-

View metadata, citation and similar papers at core.ac.uk brought to you byﬁ CORE

provided by Online Research Database In Technology

Technical University of Denmark DTU
>

Parallel solution of systems of linear equations generated by COMSOL 3.2 using the
Sun Performance Library

Gersborg, Allan Roulund; Dammann, Bernd; Aage, Niels; Poulsen, Thomas Harpsge

Publication date:
2006

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):

Gersborg-Hansen, A., Dammann, B., Aage, N., & Poulsen, T. H. (2006). Parallel solution of systems of linear
equations generated by COMSOL 3.2 using the Sun Performance Library. Technical University of Denmark
(DTU). (MAT-report; No. 2006-05).

DTU Library
Technical Information Center of Denmark

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
e You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

https://core.ac.uk/display/13721221?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/parallel-solution-of-systems-of-linear-equations-generated-by-comsol-32-using-the-sun-performance-library(a14b683a-60c0-4d26-a126-e72d5f839332).html

Parallel solution of systems of linear equations generated
by COMSOL 3.2 using the Sun Performance Library

Allan Gersborg-Hansen, Department of Mathematics
Technical University of Denmark,
DK-2800 Lyngby, Denmark

Bernd Dammann, Informatics and Mathematical Modelling
Technical University of Denmark,
DK-2800 Lyngby, Denmark

Niels Aage and Thomas Harpsge Poulsen
M.Sc. students at the Technical University of Denmark,
DK-2800 Lyngby, Denmark

Correspondence to: agh@mek.dtu.dk

March 10, 2006

Mat-Report No. 2006-05
ISSN: 0904-7611

1 Abstract

This note investigates the use of the Sun Performance bilboarparallel solution of a system of
linear equations generated by COMSOL 3.2. In many engingefisciplines this is a computa-
tional bottleneck for large problems which are often metsearch practice. Most researches are
primarily concerned with developing a proper (COMSOL) mad¢éher than developing efficient
linear algebra solvers which motivates this investigatibtie efficiency of the coupling COMSOL

+ SPL. The technicalities of making such a coupling is désctin detail along with a measure of
the speedup for a testproblem run in 2D and 3D.

Moreover this note quantifies the performance of COMSOL mmion a Sparc ULTRA 11l pro-
cessor. The study shows that for small problems such as detgutasks, teaching exercises etc.
the Sun computer is not competitive compared with a stané@rd

2 Introduction

This note is written as a brief primer to the Sun computer ahmeal University of Denmark
(DTU) with focus on using multiple processors in the patedédl Sun Performance Library (SPL).
The SUN computer is a high performance computer very difitfrem a standard PC. It has several
processors, lots of memory and is capable of running large ijo 64-bit. The primer is intended
for users that need to solve large linear algebra problerssilply generated by MATLAB and/or
COMSOL 3.2.

Getting the linking from a JAVA environment like MATLAB to thSPL right is non-trivial and
receives the primary focus. Moreover, this note illusgditew a program can be profiled to identify
bottlenecks and it proves the principle that multiple pesogs can be used in the SPL via a call
from a FORTRAN or a MATLAB programme running COMSOL.

To measure the performance of the SPL we consider a Poissqarddlem and solve it in two and
three spatial dimensions. A comparison with the solver lige@OMSOL 3.2 shows that a speed
up of a factor 2.4 can be achived for a 2D prolem and a factofd.4 3D problem, if several
processors are used in the SPL. If only a single process®ed the SPL is as effective as the
solver used in COMSOL 3.2.

The report also addresses the concept of writing an apptepriakefile for compiling a programme
written in FORTRAN being a low level language. It turns oubtovery critical for the performance
that the correct compiler options are used. Links to the SRLaptions for using 64-bit are also
described.

The files presented in this report can be found and downlofidedthe home page at:
http://www2.mat.dtu.dk/people/A.G.Hansen/

3 Compiling a FORTRAN programme

3.1 Script files and the shell environment

To streamline the presentation we use script files to showelessary commands. A script file is
created by making a text file in any editor and changing itstieis to an executable. Example:
chnod +x scriptfil e changesthefilscri ptfil e such thatit can be executed. To exe-
cute the script file one types its name in the unix prompt.@des need not have a file extension.

The command prompt may be flavored to the match the taste astire One can use tiash, c,
k shell etc. In this note we use thesh shell. You change to the bash shell by writingsh in
the prompt.

Consider the below script file

Listing 1: script_1.txt

Comment line , show content of directory
Is

Assign value to system variable
export OMP_NUM_THREADS=4

Check the value of a system variable (useful for debugging)
echo 'number of threads is:’ $OMP_NUM THREADS

10

15

The system variabl®VP_NUM THREADS determines the number of processors to use following
the OpenMP standard. In this way it is very simple to conteshfielized libraries. Other OpenMP
options exist such &&VP_SCHEDULE=gui ded. See the OpenMP literature for more details, e.g.,
[1, 2].

3.2 Compiling

We wish to compile the FORTRAN programme contained intheéitd ver . f andcal | _sol ver. f
given in Appendix A. It turns out that the Sun Studio 10 corapiias an error that prevents the use
of multiple processors, but using the Sun Studio 8 compiilergs work fine. Since the Sun com-
puter has a shared memory architecture the parallelizegibased on OpenMP.

In order to be able to change the compiler version easily eeelsto have
[appl / ht ool s

in the file

~[. grouprc

if it exists. If the file does not exist, create it and type

~. .l.grouprc

or login again.

Alternatively, one can use the command
source /appl/htool s/bin/grp.profile
as described below.

Important: To use the bash shell with Sun Studio 8 type the followingéhcommands in the
prompt

bash

source /appl/htool s/bin/grp.profile

init.ss8

Once this is done you can check if the FORTRAN compiler is daseSun Studio 8 by typing
whi ch f90

If you get the answef opt / FD8/ SUNW pr o/ bi n/ f 90 things are fine and you can proceed
with the below script. The script compiles a FORTRAN progma@nconsisting of the files solver.f
and call_solver.f.

Listing 2: script_2.txt

This script compiles the FORTRAN programme

contained in the files solver.f and call_solver.f

To change to the bash shell running Sun Studio 8 you type
bash

source /appl/htools/bin/grp. profile

init.ss8

Check that the Sun Studio 8 compiler is used echo 'Using FORTRAN
compiler:’
which f90 echo

Compile the FORTRAN programme and link to the SPL

echo

echo 'Compiling and linking

echo

f90 —g —fast solver.f call_solver.fxlic_lib=sunperf—xarch=v8plusb—autopar

Indicate that the program is running

20

25

30

echo
echo 'Testing programme’
echo

Use one processor
export OMP_NUM_THREADS=1

run the programme
ptime a.out

Use four processors
export OMP_NUM_THREADS=4

run the programme
ptime a.out

A brief explanation of the options passed to the f90 compseeran f 90 for more details

-g The programme is compiled in debugging mode. This is uséfuhé examines the
core file for tracing why the programme crashed or similar.

- f ast This option increases the compiler optimization to the bBgjHevel such that
reading of matrices is done in an efficient way. To obtain & daspilation time and less
optimized code thedal i gn option can be used instead.

-xlic_lib=sunperf Alinktothe SPL is created.
-aut opar Parallelizes simple segments of code.

-xarch=v8pl usb Specifies the SUN architecture type.

The commangbt i me measures the process time. It gives the outpetl being the wall clock
(physical) timepser is the time that the user spent on the computersyralis some other system
time. When using more than one processor one can see thas#retime increases, typean
pti me to see more information. However, tip¢ i me command does not provide information
about if the processors are working on the job.

Output from the programme and a compiled version is availab[3].
A more advanced compiler example using a makefile is treateddtion 6.

4 Using the analyzer profiling tool

4.1 Processid

The command op al | shows all the present jobs running, if you writep - USUSER or ps
-ef | grep $USERyou see your jobs. To quit the programme you tgpenore help is found
by typingnman t op. Each job has a process id (pid) which we will use to track dgomance
of the programme in the next section.

To avoidbad standing with the databar support make sure to kill the jobs that atedomng any
good. This can be done in different ways. tlnp you can kill a job by pressing and enter the
pid. Sometimes the above way of killing a job is not sufficidhthe job has a window you can use
xki I'l to kill the window. If everything fails you can use the prosés (pid) and write

kill -9pid

5 Profiling

There are two ways of getting a profile for a FORTRAN programriibe easiest is to use the
col I ect command

col l ect a.out

then the programme runs and data is collected in the dinet®st . #. er / . To analyze the data

you type
anal yzer oranal yzer test.#.er

In a script this becomes (the results are shown in Figure 1)

Listing 3: profile_script.txt

This script runs the programme twice with profiling

To change to the bash shell running Sun Studio 8 you type
bash

source /appl/htools/bin/grp.profile

init.ss8

Use one processor
export OMP_NUM_THREADS=1

Run the programme
collect —o runl.er a.out

Use four processors
export OMP_NUM_THREADS=4

Run the programme
collect —o run2.er a.out

Run the analyzer with the first set of profiling data
analyzer runl.er

Alternatively, when profiling a programme that is not an EMé@utable — i.e. MATLAB — one
wants to attach to a certain process and collect the dataorRigler the FORTRAN programme
from Appendix A, if you change thgo_no_go file to 1 there will be a pause once the programme
has started. The procedure then becomes:

Run the programme

a. out

open a new terminal and get the pid. Then you type

dbx

attach pid

if you typel i st you recognize that it is the right programme that we are nooinigj. Now, enable
the collector

col l ector enable

cont

Return to the window of the program and tyge. Finally, return to the window of the profiler an
type

qui t

anal yzer

performance Analyzer [runt.er] N =]
File

Help

[&][E[5] [l [a[e[2[F]E]ala[E] e [HE
Sourcs | Lines |/ Disassembly | PCs. | Timeline | Leaklist | Statisti [» [‘Summary | Event |Logend |Leak |

45s7B9mM1213141515‘171319@21222324

53%"!-w-i\\\-ﬂullmumu s

@ sl rt + 0x00000108

[T

_ [T 0}

Figure 1: Screen shot from the timeline in the analyzer wiodvirsg a large matrix problem using
a FORTRAN programme (no JAVA). 'Light grey’ peaks are funcis calls not in the SUN Perfor-
mance Library(SPL) and 'dark (red)’ peaks are calls from3$Rd.. Each row in the picture shows
the work done on a processor.

5.1 Analyzer software

In the analyzer one can identify the bottleneck in the codst,Fopen an experiment that contains
the data that has been profiled earlier, see Figure 1. Thegroge is user friendly and we only
give a few remarks:

e Inthe menwi ew, Data representation, Tinelineonecanchoosehow many
functions that are shown in the big timeline picture. Setdaek size to 50.

e The Ti nel i ne is where we see the performance of many processors. Puslolire ¢
chooser. Set all functions to white, then choose a diffecadr. In the text box write
__pl (3 _and pl), choose "contains" and the set button. Returtwrige big picture we
now see where the SPL is called. If the stack size is too smalhoay not see the SPL.

Having run the analyzer, it is clear that multiple processae used and they are working on the

job.

6 A makefile format for a larger programme

When dealing with large FORTRAN programmes, it becomes i@ppdhat the compilation and
linking is a non trivial task. The one-line command is norto@l because libraries are linked
to all programme modules and with a very limited compilatmrerview. An alternative is to

10

15

20

25

30

35

40

45

50

55

use the makefile format, which is a script language createth®exact purpose of making the
compilation/linking process easy to overview and easy tdsiders to interpret.

The basic idea is to compile each module with distinct conaeaa.g. if the NAG library is used
in a solver module, only this module is linked to NAG, whiletremainder is left as is. The use
of this approach provides a transparent compilation schesmieh can relatively easily be adopted
by other users.

The layout of the makefile was presented by Ruud van der Pasagiication tuning seminar at
DTU in May, 2005. The below code is more practical since tlmymmme consists of several files
that are taken care of individually, see line 135 to line 1@3lie individual compilation. Also note

that the dependencies are easily distinguished for eaclulgodhe last part of the compilation is
to make the actual linking, and this must still be done in d@glaonanner, see line 125 to line 129.

Getting an environment variable from the makefile to the FRRN programme is also delicate.
This is because each executable line in the makefile openw ahmadl, and thus information ex-
ported here is not kept when moving on to the next line. Tloeesé trick must be used, in which
the variables are first given in a regular manner, line 7 t® 8, and afterwards saved as one vari-
able in line 60. This variable can then be called just befbeegrogramme/profiling is executed,
see line 94 and line 99 as examples.

Listing 4: Makefile.txt

Makefile to be run on the Gbar/Sun Studio compiler vers. 11

##HHHR R ENVIRONMENT VARIABLES #####H#HEHIR B

GENBRAL VARIABLES

SOLVER_NAME='sparse ' ## 'NAG', 'standard ' and 'sparse’ (SPL)
BANDED=. true . ## .true or .false.
BAND2SPARSE=.true . ## .true or .false.
GAUSS_POINTS=2 ## from 1 to 9

MODAL ANALYSIS

NEIG=4 ## number of eigenfreq.
STURM_SEQUENCE =" off ’ ## either 'on’' or ’'off’
MIXED ANALYSIS

MIXED_MODEL="fluid ' ## ’fluid ' or ' static’
MASS_CHECK=.true . ## .true or .false.
PRESSURE=. true . ## .true or .false.
PARABOLIC=. true . ## .true or .false.

Inputfile to analyze

FILE_NAME="big3_modal’

FILE_NAME="big4 "’

Options for parallel execution
SUNW_MP_THR_IDLE=SPIN

OMP_NUM_THREADS=4

#HH#HHH A COMPILER VARIABLES #######HHHHHHHH R

Define program names and objects:
PGM = fem
OBJ = fedata.o linkl.0 plane42.0 processor.o numeth.o feamain.o

General compiler commands # — xautopar —reduction —stackvar

OMP = —openmp —xloopinfo #-XlistMP # OpenMP

#1SA = —xarch=v8plusb #32—bit architecture

ISA = —xarch=v9b #64—bit architecture

LIB64 = sparcv9

DEBUG =—g

OPT_BASE =—dalign # Basic routines

OPT =-—fast # Most important for performance (—xO5 e.g)

NAG =-—M/appl/gnag/fnsol04db/nag_mod_dir

FFLAGS = $(OPT) $(ISA)

LDFLAGS = $(OPT) $(ISA) $(OMP)

COMPILE = f90

LINK = f90

Linking to:

LIBPATH = —xparallel—xlic_lib=sunperf—Imtmalloc—L/appl/htools/pgplot-5.2.2/1ib/—L/usr/openwin/lib/$(LIB64) \
—L/usr/sfw/lib —L/appl/gnag/fnsol04db

LIBS = —Ipgplot —IX —Ipng —Inagfl90

#H##n####### The following should be left as is ##########1IH

60

65

70

75

80

85

90

95

100

105

110

115

120

125

130

135

140

envvar = SOLVER_NAME=$ (SOLVER_NAME) \
BANDED=$ (BANDED) \
BAND2SPARSE=$ (BAND2SPARSE) \
GAUSS_POINTS=$ (GAUSS_POINTS)\
NEIG=$ (NEIG)\
STURM_SEQUENCE =$ (STURM_SEQUENCE)\
MIXED_MODEL=$ (MIXED_MODEL)\
MASS_CHECK=$ (MASS_CHECK) \
PRESSURE=$ (PRESSURE)\
PARABOLIC=$ (PARABOLIC)\
FILE_NAME=$ (FILE_NAME)\
SUNW_MP_THR_IDLE=$ (SUNW_MP_THR_IDLE) \
OMP_NUM_THREADS=$ (OMP_NUM_THREADS)

default: help #help menu
.SUFFIXES: . f90

build:
make $(PGM)

check:
@f90—V
@which f90
@collect—V
@analyzer—V

Clean—up rules:
clean:
@m—f $(OBJ) corex.inc x.vo x.mod *.out =.|st *.hf

veryclean: clean
@m—f $(PGM)
@er_rm—f *.er

run_$(PGM):
@$(envvar) ./$(PGM)

collect_$ (PGM): $ (PGM)
@er_rm—f prof_$(PGM). er
@mkdir /tmp/$(USER)
@$(envvar) collect—d /tmp/$(USER)—o0 prof_$(PGM).er ./$(PGM)
@er_mv /tmp/$(USER)/prof_$(PGM). er .
@m-—R /tmp/$(USER)

profile_$ (PGM):
analyzer prof_$(PGM).er &

help:
@echo " HIHHHHE
@echo "Help,on_Makefile_usage"
@echo ""
@echo "Usgmake —n_<key> to _see ,Makefile_commandwithout_running,program”
@echo ""
@echo "Programtargets. are:"
@echo ", _fem_ — _serial_version,"
@echo ""
@echo "Commandsised.in_this_Makefile"
@echo "make<target>, ;. compiles,and_link _program <target>"
@echo . Runs . program,with_profiler"
@echo :_Runs analyzer"

@echo "makgcheck,,
@echo "makeclean__ ...,

:.Checks,versions"
Basic_clean_up"

@echo "makeveryclean, :_Removes all_datg, created,by _<target>"
@echo ""
@echo " HIHHHHE

Rule for building the program:

$(PGM): $(OBJ)
$(LINK) —0 $(PGM) $(LDFLAGS) $(NAG) $(OBJ) $(LIBPATH) $(LIBS)
chmod go+rx $(PGM)

Dependencies:
main.o: main.f90 fedata.o
$(COMPILE) —c $(FFLAGS) $(DEBUG) $:.f90
.0: fea.f90 fedata.o
$(COMPILE) —c $(FFLAGS) $(DEBUG) $(OMP) $(NAG) $.f90
processor.o: processor.f90 fedata.o
$(COMPILE) —c $(FFLAGS) $(DEBUG) $:.f90
fedata.o: fedata.f90
$(COMPILE) —c $(FFLAGS) $(DEBUG) $.f90
linkl.o0: link1.f90 fedata.o
$(COMPILE)—c $(FFLAGS) $(DEBUG) %.f90
plane42 .o0: plane42 .f90 fedata.o
$(COMPILE) —c $(FFLAGS) $(DEBUG) $(OMP) $.f90
numeth.o: numeth.f90 fedata.o
$(COMPILE) —c $(FFLAGS) $(DEBUG) $.f90

fea

A few comments about general makefile usage:

e @means that the command should not be printed to screen.

e make is the makefile format identifier - e.g. the standard commanddmpiling ismake.
Note thatmake will call the bui | d command if one is present.

¢ New makefile commands can be added such that the makefile aasetddo compile, run,
clean up, profile, etc. the FORTRAN programme. All extra caands are called on the
generic formmake <key>, where<key> is any of the highlighted and left oriented words
from lines 72-124.

To read an environment variable into a FORTRAN variable thlew generic command can be
used

cal | getenv(’ SOLVER NAVE', ENV_VALUE)

read(uni t =ENV_VALUE, *) SOLVER_NANMVE

7 Making a call from MATLAB running COMSOL

7.1 Compiling a mex file

"Calling (C and) FORTRAN programs from MATLAB" is describ@dthe MATLAB manual (to
find the maunual go to the MATLAB help menu). One has to writeategay function in FOR-
TRAN that creates the link between MATLAB and FORTRAN. Thésgeay function is compiled
from MATLAB into a mex file.

To make the linking to the SPL correctly we need to set the meaxgler options, see the MATLAB
help by typinghelp mex in the MATLAB prompt. This is done in the file

./ mat | ab/ R#/ mexopt s. sh where # is the release number. If the file does not exist you can
create it by typingnex -setup.

In this file we have used the below settings for FORTRAN ingbé 2 section

Listing 5: part of mexopts.sh

f90 —V

Sun Fortran 95 7.1 Patch 112762—09 2004/01/26
FC="/opt/FD8/SUNWSspro/ bin/f90"
FFLAGS=—KPIC — fast —xarch=v8plusb—autopar—mt’
FLIBS="$MLIBS_—Ifui_—Ifsu_—Im_—lc_—Bstatic —Isunperf_mt—Bstatic —Imtsk_—xparallel"

To compile the mex file we start MATLAB after initializing Su8tudio 8:
First, type the below commands

bash

source /appl/htool s/bin/grp.profile

init.ss8

Now, run the below script

7.1.1 Scriptfile:subm t _t est

To change to the bash shell running Solaris 8 you type
#

bash

source /appl/htools/bin/grp.profile

init.ss8

#

#

All commands use the sentinel #$

10

15

20

25

30

35

40

45

50

#

#% —N runl

#$ —S /bin/bash
#$-j y

#$—0 runl.out
#%—e runl.err

#$ —cwd

###%$—M yourmail@dtu . dk
###$—m be

Request hours run time
#$—1 cre

#$ —pe HPC 8

Increase the stack limit to avoid problems running FEMLAHtlw MATLAB
ulimit —s 32768

#ulimit —s 65536

#ulimit —s 131072

Show libs loaded in MATLAB
export LAPACK VERBOSITY=1

Change the BLAS library that MATLAB uses
see: http://www. mathworks .com/access/helpdesk/hegghdoc/rn/rl4spl_math_new. html

We don’'t load the SPL here, instead we make a link to SPL in #ORTRAN programme .
If one wants load a library in MATLAB it is done this way
#export BLAS_VERSION=libsunperf.so.4

Number of processors to use
#export OMP_NUM THREADS=4

Cleanup directory
#rm —rf px.txt

Startup FEMLAB with MATLAB and run a MATLAB script (useful dr submitting batch jobs at HPC)
export OMP_NUM_THREADS=1
run_comsol32_matlabl4 . txt matlab pathml —nodesktop—ml —nosplash—mlr test_2d

export OMP_NUM_THREADS=2
run_comsol32_matlabl4 . txt matlab pathml —nodesktop—ml —nosplash—mlr test_2d

export OMP_NUM_THREADS=4
run_comsol32_matlabl4 . txt matlab pathml —nodesktop—ml —nosplash—mir test_2d

export OMP_NUM_THREADS=8
run_comsol32_matlabl4 . txt matlab pathml —nodesktop—ml —nosplash—mlr test_2d

Comments to the script:

e The first lines are related to batch jobs at HPC, see sectii.7.

e Theul i m t command increases the stack size (memory) which is relevlaeh running

MATLAB with COMSOL. The command i m t displays the resources available to the user,

seeman limt.
e We start COMSOL using MATLAB 14 in an independent script whis present in the
working directory, see below.

7.1.2 Scriptfile:run_consol 32_mat | ab14. t xt

This is acopy of the COMSOL file which is run to start COMSOL. Only the firsiféines have
been changed such that MATLAB14 is run. The reason is that M¥d14 is not using the SPL,
hence compiler options blocking the use of SPL is not preséht MATLAB14. Other options

10

such as the stacksize for JAVA can also be edited this ways Wei can do because we created
the file and therefore have permission to write. The addipiotne commandMAINCLS prevents
COMSOL from opening of a GUI when COMSOL is started with MATBA

#! /bin/sh

MLROOT=/appl/gmatlab/matlabl4
FLROOT=/appl/gmatlab/comsol32
LIBGLPATH=

MAXHEAP=256m
MAXHEAPCLIENT=512m
MAXHEAPSERVER=256m
MAXHEAPSERVER64=1024m
JAVAOPTS=0n
STACKSIZE=2m

export STACKSIZE

JVMTYPE_CLIENT=client
JVYMTYPE_SERVER=server

SETLOCALE=0n

DO NOT EDIT CODE BELOW!

3oy 3

MAXHEAP=$MAXHEAPCLIENT

setcommon $1 ${DM_DEF_GUI} ${DM_SUP_GUI}
MAINCLS=com . femlab . gui.Femlab

shift

APPLARGS="client &"

matlab)
MAXHEAP affects JVYMARGS that is used when starting clientof Matlab
heap size settings used by Matlab is MAXHEAPSERVER (searfdr java.opts)
MAXHEAP=$MAXHEAPCLIENT
if ["${TMPARCH}" = "glnxa64"]; then
setcommon $1 32—
MAINCLS=com . femlab. script.BatchRunner
else
setcommon $1 32—
MAINCLS=com . femlab. script.BatchRunner
fi
shift
runmatlab $
exit

compile)
setflcp
shift

Now we are able to compile the mex file by typing the MATLAB cowmal
mex -v solver.f solverg.f

Finally, we can run a the test script that uses SPL for soltrglinear algebra problem by the
command
test_2d

The code of the test script is given in Appendix B.2.

11

7.2 Running big jobs in the G-bar
7.2.1 Remote access

The best thing to use is thHEhi nLi nc software that the G-bar supports, since it enables you to
run OpenGL applications such as stand alone COMSOL with ttapl@écal User Interface (GUI).
Go to the home page of G-bar support (www.gbar.dtu.dk),
http://www.gbar.dtu.dk/old/guide?cat=1&subcat=14

Read the user’s guide and download the programme from theaef menu. Use your student ID
and password. Some alternative§ta nLi nc are stated below.

7.2.2 Xwin32

1. Download Xwin32 from the www. Try to ask the databar supgddhey have bought a site
licence such that you can register. It is possible in the m-ba

2. Use the wizard and log on to the G-bar using the StarNetSSH.
Host:bohr . gbar . dt u. dk

7.2.3 A nice job without a shell

The below method is relevant to users/students that arelloatesl to submit jobs using the grid
engine on DTU. In order to have code running for a long timg,l8ahours, one needs to behave
nicely.

To start MATLAB in a UNIX shell without any pop—up graphicschimmediately run the MATLAB
file (a script)t est . myou write
mat | ab - nodesktop -nosplash -r test

Suppose that est . mdoes a big calculation but with no graphics. It also savegdhkalt in a
data file termeabut put . mat , then it terminates MATLAB using thexi t command. The unix
commandohup starts a job but does not require a UNIX shell. Hence we cahastag MATLAB
job this way

ni ce nohup matl ab - nodesktop -nosplash -r test

and then close the window and log out. Tiiece command ensures that the big job does not use
all the CPU—power and is required to avbat standing. The next day we can pick up the results in
theout put . mat file using the MATLAB commandii | oad from the MATLAB prompt, select
the fileout put . nat .

7.2.4 A batch job
For users associated with HPC [5] all jobs have to be run ahhabs. A batch job is just a script

where comment lines with #3$ are options to the Grid Enginetbsystem, see section 7.1.1. A few
remarks are appropriate

#$ -N Assigns a name to the job.

#$ -S Isthe shell used.

12

#$ -0 Name of output file.

#$ -e Name of error file.

#$ -cwd Current working directory.
#$ -M Your email address.

#3$ -m be You will receive an email once the job has begun ("b") and donleas termi-
nated("e").

#$ -pe HPC 4 Givesyou 4 processors at HPC.

To place a job in the batch queue tipgub command is used to see the status of your programme
usegst at . Seeman gsub and [5] for more information.

8 Results

Some time studies are presented below. We consider a scaldem based on the code given in
Appendix B and solve the resulting linear algebra problemgithe routine “dgssfs” from the SPL.

It is not documented which numerical routine is implemerttetiind the “dgssfs” interface al-
though some references are suggested in [6]. However, tneggst of these references are from
1993 and new improvements in the solution techniques ofsparear algebra problems such as
UMFPACK [8] and TAUCS [7] do not seem to be included in the SPL.

The tests were run on a Sun Fire 6800 with a total of 24 CPUseofyghe 750 MHz/8 MB cache
Sun UltraSparc Il with a total of 48 GB memory. The tests wawerun using the Grid Engine, but
as a standard job. This may explain that scaling using mane fibur processors is not observed.
For comparison some of the tests have also been carried catRiD is equipped with an Intel
Pentium 4 CPU, 2.4 GHz, 1 GB RAM and windows 2000 and COMSOLir&talled.

8.1 2D Poisson problem

The below table shows the wall clock time (in seconds) it $akeobtain a solution (factorization
and back substitution) for a Poisson problem for a varyingioer of Sun processors.

13

p=1 p=2 p=4 p=8 PC
DOFs655352
nnz-% : 1.4e-02
Assembly 4.4 4.3 4.2 4.4 1.84
SPL(symrcm) 3.4(57%) | 2.9(60%,1.2 2.6 (62%,1.3 2.6 (63%,1.3
SPL(mmd) 3.5(56%) | 2.7 (61%,1.3 2.3 (65%,1.5 2.3 (66%,1.5
COMSOL 6.4 (34%) 6.2 (34%) 6.2 (34%) 6.5 (34%)
DOFs2621442
nnz-% : 3.4e-03
Assembly 2.2el 2.0el 2.0el 1.9el 9.08
SPL(symrcm) | 2.5el (47%) 1.8el (53%]1.4) | 1.5el (57%1.7) | 1.6e1(55%.].6)
SPL(mmd) 3.2el (41%) 1.9el (51%1.7) | 1.5e1 (57%2.1) | 1.6el (55%2.0)
COMSOL 3.6el (27%) 3.5el (28%) 3.7el (27%) 3.7el (28%)
DOFs10485762
nnz-% : 8.6e-04
Assembly 1l.1e2 1.0e2 1.0e2 1.0e2 5.61lel
SPL(symrcm) | 2.4e2 (31%) 1.5e2 (41%]1.6) | 1.0e2 (50%2.4) | 2.8e2 (26%0.9)
SPL(mmd) 3.3e2 (25%) 1.8e2 (36%1.8) | 1.1e2 (48%3.0) | 2.4e2 (29%.4)
COMSOL 2.5e2 (21%) 2.4e2 (24%) 2.4e2 (21%) 2.4e2 (22%)

DOFs denotes the number of unknowns, the first number in ffesis is the ratio assembly time
to total solution time and the second number given in boklfigcthe speedup. Moreover, the
COMSOL solution is the version cf. Appendix B.2 where thelpeon is first assembled then
solved — since this is faster than the one-line solution camm

Looking at the times that are processor independent, ieeassembly time and on the COMSOL
solution time, we see that the first digit is constant but #@sad depends on the current system
load. This observation motivates an interpretation of #sults based only on the first digit to
account for varying load on the computer due to the multigler @nvironment.

First, we notice that the PC is at least twice as fast as thec8oputer for small problems. How-
ever cache problems seem to be present for the PC since #raldgdime decreases from being
2.4 to 1.8 times faster than the Sun computer as the probleengsows. For the Sun computer
the assembly time increases linearly which can probablytiidied to the shared memory ar-
chitecture. It is disappointing to see such a big differeimcperformance due to the choice of
hardware/platform because program development, progedougtjing, teaching exercises etc. are
typically done on small problems.

We see that a small scaling effect is gained if more process@rused up to a factor of 2.4. This
study also shows that the time it takes to assemble the pnoibbl€ OMSOL is comparable to the
solution time of the linear algebra problem. Hence the COM%8sembly procedure can not be
classified as 'high performance’. This is relevant to keemind and is likely to be a consequence
of the very general PDE toolbox that is available through CZipl 3.2.

For the current test problem we tested the matrix reordesaigemes MMD (Multiple Minimum
Degree) implemented in the SPL and symrcm (Symmetric rev@tghill-McKee permutation) as
a MATLAB preprocessor used before the SPL call. For this pesblem it pays off to use the
symrcm however it is not implemented in the SPL. Instead joissible to supply the SPL sparse
solver with a user defined permutation vector. Other reandexchemes from MATLAB were also

14

tested but did not perform as well as the symrcm.

One may expect the SPL to be even more efficient if one has widemseveral right hand sides.
The SPL can handle this - like all numerical libraries - wiaar€ OMSOL 3.2 does not allow a
separate factorization step in the solution procedure iofeat problem.

Looking at profiles (not shown) for the above test showed ghaser lock is present prohibiting
optimal performance. This could be due to JAVA being pres¢mtintime which is necessary for
programs like MATLAB and COMSOL. This work does not investtig this issue further, but it is
relevant to clarify if JAVA is the reason for the user lock.

8.2 3D Poisson problem

The below table shows similar timings as the problem preskabove, but with the PDE solved
in three spatial dimensions. Although it was possible twesal 2D problem two magnitudes larger
memory problems already appeared for a small 3D problem. |diter is the reason for only
considering one small problem of size DGF837592.

Here we see a speed up when using SPL of a factor 3.4 whichasieaging. For this test problem
it appears that the three different reordering schemes 'gatl’ and 'mmd’ does not significantly
alter the solution time.

p=1 p=2 p=4 p=8
DOFs337592
nnz-% : 7.5e-02
Assembly 1.0el 1l.lel 1.0el 1.0el
SPL(nat) 1.1e2 (9%)| 5.6el (16%2.0) | 3.3el (24%3.3) | 1.8e2 (5%0.6)
SPL(gnd) 1.1e2 (9%)| 5.5el (17%2.0) | 3.2el (25%3.4) | 1.9e2 (5%0.6)
SPL(mmd) 1.1e2 (9%)| 5.6el (16%2.0) | 3.2el (25%3.4) | 1.8e2 (5%0.6)
COMSOL 1.0e2 (7%)| 1.0e2 (7%) 1.1e2 (7%) 1.1e2 (7%)

9 Conclusions

This study shows that it is possible to link MATLAB, COMSOLdthe Sun Performance Library
(SPL) together using multiple processors on the Sun HigfoReance Computing platform at the
Technical University of Denmark. It turns out that solutibmes for the test problem considered
can be reduced with a factor of 2.4 for a 2D problem and a fauft8r4 for a 3D problem.

Moreover, based on the time it takes to assemble the systdrixyvee conclude that COMSOL
runs slowly on the considered Sun platform compared to alatarPC. Debugging and solution of
smaller problems (teaching exercises etc.) should thereiat be carried out on the Sun platform.
For large problems the use of the Sun computer may be the anhtaachieve a solution.

COMSOL 3.2 does offer a very attractive PDE research enment which reduces the time it
takes to setup and solve a PDE. However, high computati@rédnmance is needed in particular
for 3D problems which can be approached by using the Sun feaifce Library. Use of the SPL
is not currently available in the COMSOL package althougHlitbrary is available on the platform.

15

Acknowledgements

The authors thank Jukka Komminaho, Department of Informmafiechnology, Uppsala University
for initial help with the implementation on a Sun computeor Bome of the activities at Uppsala
University see http://www.uppmax.uu.se/

In addition we thank the members of the TOPOPT group for lantsdiscussions to the material
presented.

References

[1] See www.openmp.org and www.compunity.org

[2] Informatics and modelling, Technical University of Draark: Tuning of Parallel Applications,
Parallel Computing & OpenMP, January 2006.

[3] See http://www2.mat.dtu.dk/people/A.G.Hansen/
[4] Xwin32 is distributed by http://www.starnet.com/

[5] Sun High Performance Computing (HPC) Systems at the rfieah University of
Denmark, see http://www.hpc.dtu.dk/ . How to setup an accmu described here
http://www.hpc.dtu.dk/GridEngine/

[6] Sun Performance Library User’'s Guide, Sun Studio 10t Rar 819-0498-10 Janaury 2005,
Revision A. Sun Microsystems, Inc. www.sun.com

[7] Homepage of the TAUCS project. http://www.tau.aciblsdo/taucs/

[8] Homepage of Tim Davis, University of Florida. http://wwcise.ufl.edu/research/sparse/
See also the recent "Summary of available software for epalisect methods" at
http://www.cise.ufl.edu/research/sparse/codes/

A FORTRAN Code

A.1 File: call _sol ver.f

Listing 6: call_solver.f

program call_solver

This program is an example driver that calls the sparse solver.
It factors and solves a symmetric system, by calling the
one-call interface.

0O000O0O0

see http://docs.sun.com/source/8iB463/plug_matrices. html

implicit none

integer neqns, ier, msglvl, outunt, Idrhs, nrhs, withgo
character mtxtyp*2, pivotx1l, ordmthdk3

double precision handle(150)

integer,dimension(:), allocatable :: colstr, rowind

double precision, dimension(:), allocatable :: values

double precision, dimension(:,:), allocatable:: rhs, xexpct
integer i, j, M, N, L, small_prob

c
c Sparse matrix structure and value arrays. From George ahd, L

16

D000 0000O0O0

o

oo0o0oo

page 3.
Ax = b, (solve for x) where:

4.0 1.0 2.0 0.5 2.0 2.0 7.0
1.0 0.5 0.0 0.0 0.0 2.0 3.0
A=2.0 0.0 3.0 0.0 0.0 x=1.0 b=7.0
0.5 0.0 0.0 0.625 0.0 —8.0 —4.0
2.0 0.0 0.0 0.0 16.0 —-0.5 —4.0

Determine if a pause is wanted

open(8,file = "go_no_go")
read(8,+) withgo
close(8)

if (withgo .eq. 1) then
pause
end if

Determine if we want to solve the 5x5 problem shown above or
a larger problem

small_prob =0

if (small_prob .eq. 1)then
allocate(colstr (6))
allocate(rowind (9))
allocate(values (9))
allocate(rhs(5,2))
allocate(xexpct(5,2))

colstr = (/1,6,7,8,9,10/)
rowind = (/1,2,3,4,5,2,3,4,51)
values =(/ 4.0d0, 1.0d0, 2.0d0, 0.5d0, 2.0d0, 0.5d0, 3.0d0O,
0.625d0, 16.0d0 /)

data rhs / 7.0d0, 3.0d0, 7.0d0+~4.0d0, —4.0d0 /
rhs (:,1)= (/ 7.0d0, 3.0d0, 7.0d0+4.0d0, —4.0d0 /)
rhs(:,2)= (/ 7.0d0, 3.0d0, 7.0d0+4.0d0, —4.0d0 /)
xexpct(:,1) =(/ 2.0d0, 2.0d0, 1.0d0+~8.0d0, —0.5d0 /)
xexpct(:,2) =(/ 2.0d0, 2.0d0, 1.0d0+8.0d0, —0.5d0 /)

else

Read a larger matrixin the aboveformat

open(8,file = "problem_data")
read(8,x) M
allocate(colstr (M+1))
do i=1,M+1
read(8,«) colstr (i)
end do
print =,’.. colstr done’

read(8,x) L
allocate(rowind (L))
allocate(values (L))

do i=1,L

read(8,%) rowind (i), values (i)
end do
print =,’'.. values done’

read(8,x) M,N
allocate(rhs (M,N))
allocate(xexpct(M,N))
do i=1M
do j=1,N
read(8,%) rhs(i,j)
end do
end do
do i=1M
do j=1,N
read(8,x) xexpct(i,j)
end do
end do
print =,
end if

. rhs done’

ordmthd = 'mmd’

call single call interface

size(rhs ,1)
size(rhs ,2)

print x,"call_solver_.....

call solver(colstr, rowind, values, M, N,

& rhs, ordmthd , ier)
write (6,%) 'i', 'rhs(i)’, 'expected rhs(i)', 'error’
doj=1,N

do i =1, min(M50)

write (6 ,x) i, rhs(i,j), xexpct(i,j), (rhs(i,jyxexpct(i,j))

17

enddo
enddo

print =,"error flag: ier = ', ier

deallocate(rhs)

deallocate(rowind)
deallocate(values)
deallocate(colstr)

end

A.2 File: sol ver . f

Listing 7: solver.f

subroutine solver (colstr, rowind, values,
& M, N, rhs, ordmthd, ier)

implicit none

integer x4 ier , ier2, outunt
character ordmthd«3

double precision handle(150)

integer x4 colstr (x), rowind (x)
real 8 values)

real 8 rhs (M,N)

integer x4 i, j,M N

print =, ' number of threads:’
call system(’'echo $OMP_NUM_THREADS')

call dgssfs ('ss’, 'n’, M, colstr, rowind,
values, N , rhs, M , ordmthd ,

& outunt, 0, handle, ier)

print =,"Error flag: ier = ', ier

print =, number of threads after solution:’
call system(’echo $OMP_NUM_THREADS’)

c deallocate sparse solver storage
call dgssda (handle, ier2)
ier = max(ier ,ier2)
return

end

A.3 File: go_no_go

This file contains & or al controlling if a pause is used in the programme.

Listing 8: go_no_go

B MATLAB Code

B.1 Gateway file:sol verg. f

Listing 9: solverg.f

'! Compile a FORTRAN program with a gateway using:
! mex—v —g solver.f solverg.f
|

! then run the test script: test_femlabmatlab.m
!

18

solverg.f — Gateway function for solver.f

This is an example of the FORTRAN code required for interfag
a .MEX file to MATLAB.

1
|
|
!
!
!
! This subroutine is the main gateway to MATLAB. When a MEX fation

! is executed MATLAB calls the MEXFUNCTION subroutine in theorresponding
! MEX file.

!
1

SUBROUTINE MEXFUNCTION (NLHS, PLHS, NRHS, PRHS)
!
Dseskskskoskosk ok okkok DEFINE POINTERS FOR MEXFUNCTIONE sk sk s s sk sk sk sk s sk sk sk sk s ok sk
! (pointer) Replace integer by intege®B on 64— bit platforms
!
INTEGER*4 PLHS (), PRHS(x)
INTEGERx4 NLHS, NRHS
!
sk okskok ko DEFINE POINTERS FOR SUBROUTINES CALLED BY MEXFUNCTIOM sk sk sk sk sk sk ke sk sk sk ke sk sk sk ko
!

INTEGER* 4 MXCREATEDOUBLEMATRIX, MXGETPR
INTEGER* 4 MXCREATENUMERICMATRIX
INTEGER* 4 MXGETM, MXGETN

1

! sk %ok ok xxxx CREATE POINTERS TO INPUT/OUTPUT ARGUMENTS, format: <vamde >Psss sk sokokx ok kkokx
!

INTEGER%4 colstrP , rowindP , valuesP ,rhsP , ordmthdP , lierP
INTEGER«4 write_matrix_as_file
1

1 stk ok ok ok« CREATE DUMMY VARIABLES USED FOR FORTRAN COMPUTATIONS, format: R<variable >P sk
!

INTEGERx 4 ;. RierP
INTEGER=*4 , DIMENSION (:) , ALLOCATABLE
& :: RcolstrP , RrowindP

CHARACTER% 3 :: RordmthdP
REAL x8, DIMENSION (:) , ALLOCATABLE ;1 RvaluesP

REAL 8, DIMENSION(: ,:) , ALLOCATABLE :: RrhsP
!
1 sttt stk sk ok skok AUXILARY VARIABLES ks sk st sk s sk s sk sk sk sk sk sk sk sk sk
!

INTEGERx4 M, N, L
INTEGER«4 p, ni, nj, jlast
!
Dostokoskostokokok ok ok ok INPUT — RHS stk sk skok sk sk sk sk ok sk skokosk sk ok
!
colstrP = MXGETPR(PRHS(1))
rowindP = MXGETPR(PRHS(2))
valuesP = MXGETPR(PRHS(3))
rhsP = MXGETPR(PRHS (6))
ordmthdP = MXGETPR(PRHS (7))

M
N

= MXGETM(PRHS (6))
= MXGETN(PRHS (6))

!
1 stttk ok sk ok ok ok CREATE OUTPUT POINTER Sk skeske sk s sk sk sk sk sk sk sk sk sk sk sk
!

! Status flag
PLHS (1) = MXCREATENUMERICMATRIX(1,1,
&mxClassIDFromClassName ('int32 ") ,0)

! Solution
PLHS (2) = MXCREATEDOUBLEMATRIX (M,N,0)

!
Uoskokosk sk kok ok k ok ok GET THE DIMENSIONSsk sk sk s sk sk s sk sk sk sk sk ok sk ok ok ok
!

if (MKGETM(PRHS(1)) .eq. M+1) then

C
C The input has propably been numbered correctly
C
PriNts," soroskosroskoskokoskokoskoskokokokokok”
print=,’ ORDINARY NUMBERING’
PriNTs," soroskosroskoskokoskoskokoskokskokokok”
ALLOCATE (RcolstrP (M+1))
CALL mxCopyPtrTolnteger4(colstrP , RcolstrP , M+1)
L = RcolstrP(M+1)}-1
ALLOCATE (RrowindP (L))
ALLOCATE (RvaluesP (L))
ALLOCATE (RrhsP (M,N))
CALL mxCopyPtrTolnteger4(rowindP , RrowindP, L)
CALL MXCOPYPTRTOREAL8(valuesP , RvaluesP , L)
CALL MXCOPYPTRTOREAL8 (rhsP , RrhsP , AN)
CALL mxCopyPtrToCharacter(ordmthdP , RordmthdP,3)
elseif ((MXGETM(PRHS(1)) .eq. MXGETM(PRHS(2))) .and.
&MXGETM(PRHS (2)) .eq. MXGETM(PRHS(3)))) then
C
C The input propably originates from MATLABs [I,J, val]=fidh(K)
C

PNk, ook skosk ok sk sk sk skok ok ook skeok”
print=,’ MATLAB—FIND NUMBERING’

Prints, skokskokok skok sk okok skok kokok ok

19

L = MXGETM(PRHS(1))
ALLOCATE (RcolstrP (L))
ALLOCATE (RrowindP (L))
ALLOCATE (RvaluesP (L))
ALLOCATE (RrhsP (M,N))

CALL mxCopyPtrTolnteger4(colstrP , RcolstrP, L)
CALL mxCopyPtrTolnteger4(rowindP , RrowindP, L)
CALL MXCOPYPTRTOREAL8(valuesP , RvaluesP , L)
CALL MXCOPYPTRTOREAL8(rhsP , RrhsP , AN)
CALL mxCopyPtrToCharacter(ordmthdP , RordmthdP,3)

ni =0

nj=0

jlast = 0

do p = 1 ,MXGETM(PRHS (1))

if (RcolstrP(p)<=RrowindP(p)) then
C
C use symmetry
C
nj = nj +1;
if (RcolstrP(p) .ne. jlast) then

new column

[eXeXe]

ni = ni +1;
RcolstrP(ni) = nj;
end if
jlast = RcolstrP(p);
RrowindP (nj) = RrowindP(p);
RvaluesP(nj) = RvaluesP(p);
end if
end do
ni = ni +1;
RcolstrP(ni) = RcolstrP(ni-1) + 1;
L = nj
print=,’ sorting done’

else

The numbering is wrong

[eXeXe]

PriNTs," soroskosroskoskokoskoskokoskokskokokok”
printx,’ ERROR’

Prints, skokoskokok skok sk okok skok ok ok

ierp = MXGETPR (PLHS (1))
RierP =—100
CALL MXCOPYIntegerdTOPTR(RierP , ierP, 1)
return
end if

[eXeXe]

write matrix in a file that can be read by the FORTRAN progmae

write_matrix_as_file = 0
if (write_matrix_as_file .eq. 1) then
open (8, file="problem_data")
write (8 ,x) M
do i=1M+1
write (8 ,x) RcolstrP (i)
end do

write (8 ,%) L
do i=1,L
write (8 ,%x) RrowindP (i), RvaluesP(i)
end do
write (8 ,%x) M,N
do i=1 M
do j=1,N
write (8 ,%x) RrhsP(i,j)
end do
end do
end if

!
! MAKE CALL AND COPY LOCAL LHS ARRAY TO MATRIX OUTPUT
!

RierP =—1
CALL solver(RcolstrP(1:M+1), RrowindP (1:L), RvaluesP:l),
& M, N, RrhsP, RordmthP, RierP)
[}
C write the solution obtained to a file if wanted
[}
if (write_matrix_as_file .eq. 1) then
do i=1M
do j=1,N
write (8,%) RrhsP(i,j)
end do
end do
close (8)
end if

|
1ostotestesieokeskoskeok ok ok QUTPUT — LHS steskeskesteske stk stk sk sk sk sk sk sk sk ok
!

ierP = MXGETPR (PLHS (1))

rhsP = MXGETPR (PLHS (2))

20

CALL MXCOPYIntegerdTOPTR(RierP , ierP, 1)
CALL MXCOPYREALBTOPTR (RrhsP , rhsP , AN)

DEALLOCATE (RcolstrP)
DEALLOCATE (RrowindP)
DEALLOCATE (RvaluesP)
DEALLOCATE (RrhsP)

RETURN
END

B.2 MATLAB script: test _2d. m

Remark: The option of using symmetry in the COMSOL assemitdggdure was also tested. This
affects the memory use, but does not change the solutiorsiignéicantly.

Listing 10: test_2d.m

clear all
cle

9 * ok skokok ok
% Input parameters
o

* * 3k Kok ok ok
% Vector of mesh parameters
no_mesh = [10];
%no_mesh =[981];

spl_symfactor = {"nat’ 'gnd’ 'mmd’ ...
'matlab_colamd ' 'matlab_colperm’ 'matlab_symamd’' 'mati_symrcm'};

%spl_symfactor = {'nat'};

sdim = [2];
% matlab parameters are set et spparms

% Vector that determines if a direct solution is performed=f®/1=yes)

call_matlab = kones(1,length(no_mesh));
call_spl = 1xones(1l,length(no_mesh));
call_femlab = &ones(1,length(no_mesh));

call_femlab_femlin = kX ones(1,length(no_mesh));

% Vector that determines if a nemuniform conductivity field is used (0=no/l=yes)
nonuniform = ones(1,length(no_mesh));

pause_on_off = 0;

% Create an output file
[s,w]= system('echo $OMP_NUM_THREADS');

try

wstr = num2str(eval(w));
catch

wstr = '17;
end

% Generate time format and filename

yy_mm_dd = datestr (now,25);yymmdd = [yy_ mm_dd (1:2) yy nud(4:5) yy_mm_dd(7:8)];
hh_mm_ss = datestr(now,13);hhmmss = [hh_mm_ss(1:2) hh ssif4:5) hh_mm_ss(7:8)];
filename = ['p_" wstr '_’ yymmdd ’'_' hhmmss ’.txt '];

diary(filename)

for i=1l:length(sdim)
if sdim(i)==

no_mesh = no_meshk-3;
end
clear times

for j=1:length (no_mesh)
clear KC LC NULL UD
clear rowind colstr values rhs
clear KLMN

flclear fem

% Define geometry
r2 = rect2(0,1,0,1);
fem.geom = r2;

% Define mesh

nx = 2”no_mesh(j); ny = 2”2no_mesh(j);

fem.mesh = meshmap(fem,’edgelem’ ,{[1 3] [nx] [2 4] [ny]});:
fem.xmesh = meshextend(fem);

if sdim(i)==
fem = meshextrude (fem, 'distance ' ,1, elextlayers ', {nx;}
end

% Store mesh information
times{j}.mesh = fem.mesh;
times{j}.nxny = [nx ny];
if sdim(i)==2

21

times{j}.ndv = nxxny;
else
times{j}.ndv = nxxny=nx;
end
% Variational problem
if sdim(i)==
fem.sdim = {'x",'y'};
else
fem.sdim ={'x",'y','z'};
end
fem.dim ={'T" 'b’}; % T: Temperature field , a: Design field
fem.shape = {shlag(1,’'T’) shdisc(length(fem.sdim),0,)8;
fem.form = 'weak'’;

% Define problem data
fem.const = {'f’,1,'G",2};

% Variational problem in Omega
if sdim(i)==
fem.equ.weak{1}(1,:) = { ' T_tes&f —(Tx_test«b"3«xTx + Ty_testxb"3xTy)'};
else
fem.equ.weak{1}(1,:) = { ' T_tes&f —(Tx_test«b"3«xTx + Ty_testxb"3xTy + Tz_test&b"3xTz)'};
end

% Neumann BCs on Gamma_N
fem.bnd.weak = {{'0°'},{'0°'},{ ' T_test x0'}};
% Dirichlet BCs on Gamma_D

if sdim(i)==2
fem.bnd.ind={[1],[3],[2 4]};
else
fem.bnd.ind={[1],[6].,[2:5]};
end

fem.bnd.constr = {{"T-0"},{'T-G’},{’0"}};

% Prepare FEMLAB model
fem.xmesh = meshextend(fem);

% Display input data

disp(['ndv =’ num2str(times{j}.ndv) ', no_proc=" wstr])
% Initialize solution
if 1==nonuniform
% non—uniform conductivity
if sdim(i)==
fem.sol = asseminit(fem, init’ ,{'T" "0’ 'b’ '0.001 + (xxy/2)"3'});
else
fem.sol = asseminit(fem, init’ ,{'T" "0’ 'b’ '0.001 + (xxyxz/4)"3'});
end
else
% uniform conductivity
fem.sol = asseminit(fem, init’,{"T" "0’ 'b’ '1'});
end

% Assemble matrix problem
try
system ('echo FEMLAB ASSEMBLY');

end

times{j}.start = clock;

[KC,LC,NULL,UD] = femlin(fem,’'U’,fem.sol.u, Solcomp’/T", 'report’, off"’);

times{j}.assembly = etime(clock,times{j}.start);

times{j}.sys_matrix_size = size(KC);

times{j}.sys_matrix_nnz = nnz(KC);

times{j}.sys_matrix_nnz = times{j}.sys_matrix_nnz/ ...
(times{j}.sys_matrix_size(1¥times{j}.sys_matrix_size(2)}100;

times{j}.sys_matrix_size = [num2str(times{j}.sys_matx_size (1)) ...
"X ' num2str(times{j}.sys_matrix_size (2))];

if pause_on_off
disp ('.. press enter’)
pause

end

% MATLAB Backslash solution of linear problem
if call_matlab(j)
try
system('echo .. calling MATLAB solver ');
end
times{j}.start = clock;
solvec = NULLx(KC\LC) + UD;

times{j}.BS_solution = etime (clock,times{j}.start);
disp(["..... ', sprintf("%1.1e ',times{j}. BS_solution)’s’])
end

% SUN PL solution of linear problem
if call_spl(j)
for jj=1:length(spl_symfactor)

% try
% system('echo .. SPL preproccsing in MATLAB');
% end

times{j}.start = clock;
if length(spl_symfactor{jj})>7
P=feval (spl_symfactor{jj}(8:end), KC);

[rowind, colstr, values] = find (KC(P,P));
colstr = int32(colstr);
rowind = int32(rowind);
rhs(:,1) = LC(P);

22

ordmthd = 'nat’;
else

[rowind, colstr, values] = find(KC);

colstr = int32(colstr);

rowind = int32(rowind);

rhs(:,1) = LC;

ordmthd = spl_symfactor{jj};
end

[M,N]=size (rhs);

% try
% system (['echo .. calling spl solver, ordmthd = ' spl_symtar{jj}]);
% end

try

[ier ,s_spl]=solver (colstr, rowind, values, M, N, rhs, anthd);

if length(spl_symfactor{jj})>7
ss = zeros(M,1);
for iii=1:M
ss(P(iii))=s_spl(iii);
nd
sol_spl = NULLx(ss) + UD;

else
sol_spl = NULLx(s_spl) + UD;

end
catch
disp ('.. Warning: Call to SPL solver failed ")
end
splt(jj) = etime(clock,times{j}.start);
disp(['.... spl, ordering = ' spl_symfactor{jj} ', time = ' @rintf('%1l.1e ',splt(jj)) 's’'])
end

[val ,index]=min(splt);
times{j}. SPL_solution = splt(index);
times{j}. SPL_ordering = spl_symfactor{index};
end
% FEMLAB solution of linear problem
if call_femlab(j)

try
system('echo .. calling FEMLAB');
end
times{j}.start = clock;
fem.sol = femlin(fem,'U’,fem.sol.u, 'Solcomp’,'T’, reprt’, off ');
times{j}.fl_solution = etime(clock, times{j}.start);
disp(["..... ', sprintf("%1.1e ',times{j}.fl_solution)’'s’])
end

% FEMLAB solution of linear problem using FEMLIN
if call_femlab_femlin(j)
try
system('echo .. calling FEMLAB using femlin');
end
times{j}.start = clock;
[K,L,M,N] = assemble (fem,’U’ ,fem.sol.u, Solcomp’,'T'\report’, ' off ');
times{j}.fl_lin_solution_a = etime(clock,times{j}. stat);
times{j}.start = clock;
fem.sol = femlin('in’,{'"K’ K 'L" L '"M'M "N’ N},'report’,’of f');
times{j}.fl_lin_solution = etime(clock,times{j}.star};
disp(["..... ', sprintf('%l.1e ', times{j}.fl_lin_soluton) 's’])
end

% Release file , such that it can be read while the programmerusning
diary off
diary(filename)

end

% print a summary

%clc

for j=1l:length(no_mesh)
TSP (ot kot kot ook ook ook ook ook ook ok ok ok ok ok ok ok Kok K ok ok sk ok sk ok sk sk skok”)
% display mesh information

if sdim(i)==2

disp (' 2D problem’)
else

disp (' 3D problem’)
end

%times{j}.mesh
if nonuniform(j)

disp(['ndv = ' num2str(times{j}.ndv) ' (nom-uniform design)’])
else

disp(['ndv = ' num2str(times{j}.ndv) ' (uniform design)’]
end
disp(['Size of system matrix: ' times{j}.sys_matrix_siZé
disp(['nnz % : ' sprintf("%1.1e’,times{j}.sys_matrix_nn)])
disp (['Number of processors used: ' wstr])

fla = times{j}.assembly;
disp (['FEMLAB assembly: ' sprintf('%1l.1e ', fla) 's’'])
disp ([’ Time [s] Total [s] Assembly/Total%")
if call_matlab(j)
bss = times{j}.BS_solution;
disp (['MATLAB: ' sprintf('%l.1e %1.1e %3.0f' ,[bss fla+bs flax100/(fla+bss)])])
end
if call_spl(j)
spls = times{j}. SPL_solution;
disp (['SPL(’ times{j}.SPL_ordering ') : 7 osprintf("%l.1e%1.1e %3.0f' ,[spls fla+tspls fla100/(fla+spls)])])
end
if call_femlab(j)
fls = times{j}.fl_solution;
disp (['FEMLAB: ' sprintf('%1l.1e %1.1le %3.0f" ,[fls fls NaN)])

23

end
if call_femlab_femlin(j)

fla = times{j}.fl_lin_solution_a;
flsl = times{j}.fl_lin_solution;
disp (['FEMLAB: ' sprintf('%l.1e %1l.1e %3.0f" ,[flsl flsl+Hla flax100/(fla+flsl)])])
end
end
end
diary off

% If run as a batch job: Include the exit command such that M@Lis shut down

%
exit
%

24

