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Concatenated Codes with Convolutional 
Inner Codes 

J0RN JUSTESEN, CHRISTIAN THOMMESEN, AND VICTOR V. ZYABLOV 

Abstract -We study the minimum distance of concatenated codes with 
Reed-Solomon outer codes and convolutional inner codes. For suitable 
combinations of parameters the minimum distance may be lower-bounded 
by the product of the minimum distances of the inner and outer codes. For 
a randomized ensemble of concatenated codes we prove a Gilbert- 
Varsharnov-type lower bound. 

I. INTRODUCTION 

E STUDY concatenated codes whch are con- W structed from Reed-Solomon (RS) outer codes and 
convolutional inner codes. Such codes are of interest in 
practical coding systems [I] but have not been given much 
attention in the literature. 

We shall consider a concatenated code as a long block 
code. The convolutional encoder could introduce a slight 
dependence between successive encoded blocks, but this 
would be undesirable both from a practical and a theoreti- 
cal point of view. We may separate the blocks either by 
introducing a few zero symbols between the RS words (in 
a practical system, a synchronization pattern would be 
inserted), or by starting the encoder in a state determined 
by the last symbols in the RS word. In the first case the 
rate of the code is reduced, while in the second attention 
should be gwen to the possibility that the convolutional 
encoder may not reach the zero state in a word. For a long 
RS code and a convolutional code with small memory we 
can neglect these effects. 

For simplicity only binary codes will be considered. The 
parameters of the outer RS code are ( N ,  K ,  D ) ,  where N is 
the length, K the dimension, and D the minimum dis- 
tance. The symbol field GF(2m) is represented as a linear 
space of binary vectors of length m, whch we shall call 
bytes. The rate of the outer code is R = K / N .  The inner 
code has parameters ( u ,  K )  where u is the block length and 
K the dimension. The code has memory M blocks, rate 
p = K / U ,  and free distance d,. In some of the derivations 
we shall assume that the code is time varying. 
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We shall compare the fractional minimum distance w of 
concatenated codes with convolutional inner codes and 
inner block codes. In Section 111 we shall find condi- 
tions for which w may be lower bounded by the Zyablov 
bound [2] 

w ~ ( l - R ) H - ' ( l - p )  (1.1) 
where H-' is the inverse entropy function. In some cases 
the minimum distance W may be bounded by 

W 2  Dd,. (1 4 
Such product bounds indicate the quality of concate- 

nated codes when they are used with decoders that decode 
the inner and outer codes separately. In Section IV, we 
prove that some concatenated codes have minimum dis- 
tances that meet the Gilbert-Varshamow bound 

w 2 H P ( 1 -  R p ) .  (1.3) 
In the outer code interleaving may be used. If I RS 

codes are interleaved, we shall assume that byte j from the 
first code is followed by byte j from codes 2,3,. . . , I ,  and 
the sequence continues with byte j + l  of the first code. 
The use of interleaving is sometimes explained as a way of 
adapting the outer code to the bursty error patterns from 
the inner decoder. We find t h s  description inaccurate 
since the RS code itself is well suited for correcting burst 
errors. However, interleaving may be a way of constructing 
a longer code with little extra complexity, and a longer 
code will generally have better performance. 

In Section I11 we prove that a bound of the form (1.2) 
can be achieved if I is chosen properly and p 2 0.38. We 
deduce the rather unexpected result that for lower rates, 
interleaving is less effective. If it is used, it is necessary to 
increase the memory to get a bound of the type (1.1). 

Each byte representing a symbol from the RS code is 
encoded as s = m/K blocks of the convolutional code. If s 
is an integer, we shall assume that the beginning of a byte 
coincides with the beginning of a block in the convolu- 
tional code. However, we shall also consider the case 
where s is an arbitrary rational number, although for 
convenience we assume that NIs is an integer. If the outer 
code is fixed, the performance will generally improve when 
M K  is increased. However, if M K  is large enough or s is 
small enough, the minimum distance satisfies (1.1) and 
(1.2), and these bounds are not improved by using larger 
constraint lengths. In Section 111, we derive conditions on 
s / M  for long codes so that the lower bounds hold. If K is 
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small, it is not important that the blocks of the convolu- 
tional code be synchronized with the bytes of the RS code. 
However, for unit memory codes it has been conjectured 
that it would be an advantage to match the size of the 
blocks to the byte length [3]. We prove that in terms of the 
minimum distance the situation is more complicated. For 
some intervals of p ,  an integer value of s is advantageous, 
but at other rates there is no difference. In Section IV it is 
proved that the Gilbert-Varshamov bound may be at- 
tained if both M K  and mN/(MK) tend to infinity. Thus 
t h s  property is not sensitive to the relationship between 
the symbol size and the constraint length. 

In Sections I11 and IV we derive explicit asymptotic 
results for long randomly selected codes. For specific inner 
codes the minimum distance depends on the distance 
function of the convolutional code. In Section I1 we derive 

' bounds for specific codes and give examples of good 
concatenated codes. 

11. LOWER BOUNDS ON THE MINIMUM DISTANCE 
OF CONCATENATED CODES WITH FIXED 

INNER CODES 

length at least (I,! - 2 ) s  + 2  from the first to the last 
nonzero block. 

If there are at most M - 1 consecutive zero blocks in the 
sequence, we get a codeword of length ( I ;  - 2)s + M + 2. If 
I,! =1, the codeword has length at least M + 1. In those 
cases we set I ,  = I,!. However, if 2s - 2 2 M ,  it may happen 
that the encoder returns to the zero state during the 
encoding. Thus the string is encoded as several codewords 
of lengths at least 

where 

1 ' J !  ' J  ' 

I 

On the other hand, if M > s, the encoder may not return to 
the zero state before it reaches a new group of nonzero 
bytes, and the length of a codeword will be at least 

L,= ( 1 , - 2 ) s + M + 2  

where 

In this section we shall derive lower bounds of the 
product type for concatenated codes with specific inner 
codes. TO obtain bounds on the weight of codewords of 
the convolutional code, we must know the lengths of the 
nonzero sequences. 

output sequence from the convolutional encoder is 
called a codeword if the encoder is started in the zero state 
and returns to the zero state for the first time at the end of 
the sequence. The encoded string consists of a number of 
codewords from the convolutional code separated by zeros. 
If the input consists of L blocks such that the first and the 
last are nonzero and there are at most M - 1 consecutive 
zero blocks, the output will be a codeword of length 
L + M blocks. J 

The encoding of the codewords from the outer code 
produces a number of codewords from the convolutional 
code. We give three bounds on the lengths of these code- 

I ,  2 I,!, . 
I 

In all cases the lemma follows. 

Lemma 2: If s is an integer and s 2 M ,  D nonzero 
columns of the interleaved outer codes are encoded as 
codewords with lengths at least 

s ( I ,  - 2 )  + M + 2,  1, 2 2 
LJ= { M + L  I ,  =1 

where 

X i J >  ID 

if all codewords of the outer codes are nonzero. If at least 
one outer codeword is zero, each nonzero column is en- 
coded as a codeword of length > M + 1. 

Proof: Since we assume s 2 M ,  the convolutional en- words. 

coder will return to the zero state when the input contains 
from the outer code are encoded as codewords with lengths a byte. Thus in the of at least one outer 

codeword the encoder returns to the zero state in each at least 

Lemma ': If is an integer and nonzero bytes 

S( lJ - 2 )  + M + 2 ,  lJ 2 2 column. If none of the outer codewords are all zeros, there 
are at least ID nonzero bytes, and the lemma follows from 
Lemma 1. I ,  =1 

where 

1 1 ,  2 D. 
i 

Lemma 3: If s is a rational number, s 2 M ,  D nonzero 
columns of the outer codes are encoded as codewords with 
lengths at least 

L, = 1 ;+;W + M +L lJ 2 2 
I ,  =1, 

Proof: The nonzero bytes occur in groups of I,! con- 
secutive bytes, where 

XI,!= D. 
J where 

Each byte consists of s input blocks of length K ,  and at 
least one of these is nonzero. Thus if I j  >1, the input has 

El, 2 Dl 
J 
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if all codewords of the outer codes are nonzero. If at least 
one outer codeword is zero, each nonzero column is en- 
coded as a codeword of length > M + 1. 

Proof: The difference between the case 3f integral s 
and the situation considered here is that om qput block 
may contain a few bits from one byte and ex id into the 
next one. Thus two consecutive nonzero bytes r,.ay contain 
only one nonzero block. Since I ,  - 2 bytes contain ( 1, - 2)s  
blocks, which is not necessarily an integer, the smallest 
integer larger than (1, - 2)s  may be enough to account for 
the nonzero blocks in I ,  nonzero bytes. The rest of the 
proof follows the proof of Lemmas 1 and 2. 

The weight of a codeword of length n + M is at least 2; 
[4], which we call the extend:d row distance. It is impor- 
tant in our derivations that d;  be an increasing function. 
If this is not the case, we replace it by a lower bound 
which is increasing 

d,* = mind,'. 
J Z n  

In some cases an approximation of the following type is 
useful : 

d,* 2 max { d,,  an + p } . 
We can now state a lower bound on the minimum distance 
of the concatenated code. 

Theorem 1: If s is an integer and s 2 M or I = 1 ,  the 
minimum distance of the concatenated code satisfies 

where 

C I , ~ D I ,  1 ~ 2 2 .  
J 

Proof: The theorem follows from Lemma 2 if s 2 M ,  
and from Lemma 1 if I = 1. The minimum weight is not 
obtained with 1, = l .  

Note that if I =1, the case 1, = 2 for all j gives d:D/2,  
which is always smaller than d,D. Thus a bound of d,D 
can only be achieved with interleaving. The case I 2  2 and 
s < M is complicated since some outer codewords may be 
zero without forcing the inner encoder to the zero state. 
We will make further comments on this case in Section 111. 
The construction of concatenated codes with inner convo- 
lutional codes may be demonstrated by a simple example. 

Example 1: The ( 2 , l )  code with generator polynomials 
( 1 +  D +  D 2 , 1 +  D 2 )  has 

2; = 1 n / 2 ]  + 5 .  

The bound of Theorem 1 becomes 

W 2 min { 5D,  ( [s1, /2]  - s + 6 ) ] .  
J 

For I = 1 ,  the best possible result is W 2 d ;  D / 2  = 3 0 ,  
whch is the minimum for s 2 6. The best bound on the 

relative distance is w 2 ( 1  - R)/4, which is obtained with 
an outer code over GF(26).  To have W 2  5D, we, must 
have I >  2 and Is > 10. Again we get w 2 ( 1  - R)/4 with 
two outer codes over GFQ5). 

Theorem 2: If s is a rational number, s 2 M ,  the mini- 
mum distance of the concatenated code satisfies 

where 

Proof: The result follows from Lemma 3. 

Note that for I =1, I, = 2 could give a weight of only 
( 1 / 2 ) D d ,  if each pair of nonzero bytes is encoded as a 
codeword of weight d,. 

Let qe be the number of strings of length e. We may 
restate the bound of Theorem 1 as 

1 W 2 m i n  Dd,,  c qrd;-2),+2 { e 2 2  

where 

eq, 2 DI.  
e 

If we drop the constraint that qc be an integer and replace 
it by 4 / 2 0 ,  we get a linear programming problem. It 
follows that the minimum is obtained at a point where 
only one qr > 0, and for this e,  qc = I D / [ .  

Theorem 3: If s is an integer, s 2 M ,  the minimum 
distance of the concatenated code satisfies 

W 2  min ( D d , ,  I D C ' d ~ - , , , + , ) .  

e 2 2  

Remark: If d,* 2 max { d,, an + p } ,  we may rewrite this 
expression as 

W 2 min { Dd,,  IDsa + OIL'-'( p - 2 a (  s - 1 ) ) ) .  
e 2 2  

Proof: Since the minimum with noninteger values of 
qc must be less than or equal to the minimum in the 
original problem, the theorem follows from Theorem 1. 
The same result holds for I = 1 and s < M .  

Theorem 4: If s is a rational number, s 2 M ,  the mini- 
mum distance of the concatenated code satisfies 

Proof: The theorem follows from Theorem 2. 

Example 2: The (8,4) partial unit memory code found 
by Lee [3] has row distances 

n = 1  
n 2 2 '  
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From Theorem 3 we get straight line through ( p , O )  and ( r ,  6( r ) ) ,  where 

W 2 min { 8D,  ZD (2ds - 4s + 8)// } . r = p / ( l  + y - ' )  
e t 2  

The best bound, W >  8D, is obtained with s = 2 and I = 2. intersects the ordinate at (1 + y ) 6 ( r ) .  Thus for small Y the 

Thus two outer codes Over GF(2~) can be used to give a 
concatenated code with fractional distance 

normalized distance decreases. The minimum 

6 = -  p/1og(2'-p - 1) 
w 2 (1 - R),/4. 

The bound would also be obtained if a (32,16) block 
code were used as the inner code. In th s  case we get a 
powerful concatenated code because the (8,4) code has 
unusual distance properties. The matchng of the block 
length to the byte size is not so important. If we take three 
outer codes over GF(26), i.e., Z = 3 and s = 3/2, Theorem 
4 gives the bound 

W 2  min{8D,ZDd-1(2[(d--2)3/2]+6)} = 8 D  
e 2 2  

with almost the same fractional distance. 

111. MINIMUM DISTANCE BOUNDS FOR LONG CODES 

The sequence 2; has been studied in earlier papers 
[4]-[6] because it is directly related to the error probability 
of Viterbi decoding. For a specific code the row distance 
may be expressed as the sum of a transient term, a periodic 
term, and a linear term [5]-[8]. Here the slope of the linear 
term is determined by the minimum average weight of a 
loop in the state diagram. For noncatastrophic codes, 

d, = min { 2:). 

For long randomly chosen time-varying codes, 2; is 
known [4], [8], and in the following section we shall use 
these results to study the asymptotic properties of long 
concatenated codes with fixed outer codes. It was proved 
in [4] that for unit memory codes. 

2; 2 ( n  + l )vHP( l -  n p / (  n + 1)). 

This result may be generalized to other convolutional 
codes as follows. 

Lemma 4: There exist long time-varying convolutional 
codes with memory M and block length v for which all 
extended row distances satisfy 

& / M V 2  ( l + n / M ) H - ' ( l - p / ( l + M / n ) ) .  

Here it is assumed that M and n are positive integers. The 
quantity 

is Costello's lower bound on the normalized free distance 
[lo]. This minimum occurs for 

Y = r / ( p  - r )  

r = l - H ( 1 4 - ' ) .  

d ; / M v = y . S ( p ) .  

where 

For larger y the row distance increases, and asymptoti- 
cally 

The bound of Lemma 4 is obtained by considering only 
the sequence of y's which are multiples of M - ' .  Thus for 
finite M the free distance may be larger than Costello's 
bound, and for sufficiently low rates 2; is an increasing 
function of n for all n. 

The increasing lower bound d* may be approximated by 

for n 5 M r / (  p - r )  

for n > M r / (  p - r )  
d,* = 

with 

r =1- H(1-2p-1). 

If the minimum in Theorem 3 occurs for large e, we get 
the bound 

W 2 z D s v H - ' ( l - p )  (3 4 
which coincides with the Zyablov bound [2] for long 
concatenated codes with block codes of rate p as inner 
codes. Thus we cannot expect to get better results with 
convolutional codes. We shall study conditions on s that 
assure that this bound is satisfied. It is interesting to make 
s large since we obtain an inner code of low complexity in 
this way. 

To determine explicitly when the minimum in Theorem 
3 occurs, we replace the variable e by the fractional 
minimum weight of long codewords in the terminated code 

( / - 2 ) s + 2  
6 = H - ' l - p  ( / - 2 ) s + M + 2  ) .  (3.3) i 

r, = + M / n )  The largest value of 6 occurs for the critical value 

is the rate of the n 'th terminated codes. 
It is useful to study the normalized row distance as a 

function of a positive real variable Y = n / M .  We may 
interpret the function through Forney's inverse concatena- 

log(1- 6 )  = p-1, 

and the smallest value corresponding to large d is 

tion construction [9]. Let H ( 6 ) = 1 - p .  

We shall determine whether the function in Theorem 3 has 6 = HP(1- r )  

be the Gilbert-Varshamov bound for block codes. A a local minimum for 6 in this interval. 
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We consider the function 

B ' ( / , s , E ,  p ,  M )  =e-'((/  - 2 ) s  + E  + M )  

Introducing 6 as the independent variable, we get 
n 

n + M  
H ( 6 )  =1-p- 

n = (e  - 2 ) s  + E  

pM 
p -1 + H ( 6 )  

n + M =  

M ( l - H ( 6 ) )  € 

s ( p - l + H ( 6 )  s 
L =  - - + 2  

and finally, 
p M 6 s  

( M - 2 s  + €)(1- H ( 6 ) )  + p ( 2 s  - € )  . B ( G , s , c , p , M )  = 

(3.4) 

A local minimum must satisfy a B/a6 = 0, which can occur 
only for 

( M  - 2 s  + €)(1 +log(l-  6))  = - p ( 2 s  - € ) .  

Thus we have at most one value of 6, given by 

- p ( 2 s  - € )  ( 1  - p ) ( 2 s  - E )  - M log(1- 6)  = -I= 
M - 2 s + €  M - 2 s + E  

(3.5) 

As s increases, this point approaches the largest value of 
6. It may be verified that for smaller values of s we do get 
a minimum of B. The largest s for whch we avoid a local 
minimum is obtained by introducing the limiting value of 
6 given by 

H ( 6 )  = 1 - p  

in (3.5). Th~s  yields 

p 4 ( l + l o g ( l - 6 ) )  € 

H (  6 )  +log (1 - 6 )  s, = + 2' ( 3 4  

or in terms of the rate of the inner code 

s, = 1 - p +log@ - HP(1- P ) )  

The function so /M is plotted in Fig. 1. As p + 0, s o / M  
approaches 0.5. For increasing p it increases monotoni- 
cally and is unbounded as p + 1. Note that s o / M  2 1 for 
p z 0.38. From this analysis we can now derive bounds on 
parameters of concatenated codes which satisfy the Zyablov 
bound. 

Theorem 5: Concatenated codes exist with long convo- 
lutional codes of large memory as inner codes such that 

w2 D I S ~ H - ~ ( ~ - ~ )  

if s I so and 

d ,  for p 2 0.38 I <  vsH-'(l- p )  ' 

I = 1 ,  forpc0 .38 .  

Proof: For long codes with fixed v, M and s are large 
and their ratio may be found from (3.4) with c = 0. If s / M  
is chosen to be at most s o / M ,  it follows from Theorem 3 
that 

W 2  min( Dd,,  ID  lim { /-li;s}) 
and the Theorem follows from Lemma 4 if s o / M  2 1. If 
we neglect integer constraints and take the largest possible 
value of I ,  we get the bound W 2 Dd,. 

For rates < 0.38, M must be greater than s, the length 
of the symbols in the outer codes. In that case the calcula- 
tion of the distance of interleaved codes is more difficult. 
With I = 1 ,  the bound of Theorem 5 is at most D d , / 2 .  
The reason for t h s  discontinuity in the lower bound may 
be explained by considering I = 2 and M slightly greater 
than s. If only one of the outer codewords is nonzero, the 
inner encoder may not return to the zero state, and two 
nonzero symbols may be encoded as a codeword in the 
convolutional code of length - 2 M .  By Lemma 4 the 
weight of such a word is at least 2MvH- ' (1 -  p / 2 ) ,  which 
is smaller than 2d,. However, t h s  is a weakness of the 
bound, and the minimum weight would for typical codes 
be close to 2d,.  However, the bound of D d ,  cannot be 
obtained for l?w rates. 

If we use d , ' > a n + p ,  so equals P/(2a), and I must 
satisfy I I d , / ( s a ) .  In Theorem 5 we could use Costello's 
bound to express d ,  in terms of v, M ,  and p. 

For unit memory codes the minimum for B does not 
occur at the point just calculated since 6 assumes values 
from a discrete set. However, if B has a local minimum, B 
must approach its asymptotic value from below, and for 
sufficiently large e we get distances below the Zyablov 
bound. Thus it is still necessary that the local minimum for 
B does not occur for a finite value of e. Combining 
Lemma 4 and Theorem 3, we should take E = 2 and M = 1 
in B. 

Theorem 6: Concatenated codes exist with long unit 

e-m 

memory codes as inner codes such that 

w2 D ~ H - ~ ( I - ~ )  
if 

S I  l s o ] + l  

and 

d ,  
v s H - ' ( l -  p )  . I <  

Proof: The result follows from Theorem 3, Lemma 4, 
and (3.4). Since we assume here that s is an integer, we 
must round so to the next smaller integer. This bound for s 
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Fig. 1. Relationship between symbol size of outer code and constraint length of inner code. 

is indicated in Fig. 1. The free distance can be replaced by 
the lower bound derived in [4]. 

Finally, we consider the case where the blocks of the 
convolutional code are not synchronized with the symbols 
of the outer code, and s is not necessarily an integer. If v 
is very small compared to the symbols of the outer code, it 
clearly makes no difference if the blocks are synchronized. 
Thus for multimemory convolutional codes with small v 
and large M we can still use Theorem 5. We shall now 
consider unit memory codes. 

In Theorem 4, (e -2)s is rounded to the next larger 
integer. Define ~(s, e) by 

[ (e  -2)sI +1= s ( e  -2) + € ( S ,  e) 

0 < € ( S ,  e )  21. 

where 

We will determine the smallest value of 6 for a fixed s and 
use this value in the minimization of B. The most favor- 
able case occurs when s is an integer and ~ ( s ,  /) = 1 for all 
8. In this case we get 

1 

2 
S l S , +  -. 

This value applies whenever so + 1/2 is an integer, but the 
same value can be used for higher rates. In general, if s is 
chosen to be a rational number, s = p / q ,  where p and q 
are relatively prime, there are infinitely many e such that 

€ ( S ,  e) = 4-1 

However, with t h s  value of e we get the constraint 

Theorem 7: Concatenated codes exist with long unit 
memory codes as inner codes such that, without synchro- 
nization between the blocks of the inner and outer codes, 

w2 IDsvH-'(l- p )  

if 
s =s, 

and 

dm 2 1 1 1  v s H - ' ( l -  p )  . 

Proof: The result follows from Theorem 4, Lemma 4, 
and the previous derivation. 

Even though the results of this section are lower bounds 
on minimum distance, we may interpret the results as 
indicating useful combinations of the parameters of con- 
catenated codes. In the literature and in practical design 
there has been some uncertainty about the relationship 
between the constraint length of the inner codes, the 
symbol length of the outer code, and the interleaving 
degree. Theorems 5-7 indicate that these relationships are 
quite complicated. 

For a fixed symbol size SK in the outer code, we may 
conclude that the constraint length MK can be chosen to 
be somewhat smaller without negative effects on the mini- 
mum distance as long as p >  0.38. For lower rates the 
block length of unit memory codes should coincide with 
the symbol length. For multimemory codes of low rates, 
MK must exceed the symbol length. We find the rather 
unexpected conclusion that interleaving may lead to codes 

s 1 so + 1 / ( 2 q ) .  

The largest value of s whch satisfies these conditions, s,, 
is seen to be a piecewise constant function with the set of 
values { i + q- '}  for i and q integers. The function s, is 
plotted in Fig. 1. 

with lower relative distance unless the constraint length of 
the inner code is increased to compensate for this effect. 

In general, a small degree of interleaving is a useful way 
of getting a longer code without increasing the complexity 
much. However, if the outer code has large distance so that 
the mean value of the number of correctable errors is the 
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important parameter, interleaving is really only essential 
for outer codes that are not synchronized with inner unit 
memory codes. 

The advantage of using unit memory codes and of 
synchronizing the blocks depends on the rate. For rate 1/2 
there is a significant difference between the three cases, 
whereas this is not the case for p = 2/3. 

Example 3: For p = 1/2 we obtain the following param- 

encoder: 

(4.2) x = [x,, X 2 r . . . ,  XNSl  

where the x J ,  1 I i I N s ,  are binary row vectors of length 
K. Thus as in Section 11, S = m/K is the mmber of 
cOnvol~tiona1 code blocks Per byte in the outer code, and 
for convenience, we have assumed Ns to be an integer. 

the codeword 
eters. For multimemory codes, s / M  I 1.25. If we take the 
largest possible value, I = 3 may be used. In practical 
systems with an M = 6  inner code, 1 = 5  or 8 is used. 
However, for such a short inner code, d , / ( M v )  is about 
twice as large as for a long code, and this effect accounts 
for the difference. The practical value of s / M  = 8/6 is 
close to the theoretical value. For unit memory codes we 
may use s = 2, and with this value I = 2 can be used in the 
case of synchronized blocks. Without synchronization, s 
must be reduced to 1.5. 

Iv .  MINIMUM DISTANCE BOUND FOR RANDOMLY 
SELECTED INNER AND OUTER CODES 

Now we consider concatenated codes where the outer 
code is a general ( N ,  K )  linear code over GF(2m) without 
interleaving, and the inner code is a time-varying convolu- 
tional code. It is proved that within this class the 
Gilbert-Varshamov bound can be asymptotically acheved 
for all rates of the concatenated code when ( M  + 1 ) ~  and 
mN/(( M + 1 ) ~ )  tend to infinity, provided that the limits of 
the inner and outer code rates are properly selected. The 
condition on the limits is, in a slightly generalized form, 
the same as the condition in [ l l ,  theorem 1, theorem 21 on 
the limits of the inner and outer code rates that permit the 
Gilbert-Varshamov bound to be asymptotically acheved 
for concatenated codes with a Reed-Solomon outer code 
and time-varying inner block codes. We shall consider 
ensembles of codes obtained by randomly selecting the 
inner and outer encoding rules as follows. 

The generator matrix G of the outer code is randomly 
selected with a uniform distribution from the set of all K 
by N matrices over GF(2"), where K I N .  Thus for a 
given information sequence 

u = [ u l , .  . . , uk ] E GF(2") K ,  

the encoded sequence x is given by 

x = u c  ( 4 4  

where the matrix multiplication is over GF(2m). For every 
u,  the x given by (4.1) is a random N row vector over 
GF(2"), and if u # 0, each of its (2")Ndi~tinct values has 
the same probability (2m)pN. 

When the elements in x are given as m-binary row 
vectors in a fixed representation of GF(2") over GF(2), x 
becomes an mN binary row vector, and if u # 0, the m N  
components of x are mutually independent and uniformly 
distributed. We divide x, considered as a binary m N  
vector, into input blocks of length K for the convolutional 

Y =  [ Y 1 , Y 2 , - . r Y N s l ,  YfEGF(2)" (4.3) 
in the concatenated code is given by 

y, = x,Go( t )  + X f P 1 G l (  1 )  + . . . + I,-,&,( t ) ,  

1 s t  I Ns (4.4) 

where x,, 1 I t I N s ,  is given by (4.2) and (4.1) and xo = 

The matrix operations in (4.4) are with respect to GF(2), 

G , ( t ) ,  l i t s N s  a n d O I i I M  (4.5) 

are selected randomly, independent of G, and mutually 
independent with a uniform distribution from the set of all 
binary K by v matrices. Thus x is encoded by the inner 
encoder whch is a randomly selected time-varying convo- 
lutional encoder, starting in the zero state. 

For a fixed information sequence u, let 

xpl = . . . = XI -M = 0. 

and the matrices 

pu( Y l - 4  ( 4 4  
denote the conditional probability for the codeword in the 
concatenated code to be y ,  given that the output from the 
outer encoder is x. The properties of the probability distri- 
bution P,(.Ix) are most easily described in terms of the 
code trellis [9]. Thus x defines a path through the trellis, 
reaching the state [x,-,,,; . * ,  x, -~] ,  1 5 t I N s  + 1 at time 
t .  The input block x,, 1s t I N s  at time t determines the 
branch leading from the state at time t to the state at time 
t + 1. Further, the subblock of the convolutional encoder 
output yf  on that branch is given by (4.4). The zero path is 
the path through zero states only and corresponds to 
x = 0. A branch belongs to the zero path if it leads from 
the zero state to the zero state. The proof of the result of 
this section relies on the following lemma. 

Lemma 5: Consider, for a fixed information sequence u 
and a fixed output x from the outer encoder, the condi- 
tional distribution Pu(. Ix) on the resulting codeword in 
the concatenated code. Let X be the path, defined by x, 
through the trellis. Then the subblocks of the codeword on 
the branches of X not belonging to the zero path are 
mutually independent and uniformly distributed. 

Proof: If x = 0, all branches belong to the zero path 
and there is nothing to prove. For x Z 0 ,  the proof is 
straightforward [9]. 

For 

A =  [ (M+1) /2]  (4.7) 

let x be divided into segments containing A convolutional 
code input blocks each, and, in addition, one possibly 
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empty segment at the end containing fewer blocks. Thus 

n ( A )  = [Ns/AJ (4.8) 
is the number of segments containing A blocks and 

Z, = [ ~ ( , - 1 ) A + 1 , *  . . , x,A], 1 I i I . ( A )  (4.9) 

is the content of the i'th segment. 
Let A(Q), 0 I Q I n(A)- 1 denote the set of output 

sequences from the outer encoder for which the contents of 
precisely Q of the n(A)-1 first segments are not exclu- 
sively zero blocks. It follows from (4.7) that if, for a 
sequence x E A ( Q ) ,  z, # 0, 1 I i 2 n(A)- 1, for the i'th 
segment of x, then none of the branches on the x-defined 
path through the trellis determined by the blocks in the 
next segment z , + ~  belongs to the zero path. Thus if h,  
h 2 0, is an integer and W,( y )  denotes the Hamming 
weight of the word y in the concatenated code, it follows 
from Lemma 5 that 

Pu( W,( y )  I hlx E A(Q)) 5 2-"AQ 
i = O  

0 I Q I n ( A ) - l  (4.10) 

for every information sequence u. 
In (4.10) we have adopted the convention 

( 'tQ) = 0, i > vAQ. 

For u # 0, the probability of x E A ( Q )  is given by 

(4.11) 

With the definitions a A b = min { a ,  b } ,  a/O = cc for a > 
0 and 0/0 = 0, we obtain from the inequalities 

From the union bound it follows that for this ensemble 

P( WI h )  I Pu( W,(y) I h ) .  (4.13) 

By introducing the dimensionless rate R = K / N  of the 
outer code, it follows that 

of concatenated codes the minimum distance W satisfies 

u E GF(2m)K - ( 0 )  

2°K = 2mNR = 2mNR < 2AupR(n(A)+l) - 

and then from (4.12) and (4.13), 
n ( A ) - 1  

p ( w ~  h )  (2 -"QA[ l - , ( (h / (vQA))A1/2 ) )1  

Q = O  

. 2 p u A [ Q + R n ( A ) - n ( A ) + 2 ] + n ( A ) - l  }. (4.14) 
Equation (4.14) is the basic inequality in the proof of 

Theorem 8. However, to state and prove the theorem, we 
shall further need the function cw(x), defined by 

a( . )  = (;; H(l -2" - ' ) ,  I' (4.15) 
I I X  

where ( a ( x ) ,  W 1 ( 1  - a(x))), 0 I x I 1, is the point where 
the tangent to H-'(l-  r )  through (x,O) touches K 1 ( 1  - 
r )  when H-'(l-  r ) ,  0 I r 11, is plotted versus r [ll]. 

In the following we consider infinite sequences ( E , )  of 
concatenated codes where the various parameters depend 
on j .  However, to simplify the notation, we suppress j in 
these parameters. 

Theorem 8: Let po and R,, satisfying 

O < p ,  andO<Roposa (po) ,  (4.16) 

be given. Let an infinite sequence of random ensembles of 
concatenated codes ( E j ) ,  as described earlier with M 2 1, 
be given such that 

lim p = p o  lim R = R o  (4.17) 
j + m  j + m  

and 

lim ( ( M + I ) K )  =oo lim ( ~ N / ( ( M + I ) K ) )  =oo. 
J - + W  j + m  

(4.18) 

Then for every c > 0, 

lim P [ W/(  v s N )  I H-' ( l -  poRo) - e ]  = 0. (4.19) 
j 4 m  

Proof Let po and R, satisfying (4.16) be given, and 
let a sequence of ensembles satisfying (4.18) be given. 
Further, let 8, independent of j be given such that 6, > 0. 
With h = [GOvn(A)A] and 0 substituted for Q/n(A), we 
obtain from (4.14) 

P ( w / ( 4 A > A )  I 6 0 )  

1 I n ( A )  sup { 2 " n ( A ) A I p ( e + R - l ) - 8 ( 1 - H ( 1 / 2 A 6 , / 8 ) ) 1  

8 

(4.20) 
where 0 runs through the set {O,l/n(A), . . . , (n(A)- 

.24A)Wp/n(A)+ l / ( v A ) -  l / ( v n ( A ) A ) l  
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l ) / n  (A)} and we have used the fact that 

for Q = 0 , l ;  . ., . ( A )  - 1. 

Hence by extending 0 to be a continuous variable with 
range 0 I 0 11, 

P(W/(vn(A)A) <ao)  < n ( A )  

1-  . sup { 2vn(A)A[p(8+ R- 1)-8(1 -H(1/2 A S o / @ ) ) +  2 ~ / n ( A ) +  l / ( u A ) l  

0 ~ 8 ~ 1  

(4.21) 

To determine under what conditions the optimum in (4.21) 
is obtained for 0 =1, we introduce the function 

Then 

(with the trivial case H-l( l -  poR,) = 0 excluded), and by 
using 

lim ( v n ( A ) A / ( v s N ) )  = l .  
1 - 3 0  

Remarks: Since (4.16) can be satisfied for every value of 
poR, such that 0 < poR,  I 1, it is seen from Theorem 8 
that the Gilbert-Varshamov bound can be asymptotically 
achieved for all rates of the concatenated code. It is only 
required that the number of bits ( M  + 1 ) ~  operated on by 
the inner encoder at a given time, and the number of bits 
in an outer codeword divided by ( M  + l ) ~ ,  both tend to 
infinity. Moreover, no synchronization between the bytes 
of the outer codewords and the inner encoder is required. 
For instance, one can fix the rate and block length of the 
inner code, as is usual with convolutional codes and let the 
memory, and thereby the constraint length, tend to infin- 
ity. If preferable, one can fix the memory M 2 1, letting the 
block length of the inner code tend to infinity while the 
inner code rate is approximately fixed. Ths, for instance, 
covers the unit memory code point of view. Further, we 
note that Theorem 8 can be proved when the ensembles of 
outer codes consist of RS codes with the bytes randomly 
scrambled. 

-[@(I-.( a yAoi)]=(P(:)-:T’(:), 1 8, 
ao 

O < O .  (4.23) 

By continuity at 0 = 0, the optimum in (4.21) is obtained 
for 0 = 1 if 

The left side of (4.24) can be interpreted geometrically as 
follows. Let cp(y) be plotted versus y .  Then (~ (6 , /0 ) -  
(6 , /0 ) (p ’ (SO/0)  is the ordinate of the point of intersec- 
tion between the tangent to cp(y), with touching point 
( 6 , / 0 ,  (p(6,/0)), and the ordinate axis. 

Since ( p ( y )  is a decreasing and convex function of y ,  it 
follows that the left side of (4.24) increases with increasing 
0, and hence (4.24) is equivalent to 

d6,) - 6o(P’(6,) 2 P. (4.25) 

By the fact that both n ( A )  and v ( A )  tend to infinity with 
increasing j ,  it then follows from (4.21) that 

lim P(W/(vn(A)A) 28 , )  = O  (4.26) 

(4.27) 

J + m  

if 

and 
PoR, - d6,) < 0 

d6,) - 6O(P’(60) 5 Po. (4.28) 

By the geometric interpretation of a ( x )  and (~(6,)- 
So), respectively, it follows that (4.26) is also satisfied 

if 

6, < H-’(l- poR0) and poR,  I a( p,). 

For a given e, e ? 0, (4.18) is obtained by selecting 6, > 0 
such that 

H - ’ ( l -  poRo) - E < 6, < W1(l - poRo) 

Finally, Theorem 8 is also valid with M = 0, that is, with 
varying block codes as inner codes. The proof, however, is 
simpler. The segments in (4.9) consist of one inner code 
information block each, and the inner codewords, corre- 
sponding to nonzero information blocks, are mutually 
independent and uniformly distributed. The rest of the 
proof is nearly unchanged. 

[41 
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