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Generic bifurcation structures of Arnol’d tongues in forced oscillators

Carsten Knudsen, Jeppe Sturis, and Jesper Skovhus Thomsen
System Dynamics Group, Physics Laboratory II1, Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 11 March 1991)

A detailed numerical bifurcation analysis of the forced Brusselator is performed, exposing local and
global bifurcation curves that constitute the internal structure of the dominant Arnol’d tongues. The re-
sults of our analyses are presented as phase diagrams and one-parameter bifurcation diagrams. Two
theorems concerning the existence of global bifurcations near generic codimension-2 bifurcation points
are stated and proved. It is argued that the results are generic to a class of periodically forced self-

oscillating systems.

I. INTRODUCTION

Self-oscillating systems are encountered in most
branches of science and engineering. Quite often, several
oscillating systems interact, and analysis of the overall
behavior is therefore of interest. Self-oscillating systems
that are forced by an external oscillating signal represent
an important class of coupled oscillators. An inherent
feature of periodically forced systems is that the frequen-
cy and amplitude of the forcing are exogenous and can
therefore be controlled and used as bifurcation parame-
ters. A variety of experimental and theoretical studies
have been performed to investigate the properties of
periodically forced self-oscillating systems. One of the
frequently observed phenomena is phase locking of the
endogenous oscillation of the system to the exogenous
periodical forcing. Phase locking is a typical nonlinear
phenomenon, and the regions of entrainment give infor-
mation about the degree of nonlinearity in the particular
system.

As an interesting example, Guevara, Glass, and Shrier
[1] have described a series of experiments in which em-
bryonic chick heart cells were subjected to periodic
current pulses. They measured the effect of the forcing
upon the rhythm of the cells. Among the observed phe-
nomena were phase locking, period doubling, and irregu-
lar response. More recently, clinical experiments per-
formed in humans by Sturis et al. [2] have shown that
the period of oscillatory insulin secretion can be en-
trained to an external periodically varying infusion rate
of glucose.

The dynamics of periodically forced self-oscillating sys-
tems has also attracted significant theoretical attention.
Many authors have used so-called phase diagrams to in-
vestigate the structures of the phase-locking regions as a
function of amplitude and frequency of the periodic forc-
ing. For relatively low amplitudes, the forcing affects the
natural oscillation of the system in one of two ways. Ei-
ther entrainment is observed, or the resulting oscillation
is quasiperiodic, i.e., the external and internal oscillations
have incommensurate frequencies [3,4]. The regions of
entrainment in the frequency-amplitude plane are re-
ferred to as Arnol’d tongues, and certain generic qualita-
tive and quantitative features have been derived [3-6].

44

At higher forcing amplitudes, the Arnol’d tongues begin
to overlap, and a wealth of bifurcation phenomena can be
observed. Feingold et al. [7] have calculated regions of
phase-locked, period-doubled, and chaotic solutions for a
simple model of an electronic circuit. Mosekilde et al.
[8] have made a similar investigation by mapping out the
Arnol’d tongues of a model describing a periodically
driven semiconductor device, in which the spatially ex-
tended nature of the system was taken into account.
Cumming and Linsay [9] have constructed phase dia-
grams by conducting experiments with an electronic re-
laxation oscillator. Among other things they have at-
tempted to determine the critical line [4,5] at which the
Arnol’d tongues begin to overlap.

In 1968 Prigogine and Lefever [10] proposed a theoret-
ical model of a simple chemical oscillating system, the
Brusselator. Although the model is not based upon a
particular experimental chemical reaction scheme, it con-
tains some general features in the sense that oscillations
occur because an equilibrium solution is unstable. A
variation of this model, the so-called forced Brusselator,
was investigated by Kai and Tomita [11] in some detail.
They calculated some of the regions of entrainment for
varying frequency and amplitude of the forcing. Also
period doublings and deterministic chaos arising from
this period-doubling cascade were considered. Addition-
al analyses of the model focused on overlap and structure
of some higher-period Arnol’d tongues [12-14], and re-
vealed various local and global bifurcations [15].

The purpose of the present paper is to extend the
analysis of the forced Brusselator by mapping out the bi-
furcations that occur in the tongues corresponding to
operation synchronously with the drive and at twice this
period. We focus on these tongues because, within the
limits of realistic parameters, they take up most of the
parameter plane. In addition, several experimental stud-
ies [1,2] use relatively large amplitudes of the forcing.
Therefore, a more detailed understanding of the tongue
structure at intermediate and high amplitudes is of in-
terest. The transition from phase locking to quasiperiodi-
city at the edges of the period-1 and -2 Arnol’d tongues
was found by Kevrekidis, Schmidt, and Aris [12] to take
place in two qualitatively different ways: at lower ampli-
tudes the shift occurs via a saddle-node bifurcation, while
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at higher amplitudes the edges of some tongues changes
to a torus bifurcation curve. This indicated a possibility
of several bifurcations within each tongue, which was
worthy of a more detailed investigation. Some of the bi-
furcations we map have previously been reported
[11-14], but bifurcation curves were not accurately locat-
ed. Other bifurcations, which we report, do not appear
to have been described previously for this particular mod-
el. In addition to numerical investigations, we also state
and prove two theorems that provide an explanation for
the existence of some global bifurcations occurring within
the tongues.

II. MODEL AND METHODS OF ANALYSIS

The Brusselator has two variables X and Y that
represent two chemical intermediates. It is described by
the following reactions:

A—->X,
B+X—->Y+D,
2X+Y—-3X,
X—E .

Here, A, B, D, and E denote input and output products
of constant concentration. For the forced Brusselator,
the supply of the chemical A4 is not constant but contains
a periodic component with amplitude a. Expressed in
terms of coupled differential equations the model reads

id)té=A +X2Y —BX —X +a cos(wt) ,

)
£11—-—3)(—)(21' .
dt

Introducing a new time variable 7=wt, the equations of
motion can be cast into the form

dX _ A+X*Y—BX —X +a cos(r)
dr 1)

dY _ BX —X*Y

dr ) ’

’

(3)

The advantage of writing the equations in this form is
that the period of the forcing is always 27. This enables
us to apply the software package PATH [16] for numerical
bifurcation analyses of both stable and unstable phase-
locked solutions. In all simulations to be discussed, we
have fixed the parameters A and B to be 0.4 and 1.2, re-
spectively, leading to a frequency of the unforced system
of wy=0.3750375.  and a are the bifurcation parame-
ters, allowing immediate comparison with Kai and Tomi-
ta [11]. The phase diagram from Kai and Tomita [11] is
redrawn in Aronson et al. [14].

To investigate the model, we solve initial value prob-
lems in a stroboscopic map defined by 7 being a multiple
of 27r. Stable as well as unstable limit cycles are located
by a numerical Newton iteration scheme. Solutions are
then followed by varying parameters slowly until a bifur-
cation is discovered. Once a bifurcation point (e.g., a
period-doubling bifurcation) is found, the bifurcation
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FIG. 1. Overview of bifurcation curves in the frequency-
amplitude plane. Comparison with Kai and Tomita [11] is pos-
sible. Only the period-1 and -2 tongues are shown. The two
curves in the upper-right-hand corner denote period-doubling
bifurcations.

curve is traced in the frequency-amplitude plane. These
tasks are handled by PATH, and it works well for local bi-
furcations. Global bifurcations have also been reported
in the forced Brusselator [13], and we have developed
custom software to study these.

III. STRUCTURE OF DOMINANT
ARNOL’D TONGUES

Figure 1 shows some of the bifurcation curves in the
frequency-amplitude plane. We have left out all tongues
with periods larger than 2. For information about these
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FIG. 2. Magnification of the region where the period-1 and
-2 tongues overlap. The labels indicate the bifurcation type:
PD, period doubling; SN, saddle node; T, torus; G, global bifur-
cation. The two bullets identify connections of bifurcation
curves.
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tongues, we refer to Kai and Tomita [11] and to Aronson
et al. [14]. We have encountered period-doubling,
saddle-node, torus, and various global bifurcations. Bi-
furcation curves can either connect or cross. In a point
of connection the bifurcation is of codimension 2. In the
present case this occurs when two eigenvalues of the stro-
boscopic map simultaneously take on the same value of
either +1 or —1. Bifurcations of codimension 2 are
marked by bullets in Figs. 2 and 10. When two bifurca-
tion curves cross, as for (w,a)~(0.575,0.0219), the bifur-
cations do not occur for the same solution.

A. Overlap between the period-1 and -2 tongues

The article by Kai and Tomita [11] shows a phase dia-
gram that indicates that the period-1 and -2 tongues meet
at a certain forcing amplitude. Hereafter they are adja-
cent, separated by a curve of supercritical period-
doubling bifurcations. We have investigated this region
and found that the scenario is somewhat different and
more complicated. Figure 2 shows a magnification of the
region. In this figure, PD, SN, T, and G denote period-
doubling, saddle-node, torus, and global bifurcation
curves, respectively. As can be seen, the period-1 and -2
tongues meet at a point in the parameter plane (without
connecting), and hereafter overlap in a region of increas-
ing values of the forcing amplitude. Subsequently, the
left edge of the period-2 tongue, which is a curve
of saddle-node bifurcations, meets a curve of period-
doubling bifurcations. This connection represents a
codimension-2 bifurcation point, and it gives .rise to a
change in stability and direction of the family of period-2
solutions that are born in the period-doubling. The left
part of the period-doubling curve acts as a boundary be-
tween the period-1 and -2 tongues (see Fig. 1). The
upper right edge of the period-1 tongue (a torus bifurca-
tion curve) also joins the period-doubling curve, but in
contrast to the scenario suggested by the phase diagram

Amplitude of solution

Amplitude a

FIG. 3. Principal structure of the bifurcations for increasing
forcing amplitude in a region around w=0.5. Solid curves
represent stable solutions, dashed curves are unstable solutions,
and spiral-like curves indicate toroidal solutions.
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Amplitude of solution

Amplitude a

FIG. 4. Principal structure of the bifurcations for increasing
forcing amplitude in a region around @ =0.55.

in Kai and Tomita [11], we find that it occurs for a
different parameter set. This must be the generic situa-
tion, because connections of the two tongue edges to the
period-doubling curve at the same point in the parameter
plane would represent a codimension-3 bifurcation point,
which is degenerate in a two-parameter case. This latter
codimension-2 bifurcation point gives rise to global bifur-
cations as well, which will be described below.

We have chosen to elucidate the structure of the bifur-
cations by displaying a series of bifurcation diagrams
(Figs. 3-6, 9, and 11) with the forcing amplitude as the
parameter. These figures show some of the qualitative
features without being accurately drawn to scale. Stable
solutions are shown as solid curves, unstable ones as
dashed curves, and tori are illustrated as spiral-like
curves.

In a region around »=0. 5, the bifurcation scheme is as
shown in Fig. 3. For increasing values of the forcing am-
plitude, the stable solutions lie on a torus that shrinks

Amplitude of solution

Amplitude a

FIG. 5. Principal structure of the bifurcations for increasing
forcing amplitude in a region around w=0.6.
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Amplitude of solution

Amplitude a

FIG. 6. Principal structure of the bifurcations for increasing
forcing amplitude in a region around »=0.64.

and subsequently bifurcates to a stable period-1 solution
in a so-called torus bifurcation. Increasing the amplitude
further, the period-1 attractor is destabilized in a super-
critical period-doubling bifurcation, i.e., a stable period-2
solution is born and coexists with the unstable period-1
limit cycle.

To the right of @=~0.527 a qualitative change has oc-
curred. Figure 4 shows the corresponding bifurcation di-
agram. The torus bifurcation is the same as before, but
the period doubling is now subcritical, i.e., an unstable
period-2 solution is created and coexists with the stable
period-1 solution. The unstable period-2 solution turns in
a saddle-node bifurcation, and thereby becomes stable
and coexists with the stable period-1 solution. The inset
of the unstable period-2 saddle is the boundary between
the basins of attraction for the stable limit cycles. The
qualitative change is due to the connection of the period-
doubling curve and a saddle-node curve, the latter being
the left edge of the period-2 tongue. . Note that the transi-
tion between period-1 and period-2 phase locking in-
volves a jump in attractor size.

The next bifurcation diagram, shown in Fig. 5, is al-
most identical to the previous one. The only difference is
that the torus bifurcation and the saddle-node bifurcation
have exchanged positions with respect to the control pa-
rameter. This means that in addition to a region of coex-
isting period-1 and period-2 limit cycles, we also have a
region of the frequency-amplitude plane in which a stable
period-2 limit cycle and a stable torus solution coexist.
The basin boundary between the two attractors is still the
inset of the unstable period-2 saddle. In the phase dia-
gram, the exchange of location of the torus and saddle-
node bifurcations appears as a crossing (not a connection)
of the left edge of the period-2 tongue (saddle-node
curve), and the right edge of the period-1 tongue (torus
curve). The transition from phase locking within the
period-2 tongue to a torus solution outside the tongue in-
volves a jump in phase space, because the saddle-node
pair does not lie on a torus. This is in contrast to the typ-
ical scenario for low forcing amplitudes.

KNUDSEN, STURIS, AND THOMSEN 44

Increasing the frequency beyond 0.62, we encounter a
global bifurcation. Figure 6 illustrates the scenario par-
tially. The torus bifurcation has now disappeared. Fol-
lowing the toroidal solution towards higher amplitudes,
the torus vanishes. Before this happens, however, the
torus develops an infinite number of folds. Thus, the at-
tractor becomes chaotic. The folds are small compared
to the attractor size, and therefore identification of the
chaotic attractor is very difficult. We were able to detect
chaos by making large magnifications of a stroboscobic
map, revealing the folds. As further evidence of chaos,
we computed the Lyapunov spectrum [17] A, for
©=0.64101 and a=0.016 and found A,
=(0.283,0,—0.195). For a forced system one exponent
is always zero, and therefore it was not computed. The
chaotic attractor disappears in a collision with the inset
of the saddle cycle. This bifurcation is known as a chaot-
ic blue-sky catastrophe [18]. In this paper, we do not ex-
amine the chaotic transitions more closely. Inside the
torus there is an unstable solution with two eigenvalues
outside the unit circle in the stroboscopic map. This
solution gains stability in one direction through a super-
critical period-doubling bifurcation. When comparing
Figs. 2, 5, and 6, it appears that the global bifurcation
curve ends on the codimension-2 point. When following
the torus bifurcation curve towards the period-doubling
curve, it can be observed that the complex conjugated ei-
genvalues on the unit circle approach and become —1 on
the period-doubling curve.

This leads us to state the following theorem:

Theorem 1. Let y be a codimension-2 bifurcation point
in an n-dimensional flow, n > 2, where all other eigenval-
ues of the Poincaré map lie within the unit circle. If a
curve of stable torus bifurcations 7" connects to a curve of
period-doubling bifurcations PD in y, and the period-
doubled solutions are unstable and point in the direction
of the curve of torus bifurcations, then a set I" of global
bifurcation points exists between the side of the torus bi-
furcation curve on which the stable tori exist and the
period-doubling bifurcation curve. Furthermore, y is a
limit point for I".

Figures 7 and 8(a) and 8(b) show the scenario described
in Theorem 1.

Proof of Theorem 1. Because two eigenvalues lie on
and the rest lie within the unit circle, the center manifold
theorem [15] guarantees that a two-dimensional invariant
and attracting center manifold exists. Thus it suffices to
consider the two-dimensional case when the parameters
are close to y. Consider a curve 3 connecting a point a
on PD to point B on T. Suppose that no bifurcations
occur along 2. This implies that the stable torus must
coexist with the period-doubled solutions when these are
born at a [Fig. 8(a)]. The unstable periodic solution
within the torus is the period-1 solution from the period-
doubling bifurcation, since the bifurcation curves T and
PD meet in y. The torus must therefore lie outside the
unstable period-doubled solutions when these are born.
The unstable period-doubled solutions lie outside the bi-
furcating tori on T at B [Fig. 8(b)]. It follows that the un-
stable period-doubled solutions must intersect the stable
torus at some point on 2. This is a contradiction, since it
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FIG. 7. Principal structure of the situation described in
Theorems 1 and 2. PD/SN denotes a period-doubling bifurca-
tion curve in the case of Theorem 1, and a saddle-node bifurca-
tion curve for Theorem 2. T denotes a torus bifurcation curve;
v is the codimension-2 bifurcation point; @ and B8 are points on
PD/SN and T, respectively; 2 is a curve connecting a to ; for
simplicity, the set I" of global bifurcation points are illustrated
as a curve.

implies the existence of at least one bifurcation point on
2. Since a, B, and = can be chosen arbitrarily close to v,
it follows that y is a limit point for T, and since y is a
codimension-2 bifurcation point, I' must be a set of glo-
bal bifurcation points, Q.E.D.

Let us make a few comments regarding the nature of
the set T of global bifurcation points. Since the intersec-
tion of the curve = and I is nonempty, the measure of I'
must be, at the least, that of a one-dimensional curve.
However, Theorem 1 does not guarantee that I is a
curve, but we strongly suspect that in general I" contains
several curves.

To illustrate the theorem, we performed numerical in-
vestigations of the forced Brusselator that showed that

(a) (b)

®

(c) (d)

®

FIG. 8. Hypothetical locations of the torus (circles) and the
periodic solutions. The case described in the proof of Theorem
1: (a) near a and (b) near 8. In these two panels a triangle
denotes an unstable node and squares represent an unstable
period-doubled solution. The case described in the proof of
Theorem 2: (c) near a and (d) near 8. In these two panels a tri-
angle denotes an unstable node and a square represents a saddle
cycle solution.
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the torus solutions indeed disappear before the period-
doubling curve, giving rise to at least one curve of global
bifurcations, as shown in Figs 1 and 2. We found that the
disappearance of the torus solution involves (i) break-
down of the torus to a chaotic attractor, and (ii) disap-
pearance of the chaotic attractor in a blue-sky catas-
trophe. An alternative scenario could be a homoclinic bi-
furcation [15] in which the inset of the saddle collides
with the torus. Both scenarios leave us with an infinity of
intersections between the stable and unstable manifolds
of the saddle cycle, so-called horseshoes [15,18,17]. The
existence of horseshoes implies arbitrarily long (chaotic)
transients. We conjecture that the horseshoes must
disappear in yet another global bifurcation, because oth-
erwise they would exist for infinitely low forcing ampli-
tudes. In the present case, it thus appears that the set '
of global bifurcation points contains at least three
different curves of global bifurcations.

As the frequency is increased even further, the global
bifurcation curve(s) and the left edge of the period-2
tongue approach. When the curves join, the transition
from phase locking to quasiperiodicity occurs without a
jump in phase space. Beyond this point in the parameter
plane, the transition for the period-2 tongue is as below
the critical line in the circle map [4]. The bifurcation
scheme is now as shown in Fig. 9. The exact location of
the meeting point has not been determined due to the
tangential approach of the curves.

Theorem 1 shows that the existence of global bifurca-
tions is generic for systems in which a codimension-2 bi-
furcation point exists involving the connection of a torus
and a period-doubling curve. Bifurcation analysis of the
so-called continuous stirred tank reactor (CSTR) model
has been carried out by Kevrekidis, Aris, and Schmidt
[19,20], and they have reported that such a codimension-
2 bifurcation point exists, however, they did not associate
global bifurcations with this point. We performed a nu-
merical study of the forced CSTR model in a region near
the codimension-2 bifurcation point, and found evidence

Amplitude of solution

Amplitude a

FIG. 9. Principal structure of the bifurcations for increasing
forcing amplitude in a region around v =0.74.
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of a curve of global bifurcations. Chaotic solutions were
also found.

B. Bifurcations within the period-1 tongue

A feature of the period-1 tongue is that at lower forc-
ing amplitudes the transition from phase locking to
quaisperiodicity occurs via a saddle-node bifurcation,
while at higher amplitudes a torus bifurcation is responsi-
ble for the loss of entrainment. It can be seen in Fig. 10
that several bifurcation curves exist. The lower-left
saddle-node edge of the tongue crosses (without connect-
ing) the torus curve, and at (w,a)=(0.285,0.021) it
makes a sharp turn and almost heads in the opposite
direction. Subsequently it connects to the torus curve
that constitutes the left-hand side of the tongue at higher
amplitudes. This codimension-2 bifurcation point is
characterized by having two eigenvalues of +1. Before
the connection, one eigenvalue of the saddle-node bifur-
cation lies within the unit circle. Passing through the
connection point, this eigenvalue crosses the unit circle
transversely. At this point, the saddle-node curve there-
fore becomes unstable, continues, and later turns sharply
and connects to the torus curve that forms the right edge
of the tongue at higher amplitudes. After the connection,
the node of the saddle-node pair is again stable, and
represents the lower-right edge of the tongue. The ex-
istence of an unstable saddle-node bifurcation curves was
noted by Kevrekidis, Schmidt, and Aris [12]. In addition
to these local bifurcations, we also identified global bifur-
cations within the period-1 tongue. The presence of glo-
bal bifurcations has previously been identified by Kevrek-
idis [13] as homoclinic bifurcations.

This leads us to state the following theorem.

Theorem 2. Let y be a codimension-2 bifurcation point

0.020
] T
o 0.015 -
q) -~
O B
2 ' SN
= 0.010 A
o
<C i
, SN
0.005 |
] SN
i T
0.000 11— SN
0.26 0.30 0.34 0.38 0.42

Frequency w

FIG. 10. Magnification of the lower part of the period-1
tongue. The labels indicate the bifurcation type: PD, period
doubling; SN, saddle node; T, torus; G, global bifurcation. The
two bullets identify connections of bifurcation curves.
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in an n-dimensional flow, n > 2, where all other eigenval-
ues of the Poincaré map lie within the unit circle. If a
curve of stable torus bifurcations T connects to a curve of
saddle-node bifurcations SN in ¥, and the node of the
saddle-node pair is unstable and points in the direction of
the curve of torus bifurcations, then a set I" of global bi-
furcation points exists between the side of the torus bifur-
cation curve on which the stable tori exist and the
saddle-node bifurcation curve. Furthermore, ¥ is a limit
point for I'.

Figures 7 and 8(c) and 8(d) show the scenario described
in Theorem 2.

Proof of Theorem 2. Because two eigenvalues lie on
and the rest lie within the unit circle, the center manifold
theorem [15] guarantees that a two-dimensional invariant
and attracting center manifold exists. Thus it suffices to
consider the two-dimensional case when the parameters
are close to . Consider a curve = connecting a point a
on SN to a point 8 on 7. Suppose that no bifurcations
occur along =. This implies that the stable torus must
coexist with the saddle-node pair when this is born at a
[Fig. 8(c)]. The unstable periodic solution within the
torus is the node from the saddle-node bifurcation, since
the bifurcation curves 7 and SN meet in y. The torus
must therefore lie outside the unstable saddle-node pair
when this is born. The saddle solution lies outside the bi-
furcating tori on T at B [Fig. 8(d)]. It follows that the
saddle cycle must intersect the stable torus at some point
on 2. This is a contradiction, since it implies the ex-
istence of at least one bifurcation point on . Since «, f3,
and 2 can be chosen arbitrarily close to y, it follows that
v is a limit point for I', and since ¥ is a codimension-2 bi-
furcation point, I' must be a set of global bifurcation
points. Q.E.D. The comments to Theorem 1 apply to
Theorem 2 as well.

For w=0.34 the bifurcation diagram is as shown in
Fig. 11. For increasing values of a, the stable toroidal
solution coexists with the stable period 1,which is born in

Amplitude of solution

Amplitude a

FIG. 11. Principal structure of the bifurcations for increasing
forcing amplitude in a region around »=0.34. Solid curves
represent stable solutions, dashed curves are unstable solutions,
and spiral-like curves indicate toroidal solutions.
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a saddle-node bifurcation. For a==0.0056905, the
toroidal solution has become chaotic and disappears in a
blue-sky catastrophe, involving the inset of the unstable
saddle solution that was born in the saddle-node bifurca-
tion. Now the stable period 1 is a global attractor. For
a ~=0.006257 85, the bifurcation sequence is reversed,
and again, there are coexisting stable period-1 and
toroidal solutions. The torus subsequently disappears in
a torus bifurcation, in which the unstable period-1 solu-
tion inside the torus gains stability. Now two coexisting
stable period-1 solutions are present within the period-1
tongue. Finally the stable period-1 solution from the
torus bifurcation disappears in a saddle-node bifurcation,
and again, there is only one stable solution that is global-
ly attracting.

The codimension-2 bifurcation point near the right
edge of the period-1 tongue may also involve global bifur-
cations. If the torus curve connects to the saddle-node
curve after crossing the unstable part of the saddle-node
curve, Theorem 2 applies, and global bifurcations are
present. Due to the fact that the torus and the saddle-
node curves join very near the point where the saddle-
node curve turns, we have not attempted to accurately
identify the way in which these two curves join.

IV. DISCUSSION

We have provided a detailed description of some bifur-
cation structures in the period-1 and -2 tongues in the
forced Brusselator model. Our analyses provide coherent
pictures of the organization of (i) the overlapping region
between the period-1 and -2 tongues, and (ii) the bifurca-
tion curves constituting the period-1 tongues’s edges at
lower forcing amplitudes. In addition to the numerical
investigations we have stated and proved two theorems
concerning the existence of global bifurcations near gen-
eric codimension-2 bifurcation points that arise when a
curve of stable torus bifurcations connects to either a
curve of period-doubling bifurcations or a curve of
saddle-node bifurcations.

In Kai and Tomita [11], a triple curve connection was
displayed between the right-hand edge of the period-1
tongue, the left-hand edge of the period-2 tongue, and a
curve of period-doubling bifurcations. We have shown
that the right period-1 edge is a torus curve [12,14], and
that the left period-2 edge is a saddle-node edge [12].
Such two curves simultaneously connecting to a period-
doubling curve is not a generic situation in a two-
parameter plane, because it would require three different
local bifurcations to take place for the same parameter
combination. As we have shown, the saddle-node curve
and the torus curve do indeed connect to the period-
doubling curve, but this happens for different parameter
combinations. At the point where the saddle-node curve
connects to the period-doubling curve, the latter changes
its type from being supercritical for lower frequencies to
subcritical for higher frequencies. The connection be-
tween the torus and the period-doubling curves gives rise
to global bifurcations as demonstrated.

We believe that the overlap between the period-1 and
period-2 tongues is generic for a class of forced oscillating
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systems. If the period-1 and -2 tongues are adjacent for
higher amplitudes, the separator must be a curve of su-
percritical period-doubling bifurcations. This separator
represents both the left edge of the period-2 tongue and
the right edge of the period-1 tongue. For low ampli-
tudes these edges are separate, and as we have argued in
the text, they cannot generically connect at one point in a
situation with only two control parameters. The connec-
tion of the curves can be imagined to occur in two
different ways: (i) in the manner as shown in Fig. 2, or (ii)
the right period-1 edge could intersect the period-
doubling curve to the left of the connection point be-
tween the period-doubling curve and the left edge of the
period-2 tongue. The case (ii) would not contain an over-
lapping region. Between the two edges a curve Q of
period doublings would then be present. Assuming that
no other bifurcations take place near the codimension-2
bifurcation point, the following reasoning applies: If the
right-edge curve were a saddle-node curve, the period-1
solution from the period-1 tongue would disappear in the
saddle-node bifurcation, and subsequently there would be
no stable period-1 solutions below Q which could period-
double. If the right edge were a torus curve, the period-1
solution from the period-1 tongue would destabilize in
the torus bifurcation, and therefore no stable period-1
solutions would exist below Q. In principle, in both
cases, one could imagine the existence of an additional
bifurcation curve of the same type located between the
right-edge curve and  and connecting to the
codimension-2 bifurcation point. However, from a physi-
cal point of view, this would be an unlikely situation, at
least for low-dimensional systems.

The scenario in the period-1 tongue also seems to
occur in the forced CSTR model, which we take as an in-
dication of genericity. We plan to investigate other mod-
els to support this hypothesis.

The right-hand side of the period-2 tongue (see Fig. 1)
was also examined. Here a transition from saddle-node
to torus bifurcations was also observed. The unstable su-
percritical period-doubling curve comes very close to the
saddle-node and the torus curves. The bifurcation curves
are located within a very small region of the parameter
plane, similar to what was found for the forced CSTR
model [19,20].

Much of the theoretical investigation of periodically
forced oscillators has focused upon one-dimensional cir-
cle maps. The results derived from such iterated maps
may in many cases be extrapolated to more complicated
theoretical or experimental systems involving periodically
forced oscillators. However, saddle-node and period-
doubling bifurcations are the only local bifurcations that
can occur in one-dimensional circle maps. Both
theorems in the present paper concerning existence of
global bifurcations involve torus bifurcations, and conse-
quently do not apply to one-dimensional circle maps.

In the case of the periodically forced Brusselator, the
transition from phase locking to quasiperiodicity can
occur either via a saddle-node bifurcation (phase
locking— quasiperiodicity on a large torus) or through a
torus bifurcation (phase locking— quasiperiodicity on a
small torus). These two different transitions can be
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differentiated when mathematical models are investigated
and they may also be distinguishable in experiments un-
der laboratory conditions. If a torus bifurcation occurs
in a particular system, results from circle maps cannot
necessarily be applied. On the other hand, if torus bifur-
cations are observed for some parameter combinations
while period-doubling and/or saddle-node bifurcations

are seen for other parameter sets, the possibility exists
that the two theorems in the present paper are applicable.
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