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Accuracy Assessment of the Scalar Network Analyzer 
Using Sliding Termination Techniques 

BENT KNUDSEN, MEMBER, IEEE, GLENN F. ENGEN, FELLOW, IEEE, AND BIRTHE GULDBRANDSEN 

Abstract-In the absence of phase response the major, if not the pri- 
mary, sources of error in the scalar network analyzer are the imperfect 
directivity, etc., associated with its internal and frequently “inacces- 
sible” test set or measurement network. This paper obtains an explicit 
expression for this error in terms of the observed response to a sliding 
termination and sliding short. 

I. INTRODUCTION 
HE APPLICATION of automation techniques to the T field of microwave metrology is perhaps best exhib- 

ited by the “vector” automated network analyzer (ANA) 
including the “six-port.” At the same time, there is con- 
tinuing interest in the “scalar” ANA. As implied by the 
name, and in contrast to the vector ANA, this device gen- 
erally provides amplitude measurements only, and is 
based on a simpler detector and measurement network (or 
“test set”). It is also subject to certain sources of error 
(e.g., imperfect coupler directivity) due to its nonideal 
test set which, in principle at least, are eliminated in the 
vector ANA by the use of the phase detection capability 
which is included therein. 

The evaluation of these error sources poses a challenge 
for the metrology laboratory in that (except for the “test 
port”) the terminals of the measurement network (test set) 
are not ordinarily available. The problem is thus to ascer- 
tain what can be inferred about their magnitude in terms 
of the system response to certain terminations. 

The role of the sliding termination in microwave me- 
trology is a well-known and important one. An example 
is provided by the vector network analyzer where the 
phase response permits a “complete” evaluation of the 
test set parameters. Their effect on the observed response 
may then be eliminated by the software. The existing cal- 
ibration techniques, by which these parameters are deter- 
mined, usually include observations of the system re- 
sponse to a weakly reflecting sliding termination (or 
“load”). This permits one to make a projection of the 
system response to a totally nonreflecting termination. In 
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addition, certain of these calibration methods also call for 
the use of sliding “shorts” as well. 

In an earlier era, both the sliding load and the sliding 
short played a major role in the adjustment of the “tuned” 
reflectometer. This measurement technique provided for 
in situ adjustments of the hardware parameters, leading to 
an “ideal” test set; realization of this test set was rec- 
ognized by the attainment of a constant ratio between the 
two detector readings in response to the motion of the 
sliding load and the sliding short. 

In the absence of phase response, the basic theory for 
the scalar network analyzer is the same as that for the 
(tuned) reflectometer, but where the prescribed tuning cri- 
teria have not been completely realized. Thus certain of 
the test set parameters, referred to above, now become 
sources of error. Although the literature contains several 
investigations of this problem, these are less complete than 
the treatment to be given here. 

It is the purpose of this paper to obtain limits for these 
errors in terms of the observed failure to satisfy the pre- 
scribed tuning conditions. The algebraic expression, 
which represents the error evaluation, is obtained first by 
a “conventional” analysis and then by the use of a com- 
puter program. This has made possible a more complete 
error expression than would have otherwise been ob- 
tained. 

11. BASIC THEORY 

As shown in Fig. 1, the basic form of the scalar net- 
work analyzer is a reflectometer whose two detectors re- 
spond to amplitude only. Denoting these by P3 and P4, 
one has the well-known result 

where I’u represents the “unknown’ ’ reflection coefficient 
at the test port, and a ,  b, and c are complex parameters 
which describe the reflectometer or test set. By hypothe- 
sis, I b 1 and I c I are small and I ru I I 1 so that, approx- 
imately: 
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Fig. 1. Reflectometer. 

which may be further expanded to yield 

p3 = (uI2 ((rVl2 + b*ru + b r ;  + lbI2) * K ( 3 )  
p4 

where 
2 K = [ I  - c r u  - c*r; + Jcru( 

+ (cruf + (c*r;f + . I  
and the superscript * represents the complex conjugate. 

The reflection of the sliding termination will be denoted 
by F L .  In terms of the complex wave amplitudes, b3, b4 
(the square of whose magnitudes are P3 and P4) ,  the 
counterpart to ( 1 )  may be written 

or, alternatively, as may be confirmed by a little algebra 
and letting w = b3/b4 

( 5 )  
By hypothesis, the sliding termination provides a re- 

flection coefficient of constant magnitude but variable 
phase. Thus the locus of w, in response to the sliding ter- 
mination, may be written as the sum of two terms where 
the first is a constant while the second is of constant am- 
plitude but variable argument. (Note that the second fac- 
tor in the second term is of magnitude unity.) The locus 
of w is thus a circle of radius R and center Rc, which are 
given by 

(7) 

For a weakly reflecting sliding load, I rL 1 << 1. Adding 
the subscript L, (6) and (7) may be written approximately 
as 

RL = 14 I r L l  ( 8 )  

RC- = ab (9) 

since by hypothesis 1 rL 1 and I bc 1 are small. Using the 
subscript S to represent the sliding short, and assuming 

and 

since 
Let 

Rcs E ~ ( b  - c*) (11) 
c 1' and I bc 1 are small with respect to unity. 

which is thus proportional to Rcs. After solving (12) for 
c and substituting in (3), one has, to the first order in b 
and d ,  

+ (dF$ + d*ru)  lrUl2 + Ibl2 + - . . I  (13 )  

where the second-order term 1 b l 2  has also been retained 
since this characterizes the error as I'u -+ 0. 

To continue, (9)-(12) may be combined to yield , 

and 

which provide (approximate) values for 1 b J  and Id1 in 
terms of the observable parameters 1 RcL 1 ,  I Rcs 1 ,  and Rs. 
In general the accompanying arguments are unknown; 
thus assuming a worst-case phase relationship in (13), one 
has 

which is the result of interest. 
Assuming 1 a 1 is known, that 1 rrr 1 >> 1 R c - / R s  1, and 

that I F a /  >> 1 Rcs/Rs 1,  (16) implicitly describes the er- 
ror in a measurement of 1 r" 1 due to nonzero values of 
RCL and ReS. In particular, by use of the k signs, one may 
obtain limits for 1 T u  1 .  On the other hand, as may be con- 
firmed by (l), if I ru 1 + 0, one has ( P3/P4)  = 1 ab l2 and 
the response no longer depends on rU. In the interval 
where 1 ru 1 = 1 RcL/Rs 1, both the first- and second-order 
terms in 1 RcL/Rs 1 are important, and an aid in interpret- 
ing (16) is obtained as follows. By further use of (5), and 
referring to Fig. 2, for small values of I T u  1 the response, 
w, will be given approximately by the vector sum of Rc 
(or R c - )  and aru ,  but where the angle between them is 
unknown. By inspection 
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Fig. 2. Aid for interpreting equation (16) 

In general there are two cases where I ru I is “well de- 
fined,” 1 w I << I Rcl and I w I >> / RcI. The first of 
these will only be obtained, however, if T u  happens to 
very nearly equal the negative of R,/a and is of only 
limited interest. The alternative where I w / a  1 ,  and thus 
I rul, is substantially (perhaps a factor of 10 or more) 
larger than I RCJa I has been considered above. In this 
case, the term which contains the factor I RcL/Rs l 2  can 
be neglected since the error is now dominated by the two 
terms in I R,/RsI and I Rc-/RsI in (16). In particular, if 
1 rul is still “small,” say of the order of 0.1, the major 
source of error will be due primarily to the first of these 
if I RCL I and I Rcs I are nominally equal. For example, if 
I RcL/Rs I = 0.01, and I ru I = 0.1, one has a nominal 
20-percent error due to the first, and 0.2 percent from the 
second. As I ru I increases, the error from the first term 
diminishes, and vanishes in the limits as I ru I --f 1. Thus 
for large I ru 1 ,  the error is due primarily to the second 
term. 

For completeness, it is desirable to take a more careful 
look at the approximate relationship, (10). By use of tech- 
niques similar to those employed with (l),  one can show 
that 

( 18) 
Thus the error in (10) is of second order provided that 
I rS I = 1. In general, one has two choices for assigning 
a value to I a I .  First, as suggested above, one can use Rs, 
in which case I a I will be in error by the factor ( 1  - 
1 rs I ). The other alternative is to use (16) in conjunction 
with a fixed short, for which the deviation from unity 
should be negligible. In this case, I a I may be in error by 
as much as k I a I I Rcs/Rs I. Ordinarily, the choice should 
be made in favor of the smaller error. 

111. COMPUTER-AIDED SOLUTION 
As described above, the “solution” includes certain 

techniques which are often used in the context of prob- 
lems of this type. These include the use of approximations 
and a change of variables (12). The objective, of course, 
is to reduce the amount of algebra required (which ulti- 
mately limits the applicability of these methods). In the 
aftermath of this effort, an alternative, more complete so- 
lution was obtained via computer methods, which will 
now be briefly described. From (6) and (7) one has 

and 

and 

(22)  

where the arguments of Rcs and RCL have been redefined 
to “absorb” the phase factor U /  1 a I .  (In the final result 
only the magnitudes of Rcs and R c -  are of interest.) 

Conceptually, it is only necessary at this point to solve 
(21) and (22) for b and c and substitute in (3) to obtain 
the desired result. Apart from the factor I 1 - bc I and 
those which involve [ c l 2  this would be a simple exercise. 
Their presence, however, renders a closed-form solution 
difficult, if not impossible. It is a fairly simple task to 
define an iterative solution, however. Returning to (2 1) 
and (22), one begins by setting I 1 - bc 1 ,  ( 1 - I c l 2  
1 rSl2), and ( 1  - I cI2 1 rL 1 2 )  equal to unity and then 
solving for b and c. These values are then used to obtain 
an improved “estimate” of I 1 - bc I , etc., and the pro- 
cedure is repeated. Because the magnitudes of b and c are 
small, the procedure quickly converges, although a sub- 
stantial amount of algebra is required. 

It is possible, however, to effect the algebra by means 
of certain routines which were developed as an accessory 
to a previously described computer program [l], [2] for 
the analysis of microwave systems. Although the details 
are the subject of a paper to follow, the basic function of 
these routines is to perform the basic operations of addi- 
tion, subtraction, multiplication, division, absolute value, 
etc., on the output of this program, which is in the form 
of a Taylor series power expansion. 

By use of these methods, it was possible to include the 
effects of a nonzero reflection for the sliding termination, 
and a nonunity reflection from the moving short. Based 
on this result, a more complete expression may be writ- 
ten: 

which may be compared with (16). Not included in this 
expression are an additional 17 second-order terms and 
the 50 third-order terms, which also include the contri- 
bution from the nonzero sliding termination. 
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Fig. 6. Reflection factor for degraded sliding load. 

IV. EXPERIMENTAL RESULTS 
Measurements were made with an HP 8755P automatic 

scalar network analyzer using an X-band waveguide re- 
flectometer with two 10-dB directional couplers. 

With sliding terminations, the maximum and minimum 
values of 1 w 1 are obtained from ( 5 )  to (7): 

l w l m a x  = R + l ~ c l  

I w I m i n  = I R  - I R ~ I  I 

(Iwlmax + lw/min)/2 = ~s = la1 

(24) 

(25) 

and 

From (10) and (1 l),  Rs > 1 Rcs I for the sliding short. 
Then 

(26) 

For the sliding load, RcL and R L  are given approxi- 
mately by (8) and (9). With the equipment used in these 
measurements, I RcL I and RL were comparable in magni- 
tude, and less than 0.1. In order to identify which was 
which from the measurements (24) and (25), the sliding 
load was degraded by attaching a small piece of copper 
foil to the sliding element. The size and the position of 
the copper tape were determined by trial and error, with 
the goal being a nearly constant reflection factor less than, 
but close to, 0.1 in the entire frequency range. 

For the degraded sliding load R, > I RcL I .  Then, 

(lwlmax + lwlmin)/2 = RL z l a r ~ l  (28) 

and 

Since 1 a 1 is known from the measurement of the sliding 
short, these equations determine I b I and 1 rL 1.  

The measurements were made under computer control. 
The sliding terminations were set at 20 different positions. 
For each position the frequency was stepped by 0.1 GHz 
from 8 to 13 GHz. From these data the Computer deter- 
mined the maximum and minimum values and calculated 
and plotted the results shown in Figs. 3-6. It will be noted 
that I b I and I d I (or 1 RCL 1 /Rs  and I Rcs 1 / R s )  remain bel 
low 0.01 and 0.03, respectively, while the typical values 
are perhaps half of these figures or less. The substitution 
of these results in (16) or (23) gives errors which range 
from 10 percent down to 3 percent for 0.1 I 1 I',l 5 1, 
and with a rapid increase in the error for smalfer values 

Separate manual measurements were Made in order to 
confirm that the maximum and minimum values, as de- 
termined by the described procedure, were indeed a good 
approximation. The manual measurements and repeated 
computer-controlled measurement gave results that were 
everywhere within k0.0025 of the results in Fig. -3 and 
within k0.003 of the results in Fig. 4. 

of IrUL 
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