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Regular Papers 

Bistability and Low-Frequency Fluctuations in 
Semiconductor Lasers with Optical Feedback: 

A Theoretical Analysis 
JESPER MBRK, BJARNE TROMBORG, AND PETER L. CHRISTIANSEN 

Abstract-Near-threshold operation of a semiconductor laser ex- 
posed to moderate optical feedback may lead to low-frequency fluctua- 
tions. In the same region, a kink is observed in the light-current char- 
acteristic. We demonstrate that these nonlinear phenomena are 
predicted by a noise-driven multimode traveling wave model. The dy- 
namics of the low-frequency fluctuations are explained qualitatively in 
terms of bistability through an iterative description. 

I. INTRODUCTION 
PTICAL feedback from an external cavity can have 0 a profound impact on the dynamics and spectral be- 

havior of semiconductor lasers [ll-[17]. At low levels of 
optical feedback, a significant linewidth reduction and 
improved frequency stability are obtained [2]-[5], which 
is important for such applications as coherent transmis- 
sion systems and interferometric fiber sensors. For a laser 
diode coupled to a single-mode fiber the Rayleigh back- 
scatter-induced line narrowing can result in linewidths in 
the subhertz region [6]. Higher feedback levels may, 
however, result in laser line broadening to a width of sev- 
eral GHz [4], [7]-[lo]. Also, a kink in the light-current 
characteristic is observed near the threshold of the solitary 
laser [lo]-[13]. In the same region, the time evolution of 
the light intensity shows a characteristic pattern of low- 
frequency fluctuations (LFF) . The experimentally ob- 
served pattern [lo],  [12]-1151 has qualitatively the ap- 
pearance of the trace in Fig. 1 (obtained by computer sim- 
ulation). From a level (approximately) given by the 
feedback the intensity shows a randomly occurring sud- 
den drop to a low value followed by a stepwise buildup 
to the original level. .The steplength is equal to the round- 
trip time 7 in the external cavity, and the buildup requires 
about 10 steps. In this paper we present a theoretical in- 
vestigation of these phenomena related to higher feedback 
levels (greater than -30 dB). The paper may be consid- 
ered as an extension of the works of Ries and Sporleder 
[13], [16] and Henry and Kazarinov [17] with emphasis 
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on the dynamics of the LFF and its relation to the kinked 
light-current characteristics. 

The theoretical investigations of the external cavity 
configuration are commonly based on the model of Lang 
and Kobayashi [ l ] ,  which is obtained by adding a time- 
delayed term to the usual rate equation for the complex 
field, thus yielding a nonlinear delay-differential equa- 
tion. The rich variety of phenomena encountered experi- 
mentally when operating a semiconductor laser in an ex- 
ternal cavity may be appreciated by the very complex 
dynamics of such equations, see, e.g. ,  [18]. 

The linewidth reduction and stability properties at low 
feedback levels are generally obtained from a linear small- 
signal version of the rate equations, see, e.g. ,  [6l, [91, 
[19], and [20] .  At higher feedback levels one observes a 
saturation of linewidth reduction followed by an abrupt 
transition to a state characterized by a very broad laser 
line [4], [8], [9]. By computer simulations this behavior 
was also found to be contained in the model of Lang and 
Kobayashi and to be a consequence of the nonlinear dy- 
namics 191. The first detailed experimental and theoretical 
investigation of the state of increased linewidth was per- 
formed by Lenstra et al. [8]. They introduced the concept 
of “coherence collapse” to describe the dramatic transi- 
tion from a state of long coherence length to the line 
broadened state of short coherence length. As pointed out 
in [8] and [9], the increased linewidth may be a result of 
chaotic dynamics, which has also been suggested for the 
external cavity configuration in [21]-[24]. A survey of 
chaos in semiconductor laser devices and additional ref- 
erences are given in [25]. In [ 171 the appearance of LFF 
is explained as a result of a second-order instability in the 
rate equations with constant feedback, and the increased 
linewidth is seen merely as a result of the frequency chirp 
associated with these fluctuations. The route to chaos 
studied by Mukai and Otsuka [22], [23], goes through a 
passive mode-locking type of oscillations at harmonics or 
subharmonics of the external cavity roundtrip frequency. 
These phenomena occur when the roundtrip frequency is 
close to the relaxation oscillation frequency, and here the 
anomalous interaction described by Bogatov er al. [26] is 
shown to play a dominant role. The LFF will be shown 
to have a different origin. 

Generally, in dealing theoretically with strongly non- 
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lution or a limit cvcle solution. This bistabilitv makes 

Ih) 
L 

i w  

linear states of the external cavity configuration, one has 
to employ some kind of reduction of the infinite dimen- 
sionality [ 181 of the governing delay-differential equation 
in order to obtain at least a qualitative physical under- 
standing of the operating state. 

In [SI the coherence collapsed state is described ap- 
proximately by replacing the delay terms with external 
noise terms, which are dominant in comparison with the 
internal spontaneous emission noise. This results in a self- 
consistent statistical description of the collapsed state, 
which is in rough agreement with experiments when the 
autocorrelation function for the electric field shows a sin- 
gle narrow peak. According to this model the coherence 
collapse gives rise to a change in mean frequency and 
linewidth, which is also in rough agreement with the re- 
sults of computer simulations [9]. 

In [17] the feedback term is replaced by the stationary 
solution, thus corresponding to an injection locking treat- 
ment [27], [28] which is valid in a time interval of the 
order of the external cavity roundtrip time 7. This allows 
a rather simple investigation of the stability properties of 
the stationary state, but any dynamics involving time 
scales larger than 7 is necessarily left out. 

In this paper we will show that the LFF may be simu- 
lated by a simple traveling wave model [ 161, [29] and that 
the dynamics of the LFF may be understood qualitatively 
from a simple iterative model. Fig. 1 shows an example 
of a computer simulation of the LFF. A similar result was 
obtained in [13], [16]. In the iterative model the field 
power spectra and the carrier densities at different steps 
of length 7 form the essential variables. Owing to the de- 
lay in the external cavity the spectrum at one specific step 
determines the spectrum and the carrier density at the fol- 
lowing step. By this approximative approach the LFF are 
understood as a result of bistability and dynamic forma- 
tion of bistability. 

In Section I1 we employ the injection locking approxi- 
mation of [17] and show that the resulting (noise-free) 
equation may admit another new stationary and stable so- 

possible the first power drop in Fig. l ,  while the instabil- 
ity found in [17] may be seen as the cause of the transi- 
tion. The bistability is examined as a function of bias cur- 
rent and found to be absent below a critical pumping level, 
whereas the nature of the “new” solution changes qual- 
itatively slightly above the threshold of the solitary laser. 

In Section I11 an iterative description of the intensity 
buildup from the low-power level of Fig. 1 is developed. 
The inclusion of a Langevin noise term in the field equa- 
tion is shown to result in a qualitative change in the bi- 
stability condition. During the initial buildup of intensity, 
bistability is absent but is recovered after typically 10 ex- 
ternal roundtrip periods, after which a noise-induced 
switching becomes possible. Bistability occurs before the 
stationary solution with feedback is reached, and this state 
need not be recovered. This is in agreement with Fig. 1, 
where the simulation was initialized with the stationary 
feedback solution. 

In Section IV we present results of direct simulations 
of a traveling wave model which includes Langevin noise 
terms accounting for the randomly occurring spontaneous 
emission events [ 161, [29]. The model consists of a set of 
difference equations. The inclusion of several longitudi- 
nal modes is found necessary in order to simulate the 
LFF properly. This is in accordance with the wide mul- 
timode spectra observed experimentally [lo], [ 131. Sim- 
ulations generally support the approximative “ensemble- 
averaged” description of Section 111 but also demonstrate 
its limitations. The intensity shows large fluctuations 
around the mean value. However, increasing the rate of 
spontaneous emission and the number of longitudinal 
modes has a significant stabilizing effect on the simulated 
LFF. If the Langevin noise terms are switched off after 
the first transition the intensity noise persists and even 
increases. This indicates strongly that we have a case of 
deterministic chaos. Variation of the bias current around 
the solitary threshold and calculation of the associated 
mean intensities demonstrate the kink in the light-current 
characteristics to be contained in the simulation model. 
The kink is due to a fast decrease of the LFF period with 
increasing bias current, which well-above threshold re- 
sults in seemingly random intensity fluctuations between 
the stationary solutions with and without feedback. From 
the simulations we get rough estimates of the lifetime of 
a coherent state. These estimates turn out to disagree with 
the predictions of [ 171. 

Finally, Section V summarizes our conclusions. 

11. STATIONARY SOLUTIONS AND BISTABILITY 
A .  Single-Mode Rate Equations 

may be written (see also [20]) 
The complex field equation of Lang and Kobayashi [ 11 
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Here, E (  t )  is the slowly varying complex envelope func- 
tionwithE(t)e'""'= I E ( t ) l e x p [ j ( w , t  + 4 ( t ) ) ] b e i n g  
the outgoing field at the internal laser mirror facing the 
external cavity. The solitary laser is assumed to oscillate 
in a single longitudinal mode with angular frequency U,. 
The gain per unit time is 

G ( N )  = G N ( N  - N o )  ( 2 )  
where N is the carrier density averaged over the active 
region, and GN and No are constants. The threshold carrier 
density for the solitary laser Nth is related to the photon 
lifetime rp by 

( 3 )  
1 

TP 
G ( N t h )  = -. 

rin and 7 are the roundtrip times in the laser cavity and the 
external cavity respectively, and K~ is the power reflected 
from the external cavity relative to the power reflected 
from the laser mirror. Finally, a is the linewidth enhance- 
ment factor accounting for the amplitude-phase coupling 

The evolution of the carrier density is governed by the 
~301. 

usual rate equation 

d N ( t )  
dt 7 . T  
- N ( t )  = J - - - G ( N )  I E ( t ) ( '  (4) 

as the mode with minimum carrier density N,.  We shall 
assume that the feedback ratio and external cavity length 
are large enough (a,,/( 2 ~ 7 ~ ~ )  >> 1, see [ 171 ) that the 
dominant mode may be taken to satisfy w, 7 = 0 (mod 
2 a ) ,  which according to (7b)-(7c) corresponds to maxi- 
mum output power. Defining a detuning parameter by, 
[9], d = w,r - aK7/rin (mod 27r), w,r = 0 (mod 27r) 
corresponds to d = 0, which is ensured experimentally by 
varying the cavity length within a wavelength or by vary- 
ing w, via bias current or temperature. According to (7b) 
the threshold current is then reduced from the solitary 
value Jth = N t h / r ,  to the effective value Jlh = Jth - 
2 ~ / (  GNrin7, ) .  In the following, we use the set of param- 
eters specified in Table I. 

B. Injection of Stationary Feedback Field 

Starting from a stationary state with feedback, the delay 
term in (1) may be replaced by injection of the stationary 
solution (7) while keeping the field inside the laser as a 
variable. This yields the equation 

d 1 
- E( t )  = - ( 1  + ja) G N ( N  - Nth) E( t )  dt 2 

+ E, exp ( t 
Tin 

where J is the constant pumping term and r, is the carrier 
lifetime. We assume E (  t )  to be normalized such that the 
total number of photons in the lasing mode is 

which holds in a time interval of length r.  

to the injected field we have 
Assuming a quasi-stationary solution which is locked 

I ( t )  = VI E(r)12 ( 5 )  E ( t )  = E/ exp [ j(Awst + + / ) I  (9 )  
where E/ and 
insertion into (8) we Obtain 

(the locked phase) are real constants. By where V is the active region volume. 
Equations (1) and (4) neglect the effects of lateral car- 

( 10) 
rier diffusion and spatial hole burning and do not include 
multiple reflections, i.e.,  K~ << 1. Furthermore, spon- 

K 2  

r: + J ( r l  + K )  
E: = 2 Ef 

taneous emission noise has not been included but will be 
taken into account in the following sections. 

Stationary solutions of (1) and (4) are found by substi- 
tution of defined by 

E ( t )  = E,exp ( j aws t ) ,  N(t)  = N, (6)  

where E,, Aw, = 0, - U,, and Ns are real constants. This 
yields the equations [20] 

using Aw, = - ( Y K / T ~ ~  from (7a). Also I'l = r ( N /  ), where 
N~ is the constant carrier density and r is the parameter 

(11) r ( N )  = ; r , , G N ( N  - Nth) .  

From (4) we obtain ( d N / d t  = 0 )  

w , ~  = w,r + K sin ( w , ~  + Arctan ( a ) )  
Tin 

(7a) or by use of (10) and (1 1) 

The solutions w, to (7a) for fixed w, are the angular From (12b) we determine the possible quasi-stationary so- 
frequencies of the external cavity modes. For lutions with respect to l?/. In Fig. 2 the solutions are de- 
KT m / r i ,  > l ,  (7a) yields multiple solutions for w, termined as the intersection points between the straight 
[31], and the dominant external cavity mode is identified line on the left-hand side of (12b) and the curve on the 
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L4 - 
-3 

TABLE I 
LASER PARAMETERS AND THEIR NUMERICAL VALUES 

I I I I l l  

Parameter Symbol Value 

Gain coefficient 
Transparency carrier density 
Carrier lifetime 
Photon lifetime 
Laser cavity roundtrip time 
Linewidth enhancement factor 
Active region volume 
Spontaneous emission factor 
Curvature of gain curve 
Shift of gain peak 

p L 1 0 1  , / ' i / ; 7  
% 5  

- - - - - - - I C  
0 
0.97 0 9 6  0.99 1 0 0  1 0 1  1 0 2  

J /J , ,  
Fig. 3. Total photon numbers I , ,  I,,, I ,  shown as a function of normalized 

bias current J / J t h  for K = 0.15. I,,,, denotes the stationary solution for 
the solitary laser. Unstable solutions are indicated by dashed curves. 

, , 

- 0 2 0  -0 15 - 0  1 0  -005 

r, 
Fig. 2.  Stationary solutions by constant injection of stationary feedback 

field. Graphical solution of (12b) for J / J , ,  = 0.99, K = 0.15. Three 
solutions: E, = 

right-hand side of (12b) for fixed bias current J / J , h  = 
0.99. Three solutions (q, El ), 1 = a, b,  c, are obtained, 
where (ra,  E,) = ( - K ,  E,) is the usual stationary solu- 
tion. 

In Fig. 3 the photon numbers I ,  = VIZ;, I = a, b ,  c, are 
shown as a function of bias current, and we have included 
the stationary solution for the solitary laser, I = Isol. 

The dynamic stability of the stationary solutions shown 
in Fig. 3 need to be investigated. This is accomplished by 
separation of (8) into equations for the real amplitude 
E,(t)andtherealphased(t),E(t) = E,(t)exp [ j $ ( t ) ] ,  
and allowing for small fluctuations around the stationary 
state; E , ( t )  = El + 6 E ( t ) ,  4 ( t )  = 4, + Aw,t + 6 $ ( t ) ,  
N ( t )  = N ,  + s N ( t > .  Letting Sr = ( E ,  64, 6 N ) T w e  
- obtain to fiEt order a set of equations d / d t (  E) = @ . 
SY, where v, is a 3 x 3 matrix. The condition for first- 
order dynamic stability of the stationary solution denoted 
by subscript 1 is that all three eigenvalues AI of @ are 
located in the left half of the complex A-plane. 

In Fig. 4 the real parts of the eigenvalues A, are depicted 
as a function of the bias current for the stationary solu- 
tions a,  b,  and c of Fig. 3 .  From the figure it is seen that 
the stationary solution a (solid curves) is always stable, 
the intermediate solution b (dotted curves) is always un- 
stable, and c (dashed curves) is stable for J / J , h  5 1.0. 
The point where solution c becomes unstable corresponds 
by comparison with Fig. 3 to the point where Isol inter- 
sects I,.. Beyond this value of the bias current the station- 
ary solution c loses stability in favor of a limit cycle so- 
lution oscillating around the solitary level Is",, with a 
pulsation frequency approximately given by the beat fre- 
quency between the dominant external cavity mode and 
the solitary solution. A solution of this kind was also rec- 

where E, = E,.  

, , , 
0 4 , , 

h 
L 

T x 
L 
a, 

Tu 

J / J t h  
Fig. 4. Real part of the eigenvalues A, for the stationary solutions I ,  of Fig. 

3 . - - : [ = a ; . .  : [ = b  - - - ; I = ( . ,  

ognized in [32]. Fig. 5 shows the limit cycle in the nor- 
malized ( I ,  N)-plane for J / J t h  = 1.02. In the adiabatic 
approximation ( d N / d t  = 0 )  the appearance of instability 
for J = J t h  may be illustrated by considering (8) as an 
equation for a particle in a static potential and exposed to 
an external driving force. For J = J t h  the origin ( E  = 0 )  
becomes a potential maximum instead of a minimum 
(Hopf bifurcation). 

For the stable solution a,  three different real eigenval- 
ues are found for J 5 Jth. Two of these merge (cf. Fig. 
4) and acquire imaginary parts at J = Jth, thus defining a 
characteristic relaxation oscillation frequency. For the 
unstable solution b, the upper branch in Fig. 4 corre- 
sponds to an eigenvalue on the real positive axis, while 
the lower branch gives the real part of two complex con- 
jugate eigenvalues. The branch that crosses the axis Re 
( AI ) = 0 in Fig. 4 arises from a set of complex conjugate 
eigenvalues for solution c, while the other (dashed) branch 
corresponds to a real eigenvalue. 

The presence of another stable solution I ,  besides I ,  ( I ,  
= I,) permits a bistable behavior. The power drop seen 
in Fig. 1 can thus be understood as a noise-induced 
switching between the two states. The switching mecha- 
nism, which exists despite the just demonstrated first-or- 
der stability, will be discussed below, but we shall first 
comment on the qualitative features of Figs. 3 and 4. 
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0.4 0.6 0.6 1.0 1.2 1 4  1 6  

I( t ) /ISd 
Fig. 5 .  Limit cycle solution in the normalized ( I ,  N)-plane for J / J , ,  = 

1.02, K = 0.15. 

Fig. 3 shows that bistability is absent below a critical 

For J < Jbs  we then expect I = Is, where bar denotes time 
averaging, since no other quasi-stationary solution exists 
in this current range. For& < J 5 J t h ,  however, dynam- 
ical switching to another stable state Z, < I, could be pos- 
sible, which would lead to an average photon number 7 
< ,I,. This relates the kink in the light-current character- 
istic to the emergence of bistability. Above threshold for 
the solitary laser the bistable switching is strongly influ- 
enced by the spontaneous emission noise as we shall see 
in Section 111. 

Having demonstrated the linear stability of the station- 
ary solution a ,  the presence of some kind of higher order 
instability is necessary in order to make possible a noise- 
induced transition from state a to state c. Such an insta- 
bility was found by Henry and Kazarinov [17] and shown 
to be equivalent to the possibility of a particle crossing a 
potential barrier when acted upon by random forces 
(spontaneous emission events). An expression for the 
mean time tl for the transition to occur was obtained by 
an approximate solution of the associated Fokker-Planck 
equation. The expression they obtained for tl is in our no- 
tation 

bias Current Jb!, ( -0.987 J t h ) ,  where J& < Jbs < J t h .  

with 

and is derived for the detuning d = 0 and K k 0.01 (see 
[17]). In (13) nSp is the spontaneous emission factor. tl is 
infinite for J = J;h (i.e., the laser is stable) but decreases 
with J for J > &. The decrease is very steep until x << 
1 ,  after which tl decreases proportionally to x. From tl one 
can estimate the average intensity as a function of bias 
current, and in [17] this was shown to reproduce the ex- 
perimental results [ 101 for the kinked light-current char- 
acteristics. The dependence of tl on the detuning d was 
not investigated in [17], but experiments 1121, [33] and 
theory [9] show a critical dependence, in particular for 
lower levels of feedback. We shall return to this discus- 
sion in Section IV-B. 

~ 

127 

111. ITERATIVE DESCRIPTION 
In the preceding section we did not take into account 

the spontaneous emission noise. Qualitatively, an average 
spontaneous emission rate into the lasing mode gives rise 
to a narrow infinitely high peak in Fig. 2 at r, = 0 (see, 
e.g., [28]), which results in a continuous connection of 
the stable branches I ,  and Isol in Fig. 3.  In the present 
section we further pursue this subject and its implications 
for the intensity buildup by the addition of a Langevin 
noise term to the RHS of (1). 

The complex Langevin noise term is represented by [9] 

where the summation is over all randomly occurring spon- 
taneous emission events into the lasing mode. The phases 
ei of the individual contributions in (15) are uncorrelated. 

Defining the Fourier transform of E(  t )  by 

(17)  
Ke -jur & i  ( A u )  + F ( A w )  
jaw?, - ( 1  + j a )  r & ( A w )  = 

where Au = w - uo, F (  Aw) is the transform of the Lan- 
gevin term FE ( t ) ,  and the transform stemming from the 
delayed feedback of (1) has been indicated by superscript 
i. In deriving (17) we have assumed N ( t )  to be clamped 
at some value. From (17) we obtain by squaring and en- 
semble averaging 

where 

is the field power spectrum and similarly for Sf ( Aw ). The 
ensemble average indicated by ( ) includes an average 
over time; see [19] for details. In deriving (18) we have 
neglected correlations between E ' (  Aw) and F (  Aw), and 
the last term of the numerator expresses the white spec- 
trum ( I F (  A o )  l 2  ) of the Langevin term. The rate of 
spontaneous emission into the lasing mode is taken as [30] 

= % p G ( N t h ) .  (20) 
Equation (1 8) expresses the laser spectrum in response 

to an externally injected field with spectrum S ' ( A u ) ,  
where, however, the carrier density level still has to be 
determined. From (4) we find 

where the total photon number I (  r )  is expressed by the 
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integrated field power spectrum 7 201 

Z(r) V - ’  = 1 S ( A w )  d ( A w ) .  (21b) 
2~ -m 

Given S’ ( A w  ) the resulting field power spectrum and car- 
rier density level are found by solution of (18) and (21). 
A generalized form of these equations has been presented 
in [29]. 

The stationary spectrum S (  A w  ) = SI( A w  ) = S, ( A w  ) 
is found from (18) 

- 
I 

CO 
m 

IE 15 

x- 

“0 10  
h 
L 

5 

0 
-0.15 -0.10 -0.05 0.00 

with which (21) takes the specific form 
r 

having a single solution r, = r ( N , )  close to - K .  

The spectrum (22) is, of course, only a crude approxi- 
mation, as the effect of carrier density fluctuations and the 
coherence between the Langevin noise and the resulting 
field have been neglected. It suffices, however, for our 
investigation of the “global” dynamics, which includes 
large excursions from the stationary state. 

Upon external injection of a field with spectrum Si ( A w  ) 
= S,y ( A w )  we obtain a carrier density N obeying 

N 1 J - - = GN(N - N , )  - 
7s 2T 

which is equivalent to (12) except for the inclusion of 
spontaneous emission noise. Here we also obtain two so- 
lutions besides N = N,  with a possibility of a noise-in- 
duced switching to the higher (stable) one previously la- 
beled c. Introducing the shift at a given time we determine 
the subsequent evolution of carrier density and laser spec- 
tra by an iterative solution of (18) and (21). 

Defining N,, and S,, ( A w  ) to be carrier density and field 
power spectrum in the time interval 

n. < t < ( n  + 1). (25) 
(18) and (21) take the iterative form 

(26b) 
where r,, = r ( N , , ) .  The iteration starts with So ( A w  ) = 
S,( A w ) ,  and for t = T we choose the higher solution, rn 
= rl ,  instead of the stationary solution, r,, = ro = r,. 

-20 -15 -10 -5 0 

f r e q u e n c y  ( G H Z )  
(b) 

Fig. 6. Solution of the iterative multimode equations corresponding to (26) 
for K = 0.15, J = J, , , ,  and n = 1-13. (a) Graphical solution of (26a). 
(b) Corresponding spectra (26b) for the central mode as a function of 
frequency,f = ( U  - u , ) / ~ T .  

Fig. 6 depicts the graphical solution of (26a) and the 
resulting field power spectrum (26b) for K = 0.15, J = 
Jth, and n = 0-13. In Fig. 6(a) the curves tend to infinity 
for rn + 0. To keep the discussion simple we have only 
derived (26) for the single-mode case. However, the re- 
sults of Figs. 6-8 are actually derived from a generalized 
form of (26) given in [29, eqs. (64) and (65)]. The latter 
include multimode effects and also apply to strong feed- 
back and to DFB lasers. No basic feature of (26) is 
changed by including multimode effects, but it permits a 
closer comparison with our multimode traveling wave 
simulations. 

Fig. 6(a) shows that after the initial switching (on the 
curve labeled 1, i.e.,  the RHS of (26a) as a function of 
r, for n = 1 )  from the lower intersection point rn = r,, 
= r(, to the higher intersection point r,, = r,, only one 
solution exists for n = 2-10. This means that bistability 
is absent during the initial buildup, and no switching is 
possible. For n = 11, bistability is restored and a noise- 
induced switching becomes possible again. The spectral 
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Fig. 7. As Fig. 6 but for n = 13-21. See text for details. 
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Fig. 8. Variation of r, = 1 r,,GN ( N , ,  - N,h) for Figs. 6 and 7, n = 0-21 

changes shown in Fig. 6(b) mainly consist of the forma- 
tion of a new peak at a frequency slightly below the sol- 
itary value followed by a gradual broadening and shift 
towards lower frequencies. 

From both Fig. 6(a) and (b) it is seen that the stationary 
state has not yet been recovered, when bistability occurs. 
In Fig. 7 we have induced a switching at n = 14, i.e., 
the initial, very narrow spectrum ( n  = 0)  of Fig. 6(b) is 
actually replaced with the much broader spectrum at n = 

- 
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frequency peaks. At n = 23 it is found that the spectrum 
is close to that of n = 13, and bistability occurs. Thus we 
have obtained a closed loop which qualitatively describes 
the dynamics of the low-frequency fluctuations, where, 
however, the actual time delays between the occurrence 
of bistability and the switching are stochastic. 

The results of Figs. 6 and 7 are summarized in Fig. 8, 
where the variation of r, (or, equivalently, N , )  is shown. 

IV. NOISE SIMULATIONS 
A. The Multimode Traveling Wave Model 

For computer simulations we have adopted a multi- 
mode traveling wave model as originally proposed in 1161 
and developed further in 1291. In [29] this model is shown 
to be a generalization of the rate equation of Lang and 
Kobayashi [ 11. Some simple approximations render the 
model onto the form of a set of difference equations, which 
are readily solved on a computer. We will not give a de- 
tailed derivation of the model but merely present the 
equations, which are intuitively obvious. 

The slowly-varying complex envelope of the mth lon- 
gitudinal laser cavity mode evolves according to 

E,(t + T ~ ~ )  = exp { t T ~ " [ (  1 + j a )  G N ( N  - It,,) 

+ G*(wrn, N I ] )  

* {E,(t) + K exp ( - j Q m T I  E/rl(f - T I }  

+ AFE ( T i n ) .  (27 1 
The ( 2 M  + 1 ) longitudinal angular mode frequencies of 
the solitary laser are 

Q, = w, + mAQ, (28a) in = 0, + 1 ,  . . * , +M 

where AQ is the mode spacing 

27r 
AQ = -. 

7-1 n 

The oscillating frequency of the mth mode is 

% ( f >  = Q n ,  + & ( t >  (29) 

and E,(t) = I E r n ( t ) (  exp [ j+ , ( t ) ] .  The frequency de- 
pendence of the gain curve is 

2 
G ( w ,  N )  = G N ( N  - N o )  + iG,,(w - W R ( N ) )  

= G ( N )  + G ~ ( W ,  N )  ( 30a ) 
where G,, = i3 *G/i3w ( < 0)  is a constant, and the peak 
of the gain curve shifts with carrier density as 

wR ( N )  = wR0 + U R N  ( N  - Nth) ( 30b I 
where URN = awR/i3N is a constant. For the solitary laser 
we assume the gain peak to coincide with one of the lon- 
gitudinal modes, i .e. ,  wm = 0,. 

AFE ( T ~ ~ )  denotes the integrated noise density (15). If 
the mean number of spontaneous emission events occur- 
ring in a time interval of length T~~ is large, R * rin >> 

13. This leads to additional overlap of the high and low 1, the real and imaginary parts of A FE may be generated 
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from independent normal distributions with zero mean and 
standard deviations [9] 
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We take R to be mode-independent. 

density (4) is replaced by 
In the multimode case the rate equation for the carrier 

d N ( t )  
dt 7 s  m 
- N ( t )  = J - - - c G(w,, N )  1 E,,(t))’ (32) 

where the summation is over the mode numbers m = - M ,  
. . .  , M ,  I,  = V - 1 E, l 2  is the number of photons in the 
mth mode, and I = C,Z, is the total photon number. By 
this the longitudinal modes are assumed to interact only 
via the reservoir of carriers. 

The evolution of carrier density is calculated by appli- 
cation of a second-order Taylor expansion 

The first-order derivative is given by (32), and the sec- 
ond-order derivative is found by differentiation. This in- 
cludes calculation of dE,/dt, which is obtained from (27) 
by a first-order expansion of the exponential and approx- 
imating E,(t + 7in) = E,( t )  + 7,, . dEm/dt .  This es- 
sentially corresponds to using the rate equation expression 
for the derivative of the electrical field. 

In order to obtain a numerically stable scheme, where 
the solution is advanced in steps of T,,,, it has proved nec- 
essary to include the second-order term in (33). At low 
feedback levels we obtain good agreement between nu- 
merically obtained spectra and a small-signal model based 
on the single-mode rate equations. 

B. Results 
In this section we present some specific examples of 

simulations with the traveling wave model. If nothing else 
is mentioned we have used seven longitudinal modes, a 
feedback level of K = 0.15 ( - 16.5 dB ), an external cav- 
ity roundtrip time 7 = 10 ns (corresponding to a cavity 
length of 1.5 m) and set the (noise-free, see 191) detuning 
to zero. The remaining parameters are specified in Table 
I. Qualitatively similar results were obtained for an ex- 
ternal cavity length of 60 cm and do not seem to depend 
critically on the specific cavity length in this long cavity 
limit; see 1331. The performance of an averaging proce- 
dure simulating the limited bandwidth of a physical de- 
tection process is essential for the identification of a LFF- 
component out of the otherwise very noisy-looking time 
evolution. We have therefore in all simulations performed 
a running average over 100 points spaced by T,,, roughly 
corresponding to a detector bandwidth of 1.25 GHz. 

First, we show a number of results for the state corre- 
sponding to Fig. 1, i.e., J = J t h .  

Fig. 9 shows the variation of carrier density in one of 
the fundamental “periods” consisting of (here) approxi- 

770 840 910 

time (nsec)  

Fig. 9. Simulated time evolution of carrier density (noisy trace) compared 
with iterative solution. J = J, , ,  K = 0.15, T = 10 ns. 

mately 11 external cavity roundtrip periods and the cor- 
responding (horizontally shifted) variation of N ,  from Fig. 
8 for n = 12-25. The curves compare qualitatively well, 
but the iteratively determined step curve tends to show too 
strong saturation. This is probably due to the neglection 
of the carrier density fluctuations and relaxation oscilla- 
tions, which tend to broaden the spectra and thereby pro- 
vide an additional frequency-pulling effect. 

Fig. 10 depicts the result of sampling the field power 
spectrum in some of the (discrete) steps of Fig. 9. The 
spectrum labeled n ’ = 0 corresponds to the quasi-station- 
ary state just before the steep increase of N (  t )  at t 795 
ns, and n’ = 1-3 labels the spectra in the following steps 
of length 7. The spectra were calculated in the usual way 
[9] and ranged over a time interval of total length 8.2 ns 
with spacing T~,. This gives a resolution of 120 MHz in 
the frequency domain and an upper frequency of 62.5 
GHz. The resulting spectra were averaged over 15 adja- 
cent points. The simulated spectra show the same general 
features as obtained in Fig. 7(b), including the formation 
of a double peak and a subsequent shift towards lower 
frequencies. However, as expected the spectra of Fig. 10 
are considerably broader than those of Fig. 7(b). The dy- 
namic shift of a broad spectrum towards lower frequen- 
cies was observed experimentally in [15] for a grating 
cavity. 

In Fig. 11 we show the simulated average multimode 
spectrum. It is in qualitative agreement with the broad 
multimode spectrum observed experimentally [lo],  [ 131. 
The asymmetry of the spectrum is due to the (dynamic) 
shift of the gainpeak towards lower frequencies. The 
anomalous interaction mechanism of Bogatov et al. [26] 
arising from intraband relaxation will cause a similar 
asymmetry 1341, but that effect is not included in the 
model. It does, however, include the anomalous interac- 
tion due to interband relaxation ( T ~ ) .  This gives rise to an 
asymmetry in the spectrum on the scale of the external 
cavity modes (cf. [9, Figs. 16 and 171 and [22, Figs. 3a- 
d]) but has no (or little) influence on LFF. 

Next, we consider the effect of varying the bias current 
with fixed external cavity conditions K = 0.15 and 7 = 
10 ns. Fig. 12 shows the evolution of total photon number 
I (  t )  normalized by the stationary (single-mode traveling 
wave) solution I, for six different bias currents: J / J , h  = 
0.9825, 0.99, 1.00, 1.01, 1.02, and 1.30. The simula- 
tions start from the stationary single-mode solutions, and 
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f r e q u e n c y  ( C H z )  
Fig. 10. Simulated field power speitra for the central mode in different 

steps of Fig. 9. n' = 0 denotes the state just before the steep increase of 
N (  t )  at t 795 ns. 
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f r e q u e n c y  ( C H z )  
Fig. 11. Time-averaged field power spectrum. J = Jth, K = 0.15, 

T = 10 ns. 
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Fig. 12. Simulated time evolution of normalized total photon number for 
different bias currents J / J , h .  K = 0.15,  T = 10 ns. 

at t = 0 we switch on the noise generator. In Fig. 13 we 
have plotted the light-current characteristics obtained 
from the average intensities of Fig. 12 and additional runs 
in the range 0.98 5 J/Jth 1.02. Fig. 13 demonstrates 

~ 
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0 9 7  0.98 0.99 1 0 0  1 0 1  1 0 2  

J / J t h  

Fig. 13. Light-current characteristics for stationary solutions with ( I ,  ) and 
without ( I s o , )  feedback, and for simulated solution (dashed curve). K = 
0.15, T = 10 ns. 
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Fig. 14. As Fig. 12(c) but for t > 100 ns the noise generator is turned off. 

the occurrence of a kink in the light-current characteris- 
tics, which is in qualitative agreement with experimental 
observations [lo],  [13], [33]. Comparison with the time 
series of Fig. 12 reveals the kink to be due to a decrease 
of the LFF period with increasing bias current and an as- 
sociated increase of the pulling of average intensity from 
the stationary value. Well-above threshold [see Fig. 12(f)] 
the LFF cannot be time resolved and the total photon 
number is observed to fluctuate seemingly randomly be- 
tween the stationary value with feedback and the solitary 
value. This results in an average intensity which is nearly 
midway between the curves of (optimum) coherent feed- 
back and no feedback. 

The mean frequency of the intensity drops gives the 
position of the peak in the intensity noise spectrum due to 
the LFF. It is seen to increase from about 7 MHz in Fig. 
12(c) to about 17 MHz in Fig. 12(e), which is in quali- 
tative agreement with experiments, see [12] and [lo, 
Fig. 51. 

The mean time tl for the first intensity drop to occur can 
be calculated from (13) and (14). If we insert the bias 
currents of Fig. 12(a)-(f) we find t ,  = 6.9 10l6 s, 6.4 
p s ,  22 ns, 4.2 ns, 1.9 ns, and 81 ps, respectively. Except 
for Fig. 12(a) and (b) the first intensity drop is seen to 
occur after 30-50 ns, and there is no sign of the dramatic 
decrease expected from the values of I(. A similar delay 
(20-40 ns) for the first intensity drop is observed when 
using only a single longitudinal mode in the simulations, 
so the reason for the discrepancy is not that t l  is derived 
for the single-mode case, while we are using a multimode 
model. However, the inclusion of several longitudinal 
modes has been found to have a significant stabilizing ef- 
fect on the LFF. The staircases of intensity buildup are 
much more regular when more modes are included. 
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Also the spontaneous emission noise has a smoothing 
effect on the intensity fluctuations. In Fig. 14 we show a 
simulation with the parameters of Fig. 12(c), but for t > 
100 ns (i.e., after the first power drop) we have turned off 
the noise generator. We find that the LFF seem to per- 
sist, but there is a marked increase in the high-frequency 
intensity noise. This self-generated noise seems to indi- 
cate that the motion takes place on a chaotic attractor. A 
decisive proof may, however, require a computation of 
the Lyapunov exponents [ 181, [35]. 

V. CONCLUSION 
We have presented a detailed investigation of the dy- 

namics of low-frequency fluctuations, which occur in a 
semiconductor laser biased near threshold and exposed to 
moderate amounts of optical feedback. 

Simulations with a noise-driven multimode traveling 
wave model, which permits inexpensive computations, 
have been demonstrated to reproduce the experimentally 
observed pattern of LFF. Calculation of the average in- 
tensities from the simulated time-series further demon- 
strates the experimentally observed kink in the light-cur- 
rent characteristics to be contained in the simulation 
model. The kink is due to a rapid decrease of the LFF 
period with increasing bias current. 

We have derived an approximate set of iterative equa- 
tions which relates the carrier density and the power spec- 
trum, for one time step of a length equal to the external 
cavity roundtrip period 7 to the “driving” spectrum of the 
previous step. By this procedure the LFF are understood 
to occur as a result of bistability, which permits a noise- 
induced switching to a low-power state. From this state 
the intensity builds up again in steps of of length 7. Dur- 
ing the initial buildup bistability is absent, but is restored 
after typically 10 7, making a noise-induced switching 
possible again. This dynamical behavior, we believe, ex- 
plains the LFF. 

The observed stability for bias currents below the kink 
has been explained as being due to the absence of bista- 
bility below a certain critical value of the bias current. 
Experiments [ 101 indicate that the LFF are suppressed at 
very high levels of optical feedback obtained by AR-coat- 
ing the laser facet facing the external cavity. In a similar 
way we expect this to be explicable by the absence of 
bistability beyond a critical high feedback level. 

In [lo],  [17] the experimentally observed very broad 
laser line is seen merely as a result of the frequency chirp 
associated with the LFF. From simulations we find that 
there is a significant pulling of the average oscillation fre- 
quency during one “period” of the LFF but also that 
spectra sampled at different times during this period show 
a comparable broadening. This is in qualitative agreement 
with results obtained by the approximate iterative equa- 
tions. 

The question of chaotic dynamics has not been directly 
addressed. We have, however, found that turning off the 
noise generator does not lead to the disappearance of 
LFF, but instead to an increase of the high-frequency in- 

tensity noise. This might indicate that the motion takes 
place on a chaotic attractor. Deterministic chaos may oe 
distinguished quantitatively from regular motion by com- 
putation of the spectrum of Lyapunov exponents [18], 
[35]. Such work is in progress and will be reported else- 
where. 

REFERENCES 
111 R. Lang and K. Kobayashi, “External optical feedback effects on 

semiconductor injection laser properties,” IEEE J .  Quantum Elec- 
t ron . ,  vol. QE-16, pp. 347-355, Mar. 1980. 

121 K. Kikuchi and T.  Okoshi, “Simple formula giving spectrum-narrow- 
ing ratio of semiconductor-laser output obtained by optical feed- 
back,” Electron. Let t . ,  vol. 18, pp. 10-11, Jan. 1982. 

[3] E. Patzak, H. Olesen, A. Sugimura, S. Saito, and T.  Mukai, “Spec- 
tral linewidth reduction in semiconductor lasers by an external cavity 
with weak optical feedback,” Electron. Le t t . ,  vol. 19, pp. 938-940, 
Oct. 1983. 

[4] L. Goldberg, H. F. Taylor, A. Dandridge, J. F. Weller, and R. 0. 
Miles, “Spectral characteristics of semiconductor lasers with optical 
feedback,” IEEE J .  Quantum Electron., vol. QE-18, pp. 555-564. 
Apr. 1982. 

[5] F. Favre, D. Le Guen, and J .  C. Simon, “Optical feedback effects 
upon laser diode oscillation field spectrum,” IEEE J .  Quantum Elec- 
t ron . ,  vol. QE-18, pp. 1712-1717, Oct. 1982. 

161 J.  Mark, E. Bddtker, and B. Tromborg, “Measurement of Rayleigh 
backscatter-induced linewidth reduction,” Electron. Let t . ,  vol. 2 1 ,  

[7] R. 0. Miles, A. Dandridge, A. B. Tveten. H. F.  Taylor, and T. G .  
Giallorenzi, “Feedback-induced line broadening in cw channel-sub- 
strate planar laser diodes,” Appl .  Phvs. Le t t . ,  vol. 37, pp. 990-992, 
Dec. 1980. 

[8] D. Lenstra, B. H.  Verbeek, and A. J .  den Boef, “Coherence collapse 
in single-mode semiconductor lasers due to optical feedback, ” IEEE 
J .  Quantum Electron., vol. QE-21, pp. 674-679, June 1985. 

[9] H.  Olesen, .I. H. Osmundsen, and B. Tromborg, “Nonlinear dynam- 
ics and spectral behavior for an external cavity laser,” IEEE J .  Quan- 
tum Electron., vol. QE-22, pp. 762-773, June 1986. 

10) H. Temkin, N. A. Olsson, J. H.  Abeles, R. A. Logan, and M. B. 
Panish, “Reflection noise in index-guided InGaAsP lasers,” IEEE J .  
Quantum Electron., vol. QE-22, pp. 286-293, Feb. 1986. 

111 M. Ito and T.  Kimura, “Oscillation properties of AlGaAs DH lasers 
with an external grating,” IEEE J .  Quantum Electron.. vol. QE-16, 
pp. 69-77, Jan. 1980. 

121 M. Fujiwara, K. Kubota, and R.  Lang, “Low-frequency intensity 
fluctuation in laser diodes with external optical feedback,” Appl. Phys. 
Let t . ,  vol. 38, pp. 217-220, Feb. 1981. 

[ 131 R. Ries and F. Sporleder, “Low-frequency instabilities of laser diodes 
with optical feedback,” in Proc.  8th ECOC.  Cannes, France, Sept. 
1982, pp. 285-290. 

[14] T. Morikawa, Y. Mitsuhashi, J .  Shimada, and Y .  Kojima, “Return- 
beam-induced oscillations in self-coupled semiconductor lasers,” 
Electron. Lett., vol. 12, pp. 435-436, Aug. 1976. 

[15] C. Risch and C. Voumard, “Self-pulsation in  the output intensity and 
spectrum of GaAs-AIGaAs cw diode lasers coupled to a frequency 
selective external optical cavity,” J .  Appl .  Phys . ,  vol. 48, pp. 2083- 
2085, May 1977. 

[16] F. Sporleder, “Travelling wave line model for laser diodes with ex- 
ternal optical feedback,” in Proc.  URSI Int.  Symp. Electromagnet. 
Theory, Santiago de Compostela, Spain, Aug. 1983, pp. 585-588. 

[17] C .  H.  Henry and R. F. Kazarinov, “Instability of semiconductor la- 
sers due to optical feedback from distant reflectors,” IEEE J .  Quan- 
tum Electron., vol. QE-22, pp. 294-301, Feb. 1986. 

[ 181 J. D.  Farmer, “Chaotic attractors of an infinite-dimensional dynam- 
ical system,” Physica,  vol. 4D, pp, 366-393, 1982. 

[19] P. Spano, S.  Piazzolla, and M. Tamburrini, “Theory of noise in 
semiconductor lasers in the presence of optical feedback,” IEEE J .  
Quantum Electron., vol. QE-20, pp. 350-357, Apr. 1984. 

[20] B. Tromborg, J .  H. Osmundsen, and H. Olesen. “Stability analysis 
for a semiconductor laser in  an external cavity,” IEEE J .  Quantum 
Electron., vol. QE-20, pp. 1023-1032, Sept. 1984. 

I211 R. Muller and P. Glas, “Bistability, regular self-pulsing, and chaos 
in lasers with external feedback,” J .  Op t .  Soc. Amer. A ,  vol. 2, pp. 
184-192, Jan. 1985. 

pp. 1008-1009, Oct. 1985. 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 16, 2009 at 08:05 from IEEE Xplore.  Restrictions apply. 



MBRK et al.:  BISTABILITY & LOW-FREQUENCY FLUCTUATIONS IN SL’s 133 

1221 T. Mukai and K. Otsuka, “New route to optical chaos. Successive- 
subharmonic-oscillation cascade in a semiconductor laser coupled to 
an external cavity,” Phys. Rev Lett., vol 5 5 ,  pp 1711-1714, Oct 
1985 penhagen, Denmark, in 1968. 

1231 K. Otsuka and T Mukai, “Asymmetncal coupling, locking and chaos 
in a compound cavity semiconductor laser,” in Proc. SPIE Symp 
Opt. Chaos, Quebec, P.Q , Canada, June 1986, pp 122-129 

[24] Y. Cho and T. Umeda, “Observation of chaos in a semiconductor 
laser with delayed feedback,” Opt. Commun., vol 59, pp 131-136, 
Aug. 1986. 

[25] K. A. Shore, “Non-linear dynamics and chaos in semiconductor laser 
devices,” Solid-State Electron., vol. 30, pp. 59-65, 1987. 

[26] A. P Bogatov, P. G Eliseev, and B. N. Sverdlov, “Anomalous in- 
teraction of spectral modes in a semiconductor laser,” IEEE J. Quan- 
rum Electron., vol. QE-11, pp 510-515, July 1975. 

[27] F Mogensen, H. Olesen, and G .  Jacobsen, “Locking conditions and 
stability properties for a semiconductor laser with external light in- 
jection,” IEEEJ.  Quantum Electron., vol. QE-21, pp. 784-793, July 
1985. 

I281 C H Henry, N. A. Olsson, and N. K. Dutta, “Locking range and 
stability of injection locked 1.54 p n  InGaAsP semiconductor la- 
sers,” IEEEJ. Quantum Electron., vol. QE-21, pp. 1152-1 156, Aug. 
1985. 

[29] B. Tromborg, H. Olesen, X.  Pan, and S .  Saito, “Transmission line 
descnption of optical feedback and injection locking for Fabry-Perot 
and DFB lasers,” IEEEJ Quantum Electron., vol. QE-23, pp 1875- 
1889, Nov. 1987. 

[30] C H. Henry, “Theory of the linewidth of semiconductor lasers,” 
IEEE J Quanrum Electron., vol. QE-18, pp. 259-264, Feb. 1982. 

[31] G. A. Acket, D. Lenstra, A. J. den Boef, and B. H.  Verbeek, “The 
influence of feedback intensity on longitudinal mode properties and 
optical noise in index-guided semiconductor lasers,” IEEE J. Quan- 
tum Electron., vol. QE-20, pp. 1163-1 169, Oct 1984. 

[32] K. Otsuka and H. Kawaguchi, “Period-doubling bifurcations in de- 
tuned lasers with injected signals,” Phys. Rev. A ,  vol. 29, pp. 2953- 
2956, May 1984 

[33] J. Mink and B. H. Verbeek, “Spectral properties neat threshold of 
index-guided AlGaAs lasers under optical feedback,” in P roc. Tenth 
IEEE Int. Semiconduct Laser Conf , Kanazawa, Japan, Oct. 1986, 
pp. 200-201, paper N6. 

(34) H. Ishikawa, M. Yano, and M Takusagawa, “Mechanism of asym- 
metnc longitudinal mode competition in InGaAsP/InP lasers,” Appl 
Phys. Lett., vol. 40, pp. 553-555, Apr. 1982. 

[35] A Wolf, J .  B. Swift, H. L.  Swinney, and J .  A. Vastano, “Deter- 
mining Lyapunov exponents from a time series,” Physica, vol. 16D, 
pp. 285-317, 1985 

Bjarne Tromborg was born in 1940 in Denmark 
He received the M Sc. degree in physics and 
mathematics from the Niels Bohr Institute, Co- 

From 1968 to 1977 he was a Research Asso- 
ciate at NORDITA and the Niels Bohr Institute 
His research field was theoretical elementary par- 
tick physics, in particular analytic S-matnx the- 
ory and electromagnetic corrections to hadron 
scattering. He coauthored a research monograph 
on dispersion theory From 1977 to 1979 he taught 

ince 1979 he has been with the Telecommunication Re- 
search Laboratory, Copenhagen, from 1987 as Head of the Optogroup. His 
present research interests include stability and noise properties of semicon- 
ductor lasers, and quantum well structures in optoelectronic devices 

Mr. Tromborg received the Electropnze from the Danish Society of En- 
gineers in 1981 

Peter L. Christiansen was born on August 6 ,  
1937, in Vinding, Denmark He received the M S 
degree in electrical engineering and the Ph.D. and 
D Sc. degrees in applied mathematics from the 
Technical University of Denmark, Lyngby. 

Previously, he has been a Visting Professor at 
the University of Michigan, Ann Arbor, the Cour- 
ant Institute of Mathematical Sciences, New York 
University, New York, and the ltalian National 
Research Council. Since 1981 he has been the 
Head of the Laboratory of Applied Mathematical 

Physics at the Technical University of Denmark, where he organized the 
Center for Modeling, Non-Linear Dynamics and Irreversible Thermody- 
namics (MIDIT) in 1985. He has served as Editor of Nonlinear Science. 
published by Manchester University Press, and as a referee tor several in- 
ternational scientific journals. His research interests include asymptotic dif- 
fraction theory, and presently, nonlinear dynamics, applications to solid- 
state physics, optics, biophysics, and biochemistry 

Jesper MBrk was born in Copenhagen, Denmark, 
on September 2,  1962 He received the M.Sc. de- 
gree in electrical engineenng from the Technical 
University of Denmark, Lyngby, in 1986. 

towards the Ph D. degree 
at the Laboratory of Phys- 
its, University of Denmark, H,s re- 
search and nonlinear 

feedback. 

He 1s now 

of lasers 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 16, 2009 at 08:05 from IEEE Xplore.  Restrictions apply. 


