 

PET nanocomposite films directly from the twin screw extruder (compounding stage) 

may lead to further reductions in the permeability of the gas through the film wall. Good 

stability in oxygen permeability reduction (up to 8 hrs.) was observed with some PET 

nanocomposite films, as shown in figure 7.5. 
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Figure 7.5 Reduction in the permeability of unfilled PET and PETNC films over a long period. 

 

The excellent barrier property enhancement achieved by adding Cloisite 25A is counter 

to the relatively poor tensile modulus enhancement for the PET/Cloisite 25A NC films 

and more tactoids and few intercalation aspect for Cloisite 25A platelets as TEM images 

shown (discussed in section 6.4). There are many reasons for this phenomenon. The 

small aspect ratio of Cloisite 25A compared with Somasif clays leads to a small contact 

area between the clay platelets and the polymer matrix, which gives relatively poor 

reinforcement in additional to the tactoids aspect for PET/Cloisite25A samples. Another 

possible reason is that long aspect ratio clays take longer to align fully, which would 

give more resistance to the stress compared to small aspect ratio clays. 

Figure 7.4 also shows a small change in barrier property enhancement for 

PET/Cloisite25A on adding 3 wt.% compared with 1 wt.%. On the other hand, the 

PET/Cloisite 25A (3 wt.%) film achieved greater enhancement in tensile modulus 

compared with the PET/Cloisite 25A (1 wt.%) film (discussed in section 6.4; see figure 
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6.3). This can be attributed to the relatively poor dispersion of the Cloisite 25A (3 wt.%) 

plates in the PET matrix, leading to clay agglomeration as TEM images show (see 

chapter 6). 

Film transparency is an important property for end applications. Figure 7.6 shows some 

images for un-filled PET and PET nanocomposites. It is clear that the PET films 

produced by adding up to 3 wt.% nanoclay show acceptable transparency.  

PET nanocomposites with (5 wt.%) films for MTE and Cloisite 25A are also acceptable. 

PET/MAE (5 wt.%) film has a slightly yellowish colour which means it could be used 

in coloured film applications, or that the melt processing needs to be reviewed. As 

mentioned before, these films were exposed to two melt processing operations 

(compounding then casting the film) so this may be one of the reasons for the 

discolouration. 

While the aspect ratios of Somasif clays are higher than those of Cloisite 25A, the latter 

achieved good barrier property results compared with PET/Somasif NC films. This can 

be attributed to the fact that the effect of basal space (d space) is stronger than the effect 

of aspect ratio. Cloisite 25A has the smallest d spacing, followed by MTE and then 

MAE, and this sequence was observed in the gas permeability reduction.  
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Figure 7.6 Transparency level of each film. 
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7.4 Conclusions 

 Studying the effect of adding the nanoclay and the geometry of nanoclay on the 

barrier properties of PET films were the main objectives of this chapter. 

 As expected, the nanoclay enhanced the barrier properties of the PET film. The 

enhancement in the permeability of PET film is apparent even at low nanoclay 

content (1 wt.%). 

 When the content of the Cloisite 25A reached 5 wt.%, the gas permeability was 

reduced to approximately half that of the extruded vPET film. 

 The MTE and MAE clays exhibited a linear reduction in the permeability of 

oxygen on adding more clay (1, 3 and 5%) while Cloisite 25A (3%) did not 

show a significant reduction in permeability compared with 1% Cloisite 25A. 

 The improvement in the barrier properties of the PET films on adding nanoclays 

can be attributed to the good distribution of nanoclays within the PET matrix. 

 Producing the PET nanocomposite films directly from the twin screw extruder 

(compounding stage) may lead to further reductions in the permeability of gas 

through the film wall. 

 The excellent barrier property enhancement achieved by adding Cloisite 25A is 

counter to the relatively poor tensile modulus enhancement for the PET/Cloisite 

25A NC films and more tactoids and few intercalation aspect for Cloisite 25A 

platelets. There are many reasons for this phenomenon. The small aspect ratio of 

Cloisite 25A compared with Somasif clays leads to a small contact area between 

the clay platelets and the polymer matrix, which gives relatively poor 

reinforcement for PET/Cloisite25A samples. Another possible reason is that 

long aspect ratio clays take longer to align fully, which would give more 
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resistance to the process imposed stress compared to the smaller aspect ratio 

clays. 
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Chapter eight 

8. Degradation of PET nanocomposites 

This chapter covers the degradation of PET and PET nanocomposites in detail. The 

types and mechanisms of PET degradation are covered in the first section and the 

second section covers PET nanocomposite degradation in particular, followed by 

experimental details, results and discussion. This chapter aims to study the thermal 

stability of PET nanocomposites and answer the following questions: 

a) Will the clay accelerate degradation? 

b) What is the effect of re-processing the nanocomposite materials on their viscosity 

and colour? 

c) What is the behaviour of the viscosity of the polymer nanocomposites over a long 

period of time? 

8.1 PET degradation 

8.1.1 Introduction 

Understanding the degradation types and mechanisms of polyethylene terephthalate 

(PET) is essential to understand the melt processing of PET. The main challenge in any 

PET study is degradation. Most PET product failures are due to misunderstanding the 

sensitivity of PET to high temperatures, oxidative effects, long residence times and high 

screw speeds during the plastication stage, in addition to bad mechanical design. 

The mechanisms of the degradation reactions have been described by two major schools 

and each school has its own opinion. Allan et al. (1957) and Goodings (1961) believe 

that the degradation mechanism is initiated at the ester link in the random chain 

scission, while Marshall and Todd (1953) argue that PET degradation is carried out at 
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chain ends. However there is evidence that both mechanisms occur in the PET 

degradation process [Brooks and Giles (2002)]. 

Gumther and Zachmann (1983) showed that in the presence of oxygen the thermal 

degradation rate is increased and the presence of even a very low quantity of moisture 

causes rapid hydrolytic degradation to occur above the melting temperature, which leads 

to a reduction in the polymer‘s molecular weight. Marshall and Todd (1953) studied 

thermal and hydrolytic degradation at high temperatures. Moisture was found to cause 

rapid hydrolytic degradation, which resulted in greatly reduced polymer molecular 

weight. Absorbed moisture is known to have significant effects on the thermal stability 

and physical properties of hygroscopic polymers. The glass temperature (Tg) of PET is 

sensitive to absorbed moisture and can be reduced significantly as a result of high 

moisture content. 

Jabarin (1984) showed that the residence time and temperature of the melt during 

injection processing significantly affects the extent of degradation of PET. The amount 

of degradation was reduced by melting in an inert environment, or under vacuum, rather 

than in air. The drying conditions of the PET pellets also significantly affect the extent 

of degradation. 

Brooks and Giles (2002) reported that when PET final products are left unprotected 

from the outside environment, the humidity, air and UV light can lead to significant 

reductions in the tensile properties. It is strongly recommended to coat the outdoor PET 

product (sheet or film) with a UV protective layer. 

PET undergoes several types of degradation under different conditions during the 

plastication processes. The major degradation schemes are: 
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- Thermal degradation 

- Thermal-oxidative degradation 

- Hydrolytic degradation 

- Chemical degradation 

- Radiochemical degradation 

- Photo-oxidative degradation 

Thermal, thermal-oxidative and hydrolytic degradation are of the highest importance in 

injection moulding and extrusion processing of PET due to the absence of light, reactive 

ions and chemical reagents. 

In the presence of heat, oxygen and water the degradation rate is increased due to the 

formation of additional end groups and thus a reduction in the molecular weight. 

8.1.2 Degradation processes 

Prior to presenting the types of degradation reactions, it is appropriate to introduce the 

chemical structure of the most important end groups as figure 8.1 shown. 

 

Figure 8.1 The chemical structures for some end groups [Jabarin (1996)] 

 

 

 



231 
 

A. Hydrolytic degradation 

PET is a hydroscopic material which can rapidly absorb moisture from its environment. 

The chemical reaction of PET with water at high temperature results in the formation of 

hydroxyl and carboxyl end groups (Figure 8.2). 

 

Figure 8.2 Hydrolytic degradation mechanism [Jabarin (1996)] 

 

B. Thermal degradation 

In the absence of air and under high processing temperatures, some chemical reactions 

occur that can lead to the breakdown of chemical bonds in the polymer. Thermal 

degradation is rarely considered as a main degradation reaction for PET downstream 

processing because it is carried out in the presence of air. 

The main reaction in PET thermal degradation is ester elimination and the outputs of 

this reaction are vinyl ester and carboxylic acid groups, as shown in figure 8.3: 

 
Figure 8.3 Thermal degradation reactions [Mark (2007)] 

 

 



232 
 

When thermal degradation starts, the vinyl ester groups form acetaldehyde. Khemani 

(2000) studied the thermal degradation of PET over long periods at high temperatures 

(280°C). It was found that the generated amount of Acetaldehyde at high temperature, 

gradually decrease with time. The thermal degradation mechanism suggested that the 

acetaldehyde may be generated via three different reactions. The first involves the vinyl 

group, the second mid-polymer chain scission and the third the hydroxyl end group. 

Acetaldehyde can seriously affect the taste of mineral water packaged in PET, if 

excessive degradation has taken place. Acetaldehyde is a volatile material generated 

during polymerisation and degradation of PET. It has a sweet odour and is naturally 

present in many foods and beverages. 

Acetaldehyde (AA) is also added as a flavouring to many other products so that the 

concentration of residual AA is of great importance to producers of containers destined 

for use with food and beverage products. In order to minimize the concentration of AA 

in finished containers, AA concentrations in the PET resin should be low and 

degradation should be limited during processing.  

C. Thermal-oxidative degradation 

Jabarin (1996) reported that thermal-oxidative degradation follows a free radical type 

reaction. The free radical reaction can lead to the formation of vinyl ester groups which 

can react with polymer chains containing hydroxyl end groups. 

Marshall and Todd (1953), Goodings, (1961) and Spanninger (1974) reported that the 

reaction of oxygen with PET at high temperatures can lead to reduction in molecular 

weight and production of acetaldehyde in higher quantities than produced by purely 

thermal degradation. Also they showed that the reaction can lead to formation of 
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different functional groupings in the polymer, such as carboxyl end groups as well as 

discolouration of the polymer to produce yellowish products. 

 

Figure 8.4 Thermal-oxidative degradation mechanisms [Jabarin (1996)] 
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8.2 PET nanocomposite degradation (literature review) 

Preparing nanocomposites under high temperatures via melt extrusion or other methods 

can cause thermal degradation of the modified clay. The degradation in nanocomposites 

may occur because of unwanted reactions between surfactant decomposition and the 

polymer at high processing temperatures. 

Qin et al. (2005) reported that the Bronsted acidic sites on the clay platelets cause 

polymer degradation. Xu et al. (2009) examined the factors affecting PET degradation. 

The chain extension reaction (PMDA) was used to control the thermal degradation of 

PET nanocomposites. It was found that the ammonium linkage on the clay and the 

amount of hydroxyl groups on the edge of clay platelets were the main factors in the 

polymer degradation. Xu et al. (2009) found similar results to those of Qin et al. (2005) 

when the hydroxyl groups on the edge and surfaces of the clay platelets acted as 

Bronsted acidic sites to accelerate the polymer degradation due to clay catalysis effects. 

Wang and Gao et al. (2006) studied the thermal stability of PET nanocomposites. The 

authors observed that adding organo-Montmorillonite (DK2) enhanced the thermal 

stability of the PET. The peak degradation temperature and the onset degradation 

temperature of PET nanocomposites increased by 35°C and 12°C respectively when 

adding 1% of DK2. Utracki (2010) reported that at high temperatures, the ammonium-

ion-intercalated organoclays degraded, leaving the surface of the clay which may lead to 

re-aggregation of the clay platelets. 

Yoon et al. (2003, part 2) observed decreases in the I.V. of PC nanocomposites with 

increasing clay content. Similar observations have been reported by Fornes et al. (2003) 

in nylon-6 nanocomposites. The authors attributed this decrease to the instability of the 

organoclay under high shear rates and high processing temperatures. The authors 
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reported that the surfactant decomposition may produce unwanted side reactions with 

the polymer which may lead to a reduction in the I.V. 

Yuan et al. (2008) studied the thermal properties of PET/Palygorskite (PT, a kind of 

fibrous clay) nanocomposites. Prior to preparing the nanocomposite via in situ 

polymerisation and in order to increase the thermal stability of the clay, PT was 

organically modified by water-soluble polyvinylpyrrolidone (PVP) due to the high 

thermal stability of the PVP. The thermal stability of the pure PET and PET 

nanocomposites were measured by TGA in an air and nitrogen atmosphere with various 

heating rates. The authors reported that the clay may release some metallic derivatives 

which may act as catalysts leading to a decrease in the thermal stability of 

nanocomposites. Meanwhile, the clay can enhance the thermal stability of 

nanocomposites when it acts as a thermal transport barrier in the PET matrix. The 

authors observed that at various heating rates in air, the oxidative thermal properties of 

PET nanocomposites were improved compared with the non-filled PET and this barrier 

effect is dominant. Conversely, the catalysis factor is dominant and the thermal stability 

of the nanocomposite decreases compared with non-filled PET at slow heating rates in 

nitrogen. Meanwhile, at high heating rates and in nitrogen, the thermal stability of the 

nanocomposites increases when compared to non-filled PET which suggested this is 

dominated by the barrier effect. 

Xie et al. (2001) studied the degradation of six types of organically modified MMTs. 

The authors observed that the difference in surfactant type does not change the initial 

onset degradation temperature and this is in agreement with our reprocessing study 

results, which will be discussed later in this chapter. Soon et al. (2009) characterised 

PET/synthetic mica nanocomposites and correlated the decrease in the molecular weight 
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of the polymer matrix with increasing clay content to the degradation caused by the 

synthetic mica content. The surfactant of the synthetic mica interacted with the polymer 

matrix which catalysed degradation. The authors observed that the Somasif MAE clay 

reduced the molecular weight of the PET nanocomposites more than did Somasif MTE 

clay, and they refer thiseffect to the surfactant type. The authors also reported that even 

with the reduction in molecular weight, there were no significant reductions in 

mechanical performance.  
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8.3. Experiments 

Three experiments were conducted to study the thermal stability of vPET and PET 

nanocomposites. 

1- The thermal stability of nanoclays (Cloisite 25A, Somasif MAE and Somasif 

MTE) (as well as others) was investigated by Thermogravimetric Analysis 

(TGA) in nitrogen. The temperature was raised from 30 to 500°C and the 

heating rate was 10°C/min. The main focus of this investigation was on the PET 

melt processing temperature range (260-280°C).  

2- The effect of re-passing the vPET and PET nanocomposites through the twin 

screw extruder was also studied. The vPET and PET nanocomposites produced 

in the compounding process stage were recycled again to investigate the effect 

of repeating the melt processing on the viscosity. Prior to feeding the pellets to 

the extruder, all pellets were re-crystallised in a vacuum oven for 20 hours at 

150°C then immediately loaded to the hopper. The melt processing parameters 

which were used were similar to the processing parameters used in the 

compounding stage. All samples were then further re-crystallised before being 

analysed by shear rheometry. 

3- The behaviour of vPET and PET nanocomposite viscosity at constant shear rates 

over a long period was studied. The viscosity of vPET and PET/MTE (1, 3 and 5 

wt.%) nanocomposite pellets was tested by parallel plate rheometry at 260°C for 

10 hours with strain amplitude 0.5%, frequency 10Hz and a 1mm gap. This 

method can investigate the effect of time on nanocomposite viscosity with 

increasing clay content.  
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8.4. Results and discussion 

8.4.1 Thermogravimetric analysis (TGA) results for the nanoclays 

The TGA results summarized in Table 8.1 and figure 8.5 show that the selected 

nanoclays in this project (Cloisite 25A, Somasif MTE and Somasif MAE) present the 

best thermal stability among the nanoclays tested. As the melting temperature of PET is 

around 250°C, the melt processing temperature is usually in the range 260°C to 280°C, 

depending on the output capacity, the residence time and the shear rate of the melt 

forming process.  

Nanoclay Degradation onset 

temperature (°C) 

Weight loss at 

260°C (%) 

Weight loss at 

280°C (%) 

Cloisite 25A 206 5.09 6.97 

Somasif MTE 205 5.80 8.81 

Somasif MAE 200 6.69 11.00 

Cloisite 30B 185 7.67 10.74 

Cloisite 15A 198 7.76 11.56 

Cloisite 10A 170 17.26 20.01 

Table 8.1 Weight loss from each clay at 260 and 280°C and degradation onset temperature for 

different clays from TGA 
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Figure 8.5 TGA curves for different nanoclays 

 

The results from Table 8.1 and figure 8.5 assisted the choosing of nanoclays for this 

project. All three chosen nanoclays (Cloisite 25A, Somasif MTE and Somasif MAE) 

exhibit the highest weight loss onset temperatures and minimum weight loss between 

260 and 280°C. For example, Cloisite 25A lost around 5% of its weight at 260°C while 

Cloisite 10A lost around 17% of its weight at the same temperature. If we focus on our 

three clays and how they behave during the melting process, we find that the Cloisite 

25A and MTE curves do not drop significantly between 260 and 280°C, while the MAE 

curve decreases sharply (from 6.69% to 11.0%), showing MAE to be very sensitive to 

higher temperatures and thus requiring a process temperature of only around 260°C. 

 

 

 

Heating rate = 10°C/min 
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8.4.2 Re-processing the pellets through the twin screw extruder 

The degradation of both the vPET and PET nanocomposites was expected during these 

recycling processes but the purpose of this study was to investigate the effect of the 

nanoclay on polymer viscosity and whether or not it accelerates degradation compared 

with the un-filled PET. As Table 8.2 (and Table x8.1) show, 29 samples were prepared 

and analysed for comparison purposes. 

Sample Description 

vPET Virgin PET 

Ext. vPET Extruded PET (non recycled) 

Ext. vPET_1 Extruded PET (1 time recycled) 

Ext. vPET_2 Extruded PET (2 times recycled) 

Ext. vPET_3 Extruded PET (3 times recycled) 

PET/MAE3% PET/MAE_3% (non recycled) 

PET/MAE3%_1 PET/MAE_3% (1 time recycled) 

PET/MAE3%_2 PET/MAE_3% (2 times recycled) 

PET/MAE3%_3 PET/MAE_3% (3 times recycled) 

PET/MAE5% PET/MAE_5% (non recycled) 

PET/MAE5%_1 PET/MAE_5% (1 time recycled) 

PET/MAE5%_2 PET/MAE_5% (2 times recycled) 

PET/MAE5%_3 PET/MAE_5% (3 times recycled) 

Table 8.2 Description of the re-passed samples 

 

The following figures show the effect of recycling (re-extrusion) of the PET and 

PET/MAE (3 and 5 wt.%) nanocomposites. As mentioned before, all materials had a 

sufficient drying process to minimise the possibility of hydrolytic degradation so only 

the thermal oxidative and surfactant degradations could occur. It is obvious from all 

figures that the viscosity decreases with increasing passes. 
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Figure 8.6 Viscosity of un-filled PET re-extruded up to four times 

As shown in figure 8.6, the viscosity of un-filled PET kept its Newtonian behaviour 

even as the viscosity decreased. Figure 8.7 shows the corresponding colour of the un-

filled amorphous pellets after each re-processing stage. 

 

Figure 8.7 Colour of the amorphous vPET after re-pass stages 
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The reduction in the viscosity and discolouration of the pellets to a yellowish colour 

supports the hypothesis that thermal-oxidative degradation occurs in the polymer. 

 

Figure 8.8 Viscosity vs. shear rate of PET/MAE (3 wt.%) nanocomposites re-extruded up to four 

times 

 

While the viscosity of PET/MAE 3 wt.% is greater than the ext. vPET and slightly tends 

to non-Newtonian behaviour at low shear rates, the viscosity of re-passed samples 

reduces and clearly exhibits Newtonian behaviour (figure 8.8). 



243 
 

 

Figure 8.9 Colour of amorphous PET/MAE (3 wt.%) after re-pass stages 

 

The pictures of the pellets after each re-passing stage for PET/MAE 3 wt.% (figure 8.9) 

indicate that the colour of the pellets immediately darkened during the first 

reprocessing. The change in colour of PET nanocomposites pellets occurs much more 

gradually which means the nanoclay additive (MAE) plays a strong role in the 

degradation process due to the existence of the surfactant.  
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Figure 8.10 Viscosity vs. shear rate of PET/MAE (5 wt. %) nanocomposites re-extruded up to four 

times 

 

Similar results occur for PET/MAE 5 wt.% as shown in figure 8.10. The viscosity 

dropped and the extent of the shear thinning tends to decrease with increasing passing 

times. The colour changed strongly to dark brownish as shown in figure 8.11. 
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Figure 8.11 Colour of the amorphous PET/ MAE (5 wt.%) after re-pass stages 

 

Similar observations and conclusions have been found from analysing the re-processed 

samples for PET/MTE (3 and 5 wt.%) and PET/Cloisite 25A (3 and 5 wt.%) with 

corresponding decreases in viscosity and optical clarity. These figures and pictures can 

be found in appendix x8 [figures x8.1 - x8.7]. 
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8.4.3 Effect of time on viscosity 

The aim of this study was to quantify nanoclay effects on the viscosity of PET 

nanocomposites with long processing times, under constant shear conditions. 

 

Figure 8.12 Viscosity behaviour of vPET and PET/MTE (1, 3 and 5 wt.%) over a long period (10 

hrs) 

 

As figure 8.12 shows, the viscosity of all samples started to decrease with increasing 

time prior each sample exhibiting different behaviour with increasing time. While the 

viscosity of the sample with 3 wt.% MTE content continued to decrease then stabilise 

after a long period, the other samples started to re-build in viscosity after set periods of 

time. The viscosity of vPET started to increase after approximately 4.5 hours, and as the 

sample was exposed to oxygen during the test (atmospheric environment) the increase 

in viscosity may be attributed to oxidative cross-links. The presence of oxygen catalyses 

the broken bonds to re-build and join again in a cross-linking reaction. Similar 

hypotheses can also be applied for PET/MTE (1 wt.%) but the presence of clay causes a 
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decrease in viscosity where the surfactant interacts with the polymer, which may 

catalyse the degradation and keep the clay particle aligned in the matrix. This decrease 

in viscosity reduces then the viscosity tend to increase due to the oxidative cross-link in 

the PET matrix, while the decrease in viscosity for PET/MTE (3 wt.%) hides or offsets 

the increases in viscosity due to sufficient amounts of surfactant in the clay. Following 

the same concept, the viscosity of PET/MTE 5 wt.% was expected to be lower than the 

viscosity of PET/MTE 3 wt.%, but its viscosity increased even more than the vPET. 

This phenomenon can be attributed to the fact that the most of the surfactant had already 

left the surface of the nanoclay, then the nanoclay re-aggregated, as Utracki (2010) 

reported, so the nanoclay dominates and catalyses the cross-link reaction in addition to 

the PET polymer. 
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8.5 Conclusions 

 

 This chapter aims to study the thermal stability of PET nanocomposites and 

answer the following questions: 

a) Will the clay accelerate degradation? 

b) What is the effect of re-processing the nanocomposite materials on their 

viscosity and optical clarity? 

c) What is the behaviour of the viscosity of the polymer nanocomposites over a 

long period of time? 

 The TGA results show that the selected nanoclays in this project (Cloisite 25A, 

Somasif MTE and Somasif MAE) present the best thermal stability among the 

nanoclays tested. 

 While the viscosity of PETNCs (3 wt.%) is greater than that for the ext. vPET 

and slightly tends to non-Newtonian behaviour at low shear rates, the viscosity 

of re-passed samples reduces and clearly exhibits Newtonian behaviour. 

 The pictures of the pellets after each re-passing stage for PETNCs 3 and 5 wt.% 

indicate that the colour of the pellets immediately darkened during the first 

reprocessing. The change in colour of PET nanocomposites pellets occurs much 

more gradually which means the nanoclay additive plays a strong role in the 

degradation process due to the existence of the surfactant. 

 The rheological behaviour of unfilled PET and PET/MTE nanocomposites over 

a long period of time (10 hrs) was investigated. During the first hours, the 

viscosity of all samples was reduced. Following this time, the samples show 

increasing viscosity except at loading 3 wt.% which exhibits Newtonian 

behaviour. 
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Chapter nine 

9 General conclusion and future work 

9.1 General conclusion 

The objectives of this study have been successfully achieved. The PET/clay 

nanocomposites pellets which were produced can achieve the PET downstream 

manufacturers requirements by enhancing the rheological properties of the PET melt 

and the crystallisation of the PET final product, which reflect positively on the injection 

or/and extrusion processes. Moreover the requirements of PET bottles or packaging 

producers were achieved by enhancing the barrier properties of the final product as well 

as its mechanical properties and in the same time keeping the original distinguish 

feature of PET product (transparency) in reasonable levels. 

The thesis started by giving a general introduction about PET (marketing, chemistry, 

manufacturing and application) then presented the fundamental concepts of 

nanocomposite materials in the belief that a good understanding of nanoparticles would 

act as a guide to understand the effect of nanoclay particles on the behaviour of the 

polymer. All raw materials, extrusion processes and characterisation techniques have 

been clarified and described. 

Three nanoclays (Somasif MAE, Somasif MTE and Cloisite 25A) were compounded 

individually with Polyethylene Terephthalate (PET) pellets via twin screw extrusion to 

produce PETNC (20 wt.%) as a masterbatch and then diluted to produce PETNCs (1, 3 

and 5 wt.%). Feeding the materials to the extruder‘s hopper was via dual motor feeders 

ensured a good distribution for the nanoparticles with the PET prior to melting. The 

intrinsic viscosity and thermal properties for these PETNC amorphous pellets were 
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studied. The rheological behaviour of the re-crystallised PETNCs was investigated over 

a wide range of shear rates. Films and micro-size tensile bars of PETNCs were 

produced via cast film extrusion and micromoulding injection respectively, from re-

crystallised PETNCs pellets. Further tests have been applied to the PETNCs films such 

as uniaxial tensile test to study the effect of nanoclays at various concentration on the 

tensile modulus, biaxial tensile tests to study the effect of nanoclay on the thermal 

properties of biaxial stretched PET films; and barrier property tests to study the effect of 

nanoplatelets on the permeability of films; while only uniaxial tensile tests were applied 

to the micromoulding specimens to study the effect of different injection speeds on the 

end product tensile modulus. 

In this project, many factors were taken into account to achieve well-processed 

materials required for this study such as care in choosing the nanoclay in order to 

achieve good dispersion in terms of compatibility and thermal stability. The second 

factor taken into account was the preparation of the material prior to compounding or 

analysis such as sufficient drying or re-crystallisation of the pellets. The third important 

factor was that the feeding of the material to the twin screw extruder should be 

simultaneously via dual motor feeders to avoid poor distribution of the nanoclay in the 

PET melt. A fourth factor was to try to avoid the long residence time, high processing 

temperatures and high screw speeds in order to decrease the possibility of potential 

thermal degradation of the melt. 

Many points were observed from this study such as: 
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I. PETNC rheological behaviour: 

 By studying the rheological behaviour of PET pellets under different state 

(dried, amorphous, re-crystallised), the importance of sufficient drying and re-

crystallisation of the amorphous pellets prior to any melt processing seems clear. 

 At high shear rates, it is clear that the absolute value of the melt viscosity of 

PETNC is significantly lower than for un-filled PET, and the extent of this 

reduction increases with adding more nano-filler at a given shear rate. This 

reduction follows the shear thinning behaviour which shows the dependence of 

the shear viscosity for the un-filled PET and PETNC on the shear rate. 

 This shear thinning behaviour at high shear rates can be explained by two 

mechanisms which can occur simultaneously. When applying high shear rates, 

the level of entanglements is significantly reduced and the molecular chains tend 

to orient in the flow direction. The nanoparticles also align with the flow 

direction at high shear rate. 

 At high shear rate, Somasif MAE clay exhibits the maximum reduction in the 

shear viscosity of PET compared with the other clays used. This observation 

may be attributed to either the fast alignment of MAE platelets with the flow 

direction due to the large gap (d-spacing) between the platelets when compared 

to the other nanoclays used, or to the higher degradation level of PETNC in the 

presence of MAE due to high surfactant content, or to both causes. 

 At low shear rates, the magnitudes of the complex viscosity are dependent on the 

nanoclay concentrations and processing shear rate. The nanoclay leads to 

increases in complex viscosity with increases in the clay loading above 1 wt.%. 

The vPET, ext. vPET, and PET nanocomposites (1 wt.%) and PET/MTE (3 

wt.%) exhibit Newtonian behaviour for low shear rate ranges. The complex 
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viscosity started to deviate from Newtonian behaviour and behaved in a shear 

thinning manner at a 3 wt.% concentration. Usually the formation of aggregates 

is responsible for an increase in complex viscosity. 

 Storage and loss moduli for the PETNCs show a significantly diminished shear 

rate dependence and this becomes more obvious on increasing the clay content. 

The polymer transfers from fluid-like to solid-like behaviour at certain filler 

concentrations, this phenomenon being known as the percolation threshold. 

From the results presented it seems that the percolation threshold is reached 

approximately at 3 wt.% loading. 

 PET/MTE exhibits the lowest storage modulus values among the PETNCs at the 

same concentration (3 wt.%) or, in other words the lowest percolation threshold, 

which can be attributed to an excellent exfoliation occurring in the MTE case. 

This observation is assisted by the observation of good dispersion for MTE into 

the PET matrix as shown by TEM images. 

 Cole-Cole plots has been used to explore the influence of adding a nano-filler on 

the structure of a PET matrix at a fixed temperature. The change in the slope of 

the curves is an indication of increasing interaction between the PET matrix and 

the nanoclay platelets. The slope of the curve at 3 wt.% content is near unity 

which implies that the PETNC at this point is rheologically heterogeneous and 

further energy can be dissipated. Furthermore, some slopes of the curves at high 

shear rates are nearer 2 which indicates that the rheology is that of a 

homogenous system, and this can be attributed to the effect of a high shear rate 

on the network structure, or in other words, the high shear rate induces a 

collapse in some interactions. 
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 The relaxation time of the PETNCs increased with decreasing shear rate, this 

being attributed to the reduction in PET chain mobility at low shear rates. The 

physical interaction between the PET chains and nanoclay platelets can be 

broken with increases in the shear rate, which can lead to shorter relaxation 

times. 

 The rheological results over a wide range of shear rates show that the Cox-Merz 

rule does not hold for PET nanocomposites or indeed for unfilled PET. 

 The absolute value of intrinsic viscosity (I.V.) of PETNC reduced on increasing 

the clay concentration, and this reduction can be attributed to two reasons: first, 

the presence of clay platelets which align with the flow and increase the 

‗flowability‘ of the dissolved solution during the I.V. test, and second, the 

possibility of thermal-oxidative degradation of nanoclay during the 

compounding, which can increase the magnitude of this reduction. 

II. PETNC thermal properties: 

 It was observed that all three nanoclays used in this project (MAE, MTE and 

Cloisite 25A) act as effective nucleation agents for the crystallisation process by 

increasing the Tmc and decreasing the Tgc, while causing no consistent trends in 

the absolute crystallisation values. 

 It can also be noticed that the change in the Tg and Tm in present of nanoclay 

was small. 

 With increasing clay content, the peak of crystallisation temperature from the 

melt (Tmc) moves to the right (higher Tmc temperature) and gets sharper 

(decrease in the half-time t
1/2

) which indicates the crystallization rate is 

increased. 
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 The thermal properties of un-filled PET and PET/MTE nanocomposite (1, 3 and 

5 wt.%) films (oriented and un-oriented) were analysed and it was observed that 

stretching of the un-filled PET film decreased chain flexibility as is indicated by 

the increase in glass transition temperature (Tg). Stretching the film also 

accelerates the crystallisation temperature of the film from the solid phase (Tgc). 

 Adding further MTE filler (e.g. 3 or 5 wt.%) leads to the MTE starting to build 

up crystallinity immediately after the glass transition temperature in the case of 

the stretched film. This confirms that the stretch process accelerates the 

formation of crystalline structures inside the PET matrix. It was also observed 

that the stretching accelerated Tgc and this acceleration increases in the presence 

of a nanoclay. The more rapid start in building the crystal structure in the 

presence of the nanoclay could be attributed to the stretching process expanding 

the gallery space (d-basal), which would give an increased contact surface area 

between the nanoclay platelets and the PET matrix, which may lead to an earlier 

nucleation process. 

 Normally crystallised PET exhibits a single endotherm melting temperature 

(Tm) but the PET used in this project as received from the supplier (Tergal F9) 

exhibits a double endotherm Tm. It has been shown that with sufficient SSP 

processing through the SSP reactor, the double melting behaviour becomes a 

single melting peak. 

III. PETNC end product properties: 

 The mechanical properties of PETNCs films and micromoulding specimen were 

measured by uniaxial tensile testing these results correlated well to the TEM 

micrographs for the same films. 
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 The addition of all nanoclays to PET leads to significant increases in tensile 

modulus (up to 125% increase for PET/MTE at 5% concentration) indicative of 

good dispersion and strong interfacial interaction between the PET and the 

nanoclay (MTE > MAE > Cloisite 25A). 

 The improvement in the tensile modulus when adding MAE or MTE can be 

attributed to many reasons including the good dispersion of these clays within 

the PET matrix as its TEM images show. 

 The good compatibility between the PET chain and MTE or MAE clays 

contributed to this improvement. The large inter-gallery spacing and greater 

aspect ratio of the MTE and MAE platelets when compared with Cloisite 25A 

increases the diffusion rate of the PET macromolecules into the inter-gallery 

space which enabled the Somasif clays to enhance the interfacial adhesion 

between the clay platelets and the PET matrix 

 The reduction in the tensile modulus of PET/Cloisite 25A (1 wt.%) may be 

attributed to agglomeration on the nanoclay within the PET matrix as shown in 

the relevant TEM images though the orientation of the PET chains can mitigate 

some of this decrease caused by the nanoclays by increasing the strength of the 

chain and also aligning the nanoclay‘s platelets. The failure of Cloisite 25A (at 

loading 1 wt.%) to enhance the mechanical properties and its relatively poor 

enhancement at loading 3 or 5 wt.% does not necessarily mean a reduction in 

performance in terms of other properties of the interest. The PET/Cloisite 25A 

exhibits excellent gas barrier improvements and act as nucleation agents as seen 

in the crystallisation temperature and rate results. 

 The tensile test results for the micro-moulded samples shows that the processing 

conditions such as injection speed are crucial factors affecting the mechanical 
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properties of polymer injection moulded products. The nanoplatelets counted as 

molecular chains orientation inducer when the PET molecules penetrate between 

the narrow gaps of the platelets at high speed. It was shown that a ‗medium‘ 

injection speed (400mm/s) gave the best mechanical properties in terms of 

elongation to break as well as ultimate tensile strength. 

 Barrier properties of the films are significantly enhanced by addition of all three 

nanoclays. A 50% decrease in permeability has been achieved (Cloisite 25A > 

MTE > MAE). 

 The reduction in the permeability of PET film is apparent even at low nanoclay 

contents (1 wt.%). When the content of the Cloisite 25A reached 5 wt.%, the gas 

permeability reduced to 50% that of the extruded vPET film. 

 The MTE and MAE showed a linear reduction in the permeability of oxygen on 

addition of clay (1, 3 and 5%) while Cloisite 25A (3%) did not show a 

significant reduction in permeability compared with 1 wt.% Cloisite 25A. 

 The improvement in the barrier properties of the PET films on adding nanoclays 

can be attributed to the good distribution of nanoclays within the PET matrix. 

 The excellent barrier property enhancement achieved by adding Cloisite 25A is 

counter to the relatively poor tensile modulus enhancement for the PET/Cloisite 

25A NC films and more tactoids and few intercalation aspects for Cloisite 25A 

platelets as TEM images shown. There are many reasons for this phenomenon. 

The small aspect ratio of Cloisite 25A compared with Somasif clays leads to a 

small contact area between the clay platelets and the polymer matrix, which 

gives relatively poor reinforcement for PET/Cloisite25A samples. Another 

possible reason is that long aspect ratio clays take longer to align fully, which 

would give more resistance to the stress compared to small aspect ratio clays. 
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 While the viscosity of PETNCs (3 wt.%) are greater than the ext. vPET and 

slightly tends to non-Newtonian behaviour at low shear rates, the viscosity of re-

passed samples reduces and clearly exhibits Newtonian behaviour. 

 The pictures of the pellets after each re-passing stage for PETNCs 3 and 5 wt.% 

indicate that the colour of the pellets immediately darkened during the first 

reprocessing. The change in colour of PET nanocomposites pellets occurs much 

more gradually which means the nanoclay additive plays a strong role in the 

degradation process due to the existence of the surfactant. 

 The rheological behaviour of unfilled PET and PET/MTE nanocomposites over 

a long period of time (10 hrs) was investigated. During the first hours, the 

viscosity of all samples was reduced. Following this time, the samples show 

increasing viscosity except at loading 3 wt.% which exhibits Newtonian 

behaviour. 

 

9.2 Future work 

 There are many tests were performed and its data under analysis such as biaxial 

stretch film and wide/single angle x-ray scattering (WAXS/SAXS) for oriented 

and un-oriented PETNCs films. 

 Modelling the barrier properties results is currently underway by Dr. J. Sweeney. 

AFM studies on PET nanocomposite films also underway with Dr. Colin Grant. 

 Producing the PETNCs films directly from the twin screw extruder in the 

compounding process is highly recommended in order to study the tensile 

modulus and barrier properties and also to minimise the extrusion processes. The 

TEM technique could be used to support the thermal properties results for the 
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oriented film and to study the effect of biaxial stretch on the platelet distribution 

and alignments. 

 The infrared (IR) wave use to heat up the preform in order to produce bottles or 

during the thermoforming processes. Some PET manufacturers add additive 

during the preforms or sheets production to work as scattering particles for the 

IR waves in order to increase the path of the wave in the final production stage 

(e.g. stretch blow moulding or thermoforming). The aim is to save the power by 

reducing the power consumption and increase the production capacity of the 

bottle by reducing the time of heating up stage. So short study can conducted on 

the PETNCs‘ films to investigate the effect of clay platelets on the IR. 

 Needs to optimise behaviour of PETNCs so as to produce materials with 

excellent optical, barrier, mechanical, crystal and rheological behaviour in one 

material. 
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Appendix x3.1 Raw material data sheet 

I PET pellets 
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II Cloisite 25A Data Sheet 
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III Somasif Data Sheet 
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Appendix x3.2 Density results 

 

Figure x3.2.1 Density of vPET 

 

Figure x3.2.2 Density of Somasif MAE 

 

Figure x3.2.3 Density of Somasif MTE 

 

 

vPET (Tergal F9) Density (g/cc) 

1 1.39959 

2 1.3996 

3 1.3995 

4 1.3993 

5 1.3992 

Average 1.4 

Somasif MAE Density (g/cc) 

1 1.5482 

2 1.5468 

3 1.5478 

4 1.5485 

5 1.5464 

Average 1.55 

Somasif MTE Density (g/cc) 

1 1.7257 

2 1.7278 

3 1.7253 

4 1.7251 

5 1.7256 

Average 1.73 
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Figure x3.2.4 Density of Cloisite 25A 

 

x3.3 XRD results for all nanoclays used in this project. 

 

Figure x3.3.1 XRD results for the nanoclays 

 

 

 

 

 

Cloisite 25A Density (g/cc) 

1 1.764 

2 1.7643 

3 1.7641 

4 1.7641 

5 1.7635 

Average 1.76 
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Appendix chapter four (x4) 

x4.1 Cox-Merz rule 

 

Figure x4.1 Plots of shear rate vs. shear viscosity for PET nanocomposites at 1 wt.% nano-filler 

concentrations. 

 

 

Figure x4.2 Plots of shear rate vs. shear viscosity for PET nanocomposites at 3 wt.% nano-filler 

concentrations. 
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Figure x4.3 Plots of shear rate vs. shear viscosity for PET nanocomposites at 20 wt.% nano-filler 

concentrations. 

 

x4.2 Loss modulus vs. shear rate for different PETNCs at various concentrations 

 

Figure x4.4 Loss modulus behaviour for PET/MAE NC at different clay concentrations with low 

shear rate. 
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Figure x4.5 Loss modulus behaviour for PET/MTE NC at different clay concentrations with low 

shear rate. 

 

Figure x4.6 Loss modulus behaviour for PET/Cloisite 25A NC at different clay concentrations with 

low shear rate. 
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x4.3 Storage modulus as a function of shear rate for different nano-fillers at 

certain loading %.  

 

Figure x4.7 Storage modulus behaviour for PETNCs at 1wt.% loading with low shear rate. 

 

Figure x4.8 Storage modulus behaviour for PETNCs at 5wt.% loading with low shear rate. 
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Figure x4.9 Storage modulus behaviour for PETNCs at 20wt.% loading with low shear rate. 

 

Figure x4.10 Complex viscosity variation of PET nanocomposites at the same concentration (1 

wt.%) with low shear rate. 
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x4.5 Shear rate (s
-1

) vs. complex viscosity (Pa.s) for different types of PET 

nanocomposites with the same nano-filler content 

 

Figure x4. 2 Complex viscosity variation of PET nanocomposites at the same concentration (1 

wt.%) with low shear rate 
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Appendix chapter 5 (x5) 

x5-1 Additional results for sections 5.4.2, 5.4.3 and 5.4.4 

 

Figure x5.1 DSC results for 6 samples from same run to produce PET/MAE 3 wt.%. 

 

Figure x5.2 DSC results for 6 samples from same run to produce PET/MAE 5 wt.%. 
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Figure x5.3 DSC results for 6 samples from same run to produce PET/MAE 20 wt.%. 

 

 

Figure x5.4 DSC results for 6 samples from same run to produce PET/MTE 1 wt.%. 
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Figure x5.5 DSC results for 6 samples from same run to produce PET/MTE 3 wt.%. 

 

 

Figure x5.6 DSC results for 6 samples from same run to produce PET/MTE 5 wt.%. 
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Figure x5.7 DSC results for 4 samples from same run to produce PET/Cloisite 25A 1 wt.%. 

 

 

Figure x5.8 DSC results for 5 samples from same run to produce PET/Cloisite 25A 5 wt.%. 
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Figure x5.9 DSC results for 4 samples from same run to produce PET/Cloisite 25A 20 wt.%. 

  

x5-2 Additional results for section 5.4.6 

 

Figure x5.10 DSC curve for ext. vPET film (un-oriented and equal-biaxial stretch). 
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Figure x5.11 DSC curve for ext. PET/MTE 1 wt.% film (un-oriented and equal-biaxial stretch). 

 

 

Figure x5.12 DSC curve for ext. PET/MTE 3 wt.% film (unoriented and equal-biaxial stretch). 
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Figure x5.13 DSC curve for ext. PET/MTE 5 wt.% film (un-oriented and equal-biaxial stretch). 

  

x5-3 Additional results for section 5.4.5 

 

Figure x5.14 DSC results for PET nanocomposites at 3 wt.% for all nanoclay types. 
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Figure x5.15 Tmc curves obtained from the DSC for all clays at 3 wt.%. 

  

 

Figure x5.16 DSC results of PET nanocomposites at 5 wt.% for all nanoclay types. 
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Figure x5.17 Tmc curves obtained from the DSC for all clays at 5 wt.%. 
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x5.4 Preliminary study 

x5.4.1 Introduction 

A preliminary study was conducted on some PET nanocomposite sheets obtained from 

Queens University, Belfast. These sheets were prepared under the EPSRC QBOX 

project by blending PET pellets (Tergal F9) with nanoclays (Somasif MAE and MTE).  

This study was initiated to study the effect of different cooling rates (when analysing the 

thermal properties of the samples using Differential Scanning Calorimetry, DSC) on the 

crystallisation properties, and also to compare thermal properties such as glass transition 

temperature (Tg), melting temperature (Tm), and crystallization temperature from solid 

(Tgc) and from melting (Tmc), obtained from PET nanocomposite sheets (QBOX 

project) with PET nanocomposites prepared in IRC (Bradford). 

x5.4.2 PET nanocomposite sheets 

The preliminary study was based on analysing PET sheets (seven samples) received 

from Queens University, Belfast. The virgin PET pellets were blended with two 

varieties of organoclay and at different concentrations as shown in Table x5.4-1.  

Sample No. Type of sheet 

1 Virgin PET 

2 PET + 1% MAE 

3 PET + 2% MAE 

4 PET + 5% MAE 

5 PET + 1% MTE 

6 PET + 2% MTE 

7   PET + 5% MTE 

Table x5.4-1 Sheet types. 
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x5.4.3 Differential scanning calorimetry (DSC) results and discussion 

In this section, all DSC results (Tg, Tgc, Tmc and Tm) are plotted in order to show the 

effect of nanoclay type (MAE and MTE) and concentration (1, 2 and 5 wt.%) on 

thermal properties, and also to study the effect of cooling rate on Tmc. 

The DSC experiment scenario was as follows: 

- Heat the sample from 30 to 300°C with heat rate 10°C/min to obtain glass transition 

temperature (Tg), crystallisation temperature from solid (Tgc) and melting temperature 

Tm; 

- Cool from 300 to 30°C with cooling rates 5, 20 and 35°C/min to obtain crystallisation 

temperatures from melt (Tmc). 

 21 samples were analysed and the results are summarized in Table x5.4-2 below: 
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Run No. Sample PET+ Cooling rate Tg Tgc Tmc Tm 

  

°C/min °C °C °C °C 

1 Unfilled 5 73.53 128.92 197.9 250.74 

2 1%MAE 5 72.36 127.61 202.16 250.46 

3 2%MAE 5 72.61 126.67 203.30 251.49 

4 5%MAE 5 72.48 125.15 208.60 251.17 

5 1%MTE 5 72.63 127.17 203.63 250.68 

6 2%MTE 5 72.84 124.40 204.22 250.19 

7 5%MTE 5 71.96 125.66 206.04 250.6 

8 Virgin 20 73.81 128.75 178.08 249.75 

9 1%MAE 20 73.31 128.00 182.92 250.06 

10 2%MAE 20 73.23 126.25 184.55 250.22 

11 5%MAE 20 72.47 125.60 187.54 250.27 

12 1%MTE 20 73.33 127.76 181.94 250.48 

13 2%MTE 20 73.73 126.77 185.08 250.67 

14 5%MTE 20 72.31 125.39 184.12 250.13 

15 Virgin 35 72.94 129.62 166.56 250.58 

16 1%MAE 35 72.77 127.88 175.76 250.07 

17 2%MAE 35 73.13 126.84 174.84 250.66 

18 5%MAE 35 71.78 123.58 178.34 250.69 

19 1%MTE 35 73.01 127.63 175.10 250.6 

20 2%MTE 35 72.98 127.00 176.83 250.17 

21 5%MTE 35 71.95 124.57 170.78 251.27 

Table x5.4-2 Thermal temperature results for all sheet types 

Table x5.4-2 shows some of the results obtained from the DSC curves which illustrate 

the glass transition temperature (Tg), melting temperature Tm, crystallisation 

temperature from solid (Tgc) and crystallisation temperature from melt state (Tmc) for 

PET/(MAE and MTE) nanocomposite sheets. 
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Sample No. Type of sheet Tg (°C) 

(average over 3 heating runs) 

1 Virgin PET 73.43 

2 PET + 1% MAE 72.81 

3 PET + 2% MAE 73.00 

4 PET + 5% MAE 72.30 

5 PET + 1% MTE 73.00 

6 PET + 2% MTE 73.18 

7 PET + 5% MTE 72.07 

Table x5.4-3 Tg (average results) for vPET and PET NC sheets. 

  

 

Figure x5.4.1 Effect of nanofillers (MAE and MTE) at different content levels (1, 2 and 5 wt.%) on 

Tg. 

 

Glass transition temperatures (Tg) for vPET sheets and PET NC sheets are summarized 

in Table x5.4.3 and Figure x5.4.1. It is apparent that the differences between the results 

are small. 
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Sample No. Type of sheet Tm (°C) 

(average over 3 heating runs) 

1 Virgin PET 250.36 

2 PET + 1% MAE 250.2 

3 PET + 2% MAE 250.79 

4 PET + 5% MAE 250.71 

5 PET + 1% MTE 250.62 

6 PET + 2% MTE 250.34 

7 PET + 5% MTE 250.67 

Table x5.4.4 Tm (average results) for vPET and PET NC sheets. 

 

 

 

 

Figure x5.4.2 Effect of nano-fillers (MAE and MTE) at different contents (1, 2 and 5 wt.%) on Tm. 

 

 

The effect of adding nanofillers (MAE and MTE) at different content levels (1, 2 and 5 

wt.%) is shown in Table x5.4.4 and Figure x5.4.2. Since the PET melt processing 

temperature is more than 260°C, the effect of the nanofillers is small. 
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A 

 

B 

 

C 

 

D 

 

E 

 

F 

 

Figure x5.4.5 (A-F) Relationship between Tmc and nanofillers (MAE and MTE) at different 

nanoclay contents (1, 2 and 5 wt.%). 

Generally, figures x5.4.5 (A-F) show that on increasing MAE or MTE concentration the 

value of Tmc increases, the crystallization peaks tend to be sharper, and the half peak 

decreases, which indicates that the rate of crystallization is increased. 

There are many possible reasons for this phenomenon. The structure of the nanofillers 

(MAE and MTE) can help the PET molecules accumulate on each other to grow into 
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crystallites, which enhances the crystallization rate. A further possible reason is that the 

nanofiller can act as an effective heterogeneous nucleating agent. In this case, in the 

molten state the segments of the PET molecules can easily interact with the surface of 

the nanofiller, developing crystallization nuclei. 

 

Figure x5.4.6 Relationship between Tmc and MAE (1, 2 and 5 wt.% concentrations) at different 

cooling rates (5, 20 and 35°C). 
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Figure x5.4.7 Relationship between Tmc and MTE (1, 2 and 5 wt.% concentrations) at different 

cooling rates (5, 20 and 35°C). 

  

Figures x5.4.6 and x5.4.7 illustrate the relationship between the crystallization 

temperature from the melt (Tmc) and the nanofiller concentration (0, 1, 2 and 5 wt.%) 

under different cooling rates (5, 20 and 35°C/min). It is apparent that Tmc increases 

with increasing filler concentration. Also the higher the cooling rate, the lower the Tmc 

at the same filler and concentration. 
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G 

 

 

Figures x5.4.8 (A-G) DSC curves showing the 

relationship between the heat flow and the 

crystallisation temperature of the cooling step at all 

cooling rates (5, 20 and 35°C/min) at each 

concentration of NC. 

 

Tmc peaks for vPET at different cooling

197.93

178.08
166.56

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350

Temperature (°C)

H
e

a
t 

F
lo

w
 (

W
/g

)

5 °C/min 20 °C/min 35 °C/min

Tmc peaks for PET/MAE (1%) NC at different cooling rate

202.16

175.76

182.92

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200 250 300 350

Temperature (°C)

H
e

a
t 

F
lo

w
 (

W
/g

)

5 °C/min 20 °C/min 35 °C/min

Tmc peaks for PET/MAE (2%) NC at different cooling rate

203.3

184.55

174.84

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200 250 300 350

Temperature (oC)

H
e

a
t 

F
lo

w
 (

W
/g

)

5 °C/min 20 °C/min 35 °C/min

Tmc peaks for PET/MAE (5%) NC at different cooling rate

208.6

187.54

178.34

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 50 100 150 200 250 300 350

Temperature (oC)

H
e

a
t 

F
lo

w
 (

W
/g

)

5 °C/min 20 °C/min 35 °C/min

Tmc peaks for PET/MTE (1%) NC at different cooling rate

203.63

181.94

176.1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

50 70 90 110 130 150 170 190 210 230 250

Temperature (°C)

H
e

a
t 

F
lo

w
 (

W
/g

)

5 °C/min 20 °C/min 35 °C/min

Tmc peaks for PET/MTE (2%) NC at different cooling rate

204.22

185.08

176.83

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

50 70 90 110 130 150 170 190 210 230 250

Temperature (°C)

H
e

a
t 

F
lo

w
 (

W
/g

)

5 °C/min 20 °C/min 35 °C/min

Tmc peaks for PET/MTE (5%) NC at different cooling rate

206.04

184.12
170.78

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

50 70 90 110 130 150 170 190 210 230 250

Temperature (°C)

H
e

a
t 

F
lo

w
 (

W
/g

)

5 °C/min 20 °C/min 35 °C/min



308 
 

In figures x5.4.8 (A-G) it was expected that Tmc would decrease on increasing the 

cooling rate. For instance, for PET/MAE (1 wt.%) NC, Tmc with a slow cooling rate 

(5°C/min) was higher than Tmc with a fast cooling rate (35°C/min), which indicates 

that the lower cooling rate gives enough time for the molecular chains to pack into a 

unit cell forming the nuclei, and also that the time for the nanocomposite to finish 

crystallisation was much shorter than for vPET. On the other hand at high cooling rates 

a small heat flow peak was seen for vPET sheets compared with PET/(MAE or MTE) 

NC sheets, which showed large heat flow peaks, indicating the addition of nanofiller 

(MAE or MTE) increased both the crystallinity and crystallisation rate of the NC sheets 

when compared with virgin PET. 

  

 

 

 



309 
 

A 

 

B 

 

C 

 

D 

 

E 

 

F 

 

Figure x5.4.9 (A-F) DSC curves for PET nanocomposites showing the Tmc and Tgc peaks. 

 

The crystallization from melt state (Tmc) and crystallization from solid state (Tgc) 

peaks of vPET sheets and PET NC sheets (at different nanofiller ratios and different 

cooling rates) are shown in figures x5.4.9 (A-F). 
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It is apparent that the Tgc peaks shift to lower temperatures on increasing the nanofiller 

content. In contrast, the Tmc peaks shift to higher temperatures on increasing the 

nanofiller content. This indicates that the PET crystallizes at a higher temperature from 

the melt and crystallizes at a lower temperature from the solid state indicateing that the 

nanofiller acts as an effective nucleation agent in the PET crystallization process. 
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x5.4.4 Comparison of the samples analysed in the preliminary and main studies 

A 

 

B 

 

C 

 

D 

 

E 

 

F 

 

Figure x5.4.10 (A-F) Thermal analyses (Tg, Tgc and Tm) for PET/(MAE, MTE) NC at different 

clay concentrations [comparing the preliminary study and main study]. 

 

Figure x5.4.10 summarises the thermal analyses for PET/(MAE and MTE) NC at 

different clay concentrations in the preliminary study and the main study. 
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A big difference in Tg between the samples analysed in the preliminary and the main 

study is shown in Figure x5.4.10 A and B; the difference is about 3°C. The samples 

analysed in the main study show a small decrease in Tg compared to the samples in the 

preliminary study, which indicates good melt processing and a sufficient drying process 

for the PET pellets and clays prior to the mixing process in the main study. Figure 

x5.4.10 C and D show a small difference in Tgc between the samples analysed in both 

studies. The nanofiller in the main study decreased the Tgc more than in the preliminary 

study, which indicates that the nanofiller in the main study showed a better performance 

than the same nanofiller in the preliminary study. That can also be attributed to the 

difference in the nature of the samples, which were amorphous pellets in the main study 

and sheets in the preliminary study. The sheets were pulled uniaxially by the chill rolls 

which can induce crystallinity in the sheet. In general, the good drying procedure and 

the mixing method that applied in the main study may be made the differences in the 

thermal results compare to the preliminary study. 
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Appendix x6 

x6.1 Tensile modulus of PET nanocomposites films vs. clay content at tensile test 

speed of 5 and 50 mm/min 

 

Figure x6.1 Tensile modulus of PET/MAE nanocomposites films vs. clay contents at tensile test 

speed of 5 and 50 mm/min 

 

Figure x6.2 Tensile modulus of PET/MTE nanocomposites films vs. clay contents at tensile test 

speed = 5 and 50 mm/min 
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Figure x6.3 Tensile modulus of PET/Cloisite 25A nanocomposites films vs. clay contents at tensile 

test speed = 5 and 50 mm/min 

 

 

X6.2 TEM micrographs for PET nanocomposites films 

 

Figure x6.4 TEM micrographs for PET/MAE (1 wt.%) nanocomposites films 
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Figure x6.5 TEM micrographs for PET/MAE (3 wt.%) nanocomposites films 

 

Figure x6.6 TEM micrographs for PET/MAE (5 wt.%) nanocomposites films 
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Figure x6.7 TEM micrographs for PET/MTE (1 wt.%) nanocomposites films 

 

 

Figure x6.8 TEM micrographs for PET/MTE (3 wt.%) nanocomposites films 
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Figure x6.9 TEM micrographs for PET/MTE (5 wt.%) nanocomposites films 

 

 

Figure x6.10 TEM micrographs for PET/Cloisite 25A (1 wt.%) nanocomposites films 
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Figure x6.11 TEM micrographs for PET/Cloisite 25A (3 wt.%) nanocomposites films 

 

 

Figure x6.12 TEM micrographs for PET/Cloisite 25A (5 wt.%) nanocomposites films 
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x6.3 Stress-strain curve for PET nanocomposites micro size sample prepared at different 

injection speeds 

 

Figure x6.13 Stress-strain curve for PET/MTE (3 wt.%) micro size sample prepared at different 

injection speeds 

 

Figure x6.14 Stress-strain curve for PET/MTE (5 wt.%) micro size sample prepared at different 

injection speeds 
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Figure x6.15 Stress-strain curve for PET/Cloisite 25A (1 wt.%) micro size sample prepared at 

different injection speeds 

 

Figure x6.16 Stress-strain curve for PET/Cloisite 25A (5 wt.%) micro size sample prepared at 

different injection speeds 
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Figure x6.17 Stress-strain curve for PET/MAE (1 wt.%) micro size sample prepared at different 

injection speeds 

 

Figure x6.18 Stress-strain curve for PET/MAE (5 wt.%) micro size sample prepared at different 

injection speeds 
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Appendix x8 (Chapter 8) 

x8.1 Samples description  

Sample Description 

Ext. vPET Extruded PET (non recycled) 

PET/MTE3% PET/MTE_3% (non recycled) 

PET/MTE3%_1 PET/MTE_3% (1 time recycled) 

PET/MTE3%_2 PET/MTE_3% (2 times recycled) 

PET/MTE3%_3 PET/MTE_3% (3 times recycled) 

PET/MTE5% PET/MTE_5% (non recycled) 

PET/MTE5%_1 PET/MTE_5% (1 time recycled) 

PET/MTE5%_2 PET/MTE_5% (2 times recycled) 

PET/MTE5%_3 PET/MTE_5% (3 times recycled) 

PET/Cloisite25A_3% PET/ Cloisite25A _3% (non recycled) 

PET/Cloisite25A_3%_1 PET/ Cloisite25A _3% (1 time recycled) 

PET/Cloisite25A_3%_2 PET/ Cloisite25A _3% (2 times recycled) 

PET/Cloisite25A_3%_3 PET/ Cloisite25A _3% (3 times recycled) 

PET/Cloisite25A_5% PET/ Cloisite25A _5% (non recycled) 

PET/Cloisite25A_5%_1 PET/ Cloisite25A _5% (1 time recycled) 

PET/Cloisite25A_5%_2 PET/ Cloisite25A _5% (2 times recycled) 

PET/Cloisite25A_5%_3 PET/ Cloisite25A _5% (3 times recycled) 

Table x8.1 Description of the re-passed samples. 
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x8.2 viscosity vs. shear rate of PET nanocomposites re-extruded number of times and 

the pellets pictures.  

 

Figure x8.1 Viscosity vs. shear rate of PET/MTE (3 wt.%) nanocomposites re-extruded a number of 

times. 

 

Figure x8.2 Colour of the amorphous PET/MTE (3 wt.%) after re-pass stages. 
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Figure x8.3 Viscosity vs. shear rate of PET/MTE (5 wt.%) nanocomposites re-extruded a number of 

times. 

 

Figure x8.4 Colour of the amorphous PET/ MTE (5 wt.%) after re-pass stages. 
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Figure x8.5 Viscosity vs. shear rate of PET/Cloisite 25A (3 wt.%) nanocomposites re-extruded a 

number of times. 

 

Figure x8.6 Colour of the amorphous PET/ Cloisite25A (3 and 5 wt. %) after re-pass stages. 
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Figure x8.7 Viscosity vs. shear rate of PET/Cloisite 25A (5 wt.%) nanocomposites re-extruded a 

number of times.  
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