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Hard, charged spheres in spherical pores. Grand canonical ensemble 
Monte Carlo calculations 

P. Sloth and T. S. Wensen 
Fysisk-Kemisk Institut, Technical University of Denmark, Bldg. 204, DK 2800 Lyngby, Denmark 

(Received 3 July 1991; accepted 16 September 1991) 

A model consisting of hard charged spheres inside hard spherical pores is investigated by 
grand canonical ensemble Monte Carlo calculations. It is found that the mean ionic density 
profiles in the pores are almost the same when the wall of the pore is moderately charged as 
when it is uncharged. Also, a bulklike phase is found to be present at the center of the pores in 
surprisingly small systems. Finally, the Poisson-Boltzman approximation is discussed in the 
light of our Monte Carlo results. 

I. INTRODUCTION 
The properties of inhomogeneous ionic systems are of 

wide spread practical and theoretical interest. In this work, 
we investigate a statistical mechanical model of mobile ions 
in a dielectric continuum, confined in a hard spherical pore. 
The most obvious application of such a model would be to a 
spherical pore in a porous medium. Alternatively, the pore 
might, e.g., represent a simple model of a water droplet in a 
water-in-oil microemulsion (i.e., the interior of a reverse mi- 
celle),’ or a water droplet in air. In passing, it should be 
mentioned, that a few studies of more sophisticated models 
for reverse micelles have already been made.‘*’ 

The present model, which is described in more detail in 
Sec. II, is studied by grand canonical ensemble Monte Carlo 
(GCEMC) calculations.4 This implies that the pore is able 
to exchange particles with a remote bulk system. In Sec. III, 
a description of the GCEMC method is given, and numerical 
results are presented in Sec. IV. As an interesting by-prod- 
uct, our results indicate that a bulklike phase is formed at 
moderate ionic concentrations in surprisingly small systems, 
if we disregard the part of the system close to the boundary. 
Finally, we compare the MC results with the Poisson-Boltz- 
mann (PB) approximation in Sec. V. This is of considerable 
interest, because the PB equation is often applied to actual 
electrochemical problems, although its validity is not always 
known a priori. 

II. THE MODEL 
We consider a primitive model electrolyte solution in- 

side a spherical pore with hard walls. The pore may be 
charged. In that case, the charge is assumed to be uniformly 
distributed on the surface of the wall of the pore. For the sake 
of simplicity, we furthermore assume that the particles in- 
side the pore do not interact directly with particles outside 
the pore. That is, we consider only an isolated pore. A simi- 
larily simple model for the interactions between two neutral 
reverse micelles has recently been studied by canonical en- 
semble MC calculations.’ 

The interionic interactions are modelled by the primi- 
tive model of electrolyte solutions (i.e., hard charged 
spheres in a dielectric continuum), which is specified by the 
pair potential function between a particle iat ri and a particle 
jatrj (rii =rj -ri) 

z+(r#) = 
1 

@J, lriil < tdi + dj Ii29 
qiqj/4relrij 19  lru I> (di + dj )i2* 

(2.1) 

In Eq. (2.1)) qi and di are the charge and the diameter of 
ion no i, respectively, and E is the dielectric permitivity. It 
should be noted that any effects of a nonuniform dielectric 
permitivity are not taken into account in the present simple 
model. The cavity of radius R is introduced by the single 
particle potential function 

ui(ri> = 
qiY*, Irj I<R - d/2, 

CO, Iril>R-di/X 
(2.2) 

where 
Y* = Q/4mR (2.3) 

is the (constant) contribution to the electric potential in the 
pore, set up by a total charge Q uniformly distributed on the 
pore wall. In Eq. (2.2)) the positions ri are taken relatively to 
the center of the pore. By Eq. (2.3), it is assumed that no 
other external contribution to the electrostatic potential in 
the pore is present. 

The ions inside the pore are assumed to be in equilibri- 
um with a homogeneous bulk fase. That is, the particles may 
in principle “jump” in and out of the pore. 

Let pt be the bulk density of species a, and let (N, ) be 
the average number of particles of species a in the pore. The 
average density (Pn ) of particles of species a inside the pore 
can then be given by 

(Pa > = 3 (N, )/4?rR 3 = K,p: , (2.4) 
where K, is a partition coefficient. In the ideal case, K, 
reduces to a “Henry law” constant K&, with the value 

K, = (1 - da/2R)3. (2.5) 
The average electrostatic potential \v (r ) at the position 

r in the pore is given as a solution to Poissons equation 

V%(r) = -p,(r)/E (2.6a) 

withp, (r) = 2,q,p, (r). Here,pl (r) is the average charge 
density distribution andp, (r) is the average local density of 
species a. For the spherical pore, studied here, we find the 
following solution to Eq. (2.6a) : ( r= Ir I ) 

s 

R 
tpq (W + ey*, (2.6b) 

r 
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where the last term is the contribution from the fixed charge 
of the pore wall. 

Ill. GCEMC CALCULATIONS 

We consider a two-component system with fixed vol- 
ume ( v) and absolute temperature (7’). The system con- 
tains a mixture of cations and anions (denoted + and - , 
respectively), and the electro chemical potentials, ,Z + and 
F _ are held fixed. The system may be considered to consist 
of n uniformly distributed sites, at which the ions can be 
centered. Let xi denote a given configuration i of the system; 
let N ;’ and N iV be the number of cations and anions, re- 
spectively, in this configuration, and let U( xi ) be the corre- 
sponding total potential energy. The probability ui of config- 
uration xi in the grand canonical ensemble is then given by 

u = (AVf’+ +Ni- 
, 

(/q+/c-,” 

x exp(P [F, N,+ +p- Ni- - U(X,)]> 

E(V,CP+ ,F- 1 
(3.1) 

with 
AV= V/l-l. (3.2) 
In Eq. (3.1)) E ( V, T$i + ,ji _ ) is the grand canonical 

partition function and /2, = [h ‘fl/2vm, ] 1’2 is the thermal 
deBroglie wavelength of species a (h being the Planck’s con- 
stant, and m, being the mass of a particle of species a). We 
have also introduced/% l/k, T where k, is the Boltzmann 
constant. By Eq. (3.1) it is assumed that the particles are 
unlabeled. That is particles of the same kind are indistin- 
guishable. We note that this formula is the discrete version of 
the usual classical statistical mechanical equation. 

Equation (3.1) is used in a Markov chain6 where the 
individual steps are generated such that a given configura- 
tion x, occurs with a probability proportional to ui as the 
length of the chain goes to infinity. Let pii be the one-step 
probability of going from configuration xi to configuration 
xi. Here, we require that thepU’s satisfies microscopic rever- 
sibility, i.e., 

Uip~ = UjPji (3.3) 
with the normalizing condition 

xjpg = 1. (3.4) 
Let sV be the probability of attempting a transition from 

configuration xi to configuration xi (i#j), and letA be the 
probability that this attempted move is accepted. Then 
pii = sjdj, and we may write Eq. (3.3) as 

r;,/fii = tljSji/UiSii. (3.5) 
The generation of a new configuration from a former 

could be performed in a number of ways, as long as the re- 
sulting procedure is ergodic. That is, the probability of tran- 
sition between two permissible states via a finite number of 
steps in the Markovchain should be finite. In our program, 
one of the following four trial moves were attempted with 
equal probability: 

( 1) Addition of a cation at a randomly chosen position. 
(2) Addition of an anion at a randomly chosen position. 
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(3) Removal of a randomly chosen cation. 
(4) Removal of a randomly chosen anion. 

Let us suppose that configuration xi has N 7 particles of spe- 
cies a and N r particles of species ‘y, and that configuration xi 
has NY = N 7 + 1 particles of species a and NT = N r parti- 
clesofspeciesy(a#y). (ThepositionoftheNy+ Nrpar- 
titles being the same in both of the configuration.) In this 
case sii and sji are given by 

sii = 1/4fI, (3.6) 
sji = 1/4N; = 1/4(NP + 1). (3.7) 

Combination ofEqs. (3.1) and (3.5)-(3.7) gives 

Aj& = vezJAya) exp{ -p [ U(xj) - U(x,)]]. 
I a 

(3.8) 
The electrochemical potentials are determined by a ho- 

mogeneous bulk phase with electrical potential Yb. That is 

exp(PL )/A i = 2, exp(Bq,yb), (3.9) 
where z, is the activity of species a in the bulk fase. 

Combination of Eqs. (3.8), (3.9), and (2.2) finally 
yields 

$,,$, = Vexp[ --L&W* - yb)l 
rl J Ni” 

Xz, eXpC -B [ U*(Xj) - u*(xi)]l 

=F(i, j), (3.10) 

where U * is the contribution to U given by a sum of pair 
potentials only. That is, U * is a function which is indepen- 
dent of any applied electrical potential. In this work, we set 
Yb = 0 by convention, i.e., we set Y * - Yb = Q /4wR -in 
accordance with Bq. (2.3). 

Equation (3.8) was used in our program by setting the 
following acceptance probabilities: 

jJj = min{ l,F( i, j)} for addition, (3.11) 

&? = min{ 1, l/F( i, j)) for deletion (3.12) 

of a particle. This is the procedure commonly applied. 

IV. RESULTS 
In this section, we present numerical results for the re- 

stricted primitive model (RPM), in which the cations and 
anions have equal diameters d + = d _ = a, and are of 
charge q and - q, respectively. The RPM systems studied 
are specified by a Bjerrum parameter 
B+I lq+ q _ 1/4rea = 1.681 and two different values for 
the mean ionic activities, i.e., z’!! -z* a3 = 0.015 17 and 
z% = 0.040 85. These parameters correspond to aqueous 
(bulk) 1: l-electrolyte solutions at 25 “C with molar salt con- 
centrations c, N 0.425 mol/dm3 and c, z 1 .OO mol/dm3, with 
a = 4.25 A. The relation between the activities and the con- 
centrations in the bulk are here estimated by application of 
the HNC approximation.’ Whenever it is needed in the fol- 
lowing treatment, we shall use the HNC values for the bulk 
densities. 

GCEMC calculations were performed for a number of 
pores with radii between R = 1.5a and R = 9a, and with 
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TABLE I. Grand canonical Monte Carlo results for .F+ = 0.015 17 and B = 1.681. 

R/a Q/e0 
No. of 

configX 10e6 W, ) (N-) K: K*_ a”+* ),” 

1.5 0 10 0.0637, 0.775 
1 15 0.0237, 0.170, 0.289 2.069 

2.0 0 10 0.232, 0.838 
1 15 0.132, 0.412, 0.478 1.486 

2.5 0 30 0.584 0.887 
1 15 0.418, 0.820, 0.635 1.246 

3.5 0 20 2.08, 0.938 
1 15 1.81, 2.38, 0.818 1.074 

5.0 0 20 7.22, 0.964 
1 20 6.88, 7.58, 0.918 1.011 

7.0 0 20 22.4 0.977 
1 30 21.6, 22.4, 0.960 0.994 

9.0 0 30 49.7, 0.984 
1 50 49.2, 50.1, 0.975 0.991 

0.0183 
0.0185 
0.0193 
0.0193 
0.0195 
0.0195 
0.0196 
0.0196 
0.0196 
0.0196 

= (p * ), is the average density in the sphere given by O<r<R - 20. 

Q = 0 and Q = e, (e, being the charge of a proton). The 
results for the average numbers of particles in the pores, as 
well as the reduced partition coefficients defined by 
K 2 3 K, /K, are given in Tables I and II. Furthermore, the 
average mean ionic densities at the center of the pores are 
also given-these quantities will be discussed later on. The 
“mean ionic” reduced partition coefficients 
K * = dm are shown in Fig. 1 as a function of l/r 
[r=((R/a) -OS].FromFig.l,itisseenthattheK*curves 
for Q = 0 and Q = e0 are almost coinciding, especially at the 
lower density and/or at the lower values of l/r. Also, the 
values of K * are less than one (in most cases) in contrast to 
(uncharged) hard sphere systems where K *> 1.’ [At the 
higher density, the computed values of K * is slightly higher 
than unity for the largest pores. This finding might, how- 
ever, be an artifact, if the HNC value for the bulk density is 
slightly too low.] The excess number of anions, 

TABLE II. Grand canonical Monte Carlo results for a’!+ = 0.040 85 and B = 1.681. 

(N- ) - (N, ), obtained from the runs with Q = e,, are 
plotted against l/r in Fig. 2. It is seen that (N _ ) - (N, ) 
approach unity as the pore become large. This correspond to 
the situation in which the total average charge of the pore 
becomes zero. It is noted, however, that the small pores de- 
viate considerable from overall electroneutrality, especially 
at low ionic density. Here we emphasize that this finding 
applies for an isolated pore. If, e.g., a large number of identi- 
cal pores are present in a system-with no ions in between 
the pores to shield the electrostatic interactions-the overall 
average charge of the individual pores should approach zero 
as the system tends to be infinitely large. 

Some representative results for the reduced density pro- 
files G, (r) ‘pa (r)/& are shown in Figs. 3 and 4. In these 
Figs., the reduced mean ionic local density G * (r) is given 
by 

G, (4 = [G, (r)G- (r)]“‘. (4.1) 

R/a Q/e, 
No. of 

configX 10W6 W, ) (N-) K$ Kt. a’@* ),^ 

1.5 0 20 0.169 0.873 
1 20 0.0722, 0.380, 0.373 1.964 

2.0 0 10 0.623, 0.954 
1 20 0.424, 0.900, 0.649 1.378 

2.5 0 40 1.52, 0.982 
1 40 1.25, 1.83, 0.809 1.185 

3.5 0 15 5.21, 0.996 
1 25 4.87, 5.57, 0.932 1.067 

5.0 0 20 17.6, 1.002 
1 40 17.2, 18.0, 0.979 1.024 

7.0 0 25 53.3, 1.004 
1 42 52.9, 53.8, 0.995 1.011 

9.0 0 30 119.3, 1.003 
1 50 119.0, 119.9, 1.001 1.008 

0.0461 
0.0460 
0.0463 
0.0463 
0.0463 
0.0463 
0.0463 
0.0463 
0.0463 
0.0464 

“See footnote to Table I. 
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w 

FIG. 1. Reduced mean ionic partition coefficients K * = ,/R as a 
functionofl/r.Q=O(-);Q=e, C---j. 

It is seen that G * (r), like K *, is almost independent of 
Q in the present examples. When R /a is small, the G, (r) 
and G _ (r) curves for the charged pores are well separated 
for all values of r/a. As R /a increases, the reduced densities 
approach each other, having a value close to unity, except in 
the neighborhood of the pore wall, indicating that a bulklike 
phase is emerging at the center of the pores. In the case of the 
lower density, it is apparent that G, (r) .c 1 near the pore 
wall if the pore is not too small. This is in contrast to hard- 
sphere systems where particles tend to pile up at the wall.’ A 
likely physical explanation for this behavior is that the elec- 
trostatic shielding of the ions becomes less efficient near the 
wall. 

Electric potential profiles, calculated by Eq. (2.6b) are 
shown by the solid lines in Figs. 5 and 6. For the large pores, 
we do only display Y(r) close to the wall. This is because the 
correct form of the curves, in these cases, is masked by the 
considerable statistical noise at the centre of the pores. A 
more detailed discussion of Figs. 5 and 6 will be given in the 
next section. 

From Figs. 3 and 4, it is seen that the density profiles 
inside the large pores are almost constant for r<R - 2a. We 

0.8 - 

0.6 . 

0.1 * 

0.) - 

0 
. 0.1 0.) 0.‘ 0.t 1 

UT 

FIG. 2. Excess number of anions (N- ) - (N, ) as a function of VT. 
e* = 0.015 17 (-); z’* = 0.040 85 (--). 
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0 

(cl 1 
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w. 

FIG. 3. Reduced density profiles for systems with z”!! = 0.015 17 and 
B= 1.681.Q=O:G, (r) =G+ (r) =G.. 09 (-);Q=e,,:G- (r) Co), 
G, (r) (x),G, (r) (0). (a) R/a= 1.5; (b) R/a=3.5; Cc) R/a=7. 

have calculated the average mean ionic densities at the cen- 
tre of the larger pores. That is, the average density in the 
sphere given by O<r<R - 2a. The results are given in the 
last columns of Tables I and II. For comparison the densities 
of the corresponding bulk systems estimated from the HNC 
approximation are p;b =p: a3 = 0.0196, and 
p%b = 0.0462,) respectively. ’ It is seen that the mean ionic 
density at the centre of the pores becomes almost constant if 
the pore is not too small, and the calculated densities are in 
satisfactory agreement with the HNC results for the bulk 
phase. This suggest that the application offinite, spherical 
systems may be an efficient method of calculating the rela- 
tion between densities and chemical potentials in bulkphases 
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FIG. 4. Reduced density profiles for systems with z** = 0.040 85 and 
B= 1.681. Symbols are as in Fig. 3. (a) R/a= 1.5; (b) R/a=3.5; (c) 
R/a=7. 

by GCEMC calculations, as long as the contributions from 
the “double layer” at the boundary of the system is neglect- 
ed. Indeed, the estimated densities for the most dense sys- 
tems, studied here, becomes independent of the size of the 
system (within the uncertainty of the calculations) for sys- 
tems with a total number of particles as low as ca. 10-l 1 in 
the average. This is an interesting finding, because it has 
previously been generally accepted, that it is essential to use 
periodic boundary conditions, for systems of computational 
manageable sizes, to obtain realistic results for ionic bulk 
phases. 

O.? 
Qmw . . D 

l ,..’ 
. . . . . ,.di 

0 _. .’ 

0.12 

0.1 
t  

*  .  ..’ 

A 
0 ,..” 

:  _/ 
, . /  

*  , , .$ ._. .  . . . .  

o.06 . . . . . . . . . . . . . ....‘... 
:_; m : ay . . . . . e;T , , 

0 0.5 1 1.5 2 1.5 I 

@*(r) 0.05 5 

(c) 

FIG. 5. Reduced electric potentials profiles for systems with 
.9* = 0.015 17, B = 1.681 and Q = e,,. Integrated from chargedensity dis- 
tributions (-); PB assumption: In ,/G- (r)/G+ (r) (0); IPB assump- 
tion: [G- (r) -G+ (r)]/2 (0);IPBapproximationEq. (5.11) (---). (a) 
R/a = 1.5; (b) R/a = 3.5; (c) R/a = 7. 

V. ON THE VALIDITY OF THE PB APPROXIMATION 
The Poisson-Boltzmann (PB) approximation has been 

widely used in the field of electrochemistry. The PB approxi- 
mation was first used many years ago in the Gouy-Chapman 
theory for the plane diffuse double layer,’ and some 10 years 
later applied to spherical symmetry by Debye and Hiickel in 
their famous theory for bulk electrolyte solutions.” The so- 
lution of the PB approximation for electrolytes inside a 
sphere has recently been discussed by different au- 
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FIG. 6. Reduced electric potentials profiles for systems with 
z’% =0.04085, B= 1.681, and Q= e,. Symbols are as in Fig. 5. (a) 
R/u = 1.5; (b) R /a = 3.5; (c) R/a = 7. 

thors.‘*“*i2 In this section, we investigate the validity of the 
PB approximation in this case, by a direct comparison of the 
underlying assumptions with our Monte Carlo results. 

A somewhat heuristic derivation of the PB equation 
might be the following: Let z, (r) be a local activity of spe- 
cies CY inside the pore. The condition for electrochemical 
equilibrium, may then be given by 

ln[z,(rVz,] =Pq, tYb-V(r)l 
or 

pa(r) =p~[d/y,(r)] ev[ -&,AY(r)] 
with 

AY(r)=Y(r) - Yb, 

(5.1) 

(5.2) 

where JJ~ and y= (r) are the activity coefficients of species a 
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in the bulk and at a point r in the pore, respectively. It is 
noted that, strictly speaking, Eq. (5.1) is nothing but a defin- 
ing equation for the quantity JJ= (r) . In the PB approxima- 
tion, Eq. (5.1) is used together with the Poisson Eq. (2.6a), 
with the assumption vz = y, (r). That is 

pEBb) =pL exp[ -&AyIl(r)], (5.3) 
where AY (r) is determined by 

V2(AY(r)) = - (l/e)&piq, exp[ -gaDA*(r 
(5.4) 

This approximation intuitively appears to be reasonable 
if the concentrations in the neighbourhood of r do not de- 
viate too much from the bulk density. 

Equation (5.3) implies thatp * (r) =pi which is not 
a very good approximation, as can be seen from Figs. 3 and 4. 
However, it was found that p * (r) is quite independent of 
the charge of the pore wall, which suggests that one might 
obtain an improved approximation by writing 

p,(r)=pakAy=O) exp[ -&aAY(r)], (5.5) 
wherep, (r;AY = 0) is the density profile in the correspond- 
ing pore with AY = 0, i.e., with Q = 0. For a charge sym- 
metrical electrolyte (q + = - q- = q) both of the Eqs. 
(5.3) and (5.5) yields 

ln,/p+ (r>/p- (r) = -PqAY(r). (5.6) 
As indicated before, we expect the PB approximation to 

be most reliable ifp, (r)/pE is close to unity. In this case the 
left-hand side of Eq. (5.6) might be approximated by 

lnJp+ b->/p- 0-1~(1/2)[p+ (r) -p- (r)]/p”, 

= ( 1/2)pg (rV(qp;ob, ). (5.7) 
Combination of Eqs. (5.6) and (5.7) yields 

pq (r) = - 2pb, $phY(r). (5.8) 
From Eqs. (5.8) and (2.6a) one obtains the linearized PB 
(I PB) equation: 

V2Y(r) =tiAY(r) (5.9) 
with 

2 = 2pq2p’; /E, (5.10) 

where K is the inverse “Debye-Hiickel screening length” for 
a charge-symmetrical electrolyte. 

Equation (5.9) is readily solved for the present geome- 
try. By setting Yb = 0, in accordance with the previous dis- 
cussion, we obtain the result 

Y’PB(r) = Y (0) sinh (Kr) 
, r/a<r, (5.11) 

Kr 

where Y (0) can be determined by application of Eqs. ( 5.8), 
(2.6b), and (5.10) 

Y(0) = \v* 
cosh[K(R - a/2)] * 

(5.12) 

In Figs. 5 and 6, we show some representative MC re- 
sults for lndp- (r>/p+ (r), [p- (r) -p+ (r)]/(2p$ 1 
and @Y(r). For comparison are also given Pe,Y (r) ob- 
tained from the analytical I PB expression Eq. (5.11). In the 
case of the small pores, it is seen that the PB assumption Eq. 
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(5.6), as well as the linearization given by Eq. (5.7) both are 
poor approximations. For the smallest pore (which also cor- 
respond to the largest applied electric potential) E!q. (5.6) is 
not even qualitatively correct. Figures 5 and 6 shows that the 
PB Eq. (5.6) is best, yet not excellent, for the large pores and 
at the low density. Furthermore, the linearization approxi- 
mation given by Eq. (5.7) is seen to be very good in these 
cases 
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