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Iterated-map approach to die tossing
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Physics Laboratory III, The Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 25 April 1990)

Nonlinear dissipative mapping is applied to determine the trajectory of a two-dimensional die
thrown onto an elastic table. The basins of attraction for different outcomes are obtained and their
distribution in the space of initial conditions discussed. The system has certain properties in com-
mon with chaotic systems. However, a die falls to rest after a finite number of impacts, and there-
fore the system has a finite sensitivity to the initial conditions. Quantitative measures of this sensi-
tivity are proposed and their variations with the initial momentum and orientation of the die inves-

tigated.

I. INTRODUCTION

The discovery of chaos!? has shown that unpredicta-
bility can perfectly well occur in deterministic dynamical
systems. One type of system, which at first sight may ap-
pear to possess this property, is that of die tossing. By
tradition, this system is considered an ideal mechanism
for producing random outcomes. Usually, the motion of
a die is so rapid that the human eye is unable to follow
the trajectory in detail. Combined with the actual com-
plexity of the motion, which apparently had defied
mathematical treatment for centuries, this may have con-
tributed to the widespread notion that a die toss is ran-
dom.

However, by virtue of the dissipation of energy, a die
must always come to rest within a finite time. This leaves
little hope for the kind of unpredictability observed in
chaotic systems or in systems with fractal basin boun-
daries. These phenomena are related to motions that can
be sustained forever. For dissipative systems this can
occur only if there is an external forcing or another form
of more or less continuous energy supply. Even the pos-
sibility of a chaotic transient®* appears to be ruled out by
these arguments, since this type of dynamics implies a
finite probability of sustaining the motion for arbitrarily
long times. Therefore we must conclude that a die toss
cannot show the sensitive dependence on initial condi-
tions found in chaotic systems. Nonetheless, die tossing
has certain properties in common with these systems. In
particular, the basins of attraction in the space of initial
conditions show a certain recurrence in structure.

In the present paper we shall investigate the structure
of these basins of attraction by means of a recursive
transformation involving the construction of flight and
collision maps. A somewhat similar approach has been
applied to coin tossing by Vulovic and Prange.’> Besides
treating a different problem, we provide a much more de-
tailed interpretation of the variation in outcome. A pre-
liminary discussion of this variation was given by Knud-
sen et al.® and by Mosekilde et al.”. These results were
based on time-continuous simulations of the complete
trajectory, involving slightly different assumptions about
the impact process. In particular, the collision time was
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considered to be finite, allowing a certain rotation of the
die during a collision. In the limit of short collision
times, the two approaches give identical results. For a
more comprehensive study, the mapping approach is ad-
vantageous because it requires orders of magnitude less
computer time.

In an actual toss, the initial conditions of the die are
reproducible with finite accuracy only. If the initial ener-
gy is sufficiently small, it is possible to throw the die such
that the outcome is certain. Only if the die has energy
enough to roll several times, the outcome appears to be
random. But how much is this energy, and how random
is the outcome? It is clearly of interest to determine the
sensitivity of the outcome to variations in the initial con-
ditions. For chaotic systems, perturbations of the initial
conditions grow exponentially with time, making it im-
possible to predict the behavior beyond a certain time
horizon.® With a more precise specification of the initial
conditions, this horizon is extended, but even the smallest
inaccuracy will sooner or later limit the predictability.
For a die toss, on the other hand, inaccuracies in the ini-
tial conditions are amplified only through a finite number
of collision-flight processes. Thus, although the basins of
attraction for different outcomes may be rather compli-
cated, they are finite in size and are bounded by regular
surfaces.

We propose quantitative measures for the average size
of the basins of attraction and for the mixing of these
basins. Thereafter, we apply these measures to determine
how the sensitivity to the initial conditions varies with
the energy and orientation of the die.

II. FLIGHT MAP

Let us consider the trajectory of a die thrown onto the
surface of an ideally flat table. The die has mass m, side-
length @, and moment of inertia I =1ma 2. For simplici-
ty, the die is restricted to move in the vertical xy plane
with a pair of sides parallel to this plane. The motion
may then be described in terms of six dynamical vari-
ables: the horizontal position of the center of mass x, the
vertical position of this point y, and the orientation of the
die ¢, together with their conjugated momentum coordi-
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nates p,, p,, and L. ¢ is defined as the angle between a
particular side of the die and the horizontal direction.
The table is represented by the plane y =0. Because of
the perfect translational symmetry of the problem, the
value of x is immaterial, and this variable can be left out
of the calculations.

The motion consists of free flights interrupted by col-
lisions between die and table. Both of these processes
may be represented by a deterministic nonlinear map,
and the total trajectory can be constructed by iterating
these maps until the die has lost sufficient energy for the
final outcome to be determined. Because of the con-
straint between y and @ that exists in the moment of col-
lision, this approach justifies neglecting y as a variable.
Thus the flight map F transforms the dynamic variables
at the beginning of a flight (pS,p,@*,L*) into
the post-flight values (p,,p,,@,L). Similarly, the col-
lision map C relates the dynamic variables after a col-
lision to their pre-collision values, i.e., C: (p,,p,,@,L)
—(pspy,@*,L*). The asterisk is used to indicate post-
collision, pre-flight values.

During a flight, only the force of gravity acts upon the
die. This implies that p, and L remain constant. More-
over, the dynamics of the flight are completely integrable.
Thus we immediately have the flight map F:

Px=pi (1)
p,=p, —mgt ()
p=¢*+ LI* t, (3)
L=L*, 4)

where g is the gravitational acceleration and ¢ is the time
of flight.
To determine ¢ we use

a P*
y 2
=——C0S§ +_t_‘;gt .
m

2

m

~ = % __
¢ ¢ 4

2 os m
V2 4

(5)

Here a tilde denotes mod (7/2). Equation (5) expresses
the condition of contact between die and table, and the
smallest strictly positive solution to (5) is to be inserted
into (2) and (3) to determine the post-flight values of p,
and ¢. The only difficulty lies in a proper root bracket-
ing.

Besides regular flights in which the die starts out with
a positive vertical momentum and ends with a negative
Py, Egs. (1)-(4) encompass two particular kinds of flight:
(a) flights initiated with a negative p,, and (b) flights ini-
tiated with a positive p, and terminated while p, is still
positive. Such flights are possible provided that the angu-
lar momentum L is large enough for the vertical velocity
of the lowest corner to have the opposite direction of the
center-of-mass velocity p, /m. They will be referred to as
short flights. An important property of short flights is
that the outcome cannot change because the maximum
altitude gained in such a flight is insufficient for a corner
to pass under the center of mass.
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ITII. COLLISION MAP

In order to obtain the collision map C we make the fol-
lowing conjectures concerning the impacts between die
and table.

Conjecture 1. The collision time is negligible short.

This implies that the orientation of the die ¢ remains
constant during the collision. Derivation of C is hereby
reduced to finding expressions for pf,p, and L* in
terms of p,,p, @, and L.

Conjecture 2. The vertical velocity of a colliding die
corner is changed such that the ratio of the post- and
pre-impact values remain constant:

vy, =—PBv,, - (6)

Although a rigorous physical justification for this conjec-
ture may be hard to provide, it appears to be a standard
assumption for collisions between rigid bodies.’

The value of 3 depends upon the properties of the col-
liding bodies. We suppose that plastic deformation and
permanent damage to either table or die can be neglected.
In a simple model, the table reaction in the vertical direc-
tion will then consist of an elastic term with damping. If
the impact between a die corner and the table is described
as half a period of a damped harmonic oscillation, 3 can
be expressed as

B=exp[ —ma/(4mk —a?)/?] . (7)

Here a is the damping coefficient for the table reaction,
and k is the elastic force constant. For a particular com-
bination of die and table, 3 can be estimated such that the
typical number of impacts before the die comes to rest is
correct. As previously noted, a real toss is too swift for
us to follow it with the eye. The ear appears to have a
somewhat better temporal resolution. By replaying simu-
lations of a toss in real time, and by coding the computer
to emit a sound for each collision, this can be used to ad-
just B until the computer simulation sounds like a real
toss.” In the calculations to be presented here we have
taken 8=0.50.

Conjecture 3. Due to frictional forces, the horizontal
velocity of the corner in contact with the table is usually
brought to zero during the impact, i.e.,

vk =0. (8)

Simulations of a continuous version of the system with a
more detailed representation of the collision forces have
shown’ that this will be the case in many impacts. How-
ever, frictional forces are not always sufficient to avoid
sliding collisions in which the horizontal velocity of the
corner in contact with the table remains nonzero.

Assuming that the frictional force is determined by the
normal force times the friction coefficient u, as a comple-
ment to (8) we have the following.

Conjecture 4. The ratio of the horizontal to the normal
changes in momentum can never exceed the friction
coefficient.

Thus, if (8) produces a result that is in violation of conjec-
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ture 4, (8) is replaced by

b —p.|=ulp)—p,l, 9

where the sign of the horizontal momentum change is
chosen to be opposite to the sign of the horizontal veloci-
ty for the sliding corner v.,. Hereafter, collisions in
which the frictional forces are large enough to stop the
horizontal motion of the colliding corner will be referred
to as nonsliding collisions.

Combining the above conjectures, one obtains the fol-
lowing relations, which form the basis for calculations of
the collision map for nonsliding collisions:

Px | aL* T
_+ h—— | =
- \/EICOS (i) 2 0, (10)
Py aL* T py al T
Zy 4L P+ T |=—pg|2x_ 9L o4+ T
- ‘/21008 Pty B - \/ZICOS P+ 4
(11
and
L*—L=-2%(p*— s T
V5 Px TPx)cos | o=
9 s s |+ L
v (p) —p),)cos |p+ 7 | (12)

As previously defined =¢ modw/2, and S is given by
(7). The first two equations merely represent a transfor-
mation of (8) and (6) into the center-of-mass coordinates.
Equation (12) expresses the change in angular momentum
in terms of the corresponding changes in the linear mo-
menta.

Introducing
m a T
AL=———— ——
45 U COS | 2
_,
—(1+B)v,,cos <p+-; H , (13)
with
Px alL T
=4 5= H— —
T Sadl LA (14)
and
Py alL _ T
Vey ;—Vilcos ¢+Z R (15)

the above set of three coupled linear equations (10)—-(12)
are readily solved to give

*—p _am ~_ T

Px =P — MU, Vol AL cos |® 4 ] , (16)
* _ am - m

Py =D, (1+B)mvcy+———‘/§IAL cos |p+ 7| (17)

P*=g, (18)
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*=L+AL . (19)

These equations define the collision map for nonsliding
collisions C .

If the change in p, calculated from the above equations
is in violation of conjecture 4, then (8) is replaced by (9)
to produce the following collision map for sliding col-
lisions Cyg:

*=p.tu|(1+ — 2 ALcos |p+— ||, (0
Px =pxtu |[(1+B)my,, V3l cos |+ (20
- am ., T
Py*_py—(l+B)mvcy+—‘/—_27AL cos <p+: , 21
P =9, (22)
*=L+AL , (23)
with
a T T
1+ - P+ |+ ——
( B)mvcy‘/ cos |p+ - |Tpcos |p—
AL =
T T T
+ -7 P+ 2o+
1+3pcos |@ 4 cos | 4 +3 cos (p+4
(24)
As before v, is given by (15). The sign of the terms in-

volving u is chosen to be opposite the sign of v,. In
combination, C,, and Cg define the overall collision map
C.

It sometimes happens, particularly towards the end of
the trajectory, that the die starts on a series of very rapid
collision-flight pairs involving the same corner. This sig-
nals the beginning of a continuous sliding process in
which a corner of the die remains in contact with the
table surface, as it move along it. Our iteration scheme is
not well suited for this type of collision since they lead to
a large number of iterations with small changes in the
dynamical variables. Instead, when these -collisions
occur, the map is replaced by a set of differential equa-
tions, which describe the continuous sliding process:

p,==TuF, , (25)
py=F,—mg, (26)
L
n= — s 27
=7 27)
and
: a T ™
L=——= p+— |t —— .
V3 F, |cos | 4 |THcos (= H (28)
Here
2
m —a L cos p— =
V2 |1 ¥
F =
~ T — o 2 |~ o
+ - +— |+ +—
1£3ucos | 4 cos | 4 3cos” |§ 4
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is the force required to keep v, =0. The integration pro-
cedure is stopped if a neighboring corner comes in con-
tact with the table, if the remaining energy becomes too
low for a change in the outcome to occur, or when F,
ceases to be positive.

IV. DISTRIBUTION OF PREIMAGES

By iterating the above flight and collision maps we can
follow the motion of the die through a complete toss.
This motion is simply interpreted as a series of collision-
flight pairs. After a certain number of such pairs, the en-
ergy of the die has fallen below the value

E,=mga/V2, (30)

and the outcome can no longer change. At this time the
iteration is stopped. The critical energy E_, is the poten-
tial energy of a die balancing directly on one of its edges.

In this section we shall investigate the distribution of
basins of attraction (or preimages) for the various out-
comes. We shall concentrate on mapping out the varia-
tion of the outcome with the initial values of ¢ and p,,
taking the initial values of p, and L to be zero. In this
way we restrict our investigation to a subset of the total
initial condition space. However, the qualitative distribu-
tion of the basins of attraction in this space seems to be
generic. This means that changes in the initial values of
p, and L only produce smooth transformations of the
basins of attraction. A few results will be shown for
prZ#O'

Thus, in the following calculation, each toss is initiated
with a collision in which the die has a (negative) vertical
momentum p,, and an orientation ¢,. This corresponds
to the situation after a vertical drop of the die from an al-
titude

on a
hy=—2"—+—"=cos (31)
° omlg V2

_T
%o 4

Figure 1 shows the variation in outcome after the first
collision-flight pair, i.e., after a single iteration of Fo C,
with o denoting functional composition. This outcome is
defined as the side of the die which is up by the time the
die terminates the flight. The horizontal axis represents
the initial orientation of the die, and the vertical axis
measures the initial momentum in terms of mV'ga. With
the grey-tone code used to designate the various out-
comes, black denotes 1, dark grey denotes 2, light grey 3,
and white 4.

After the first collision-flight pair, the distribution of
outcomes is still quite simple. In fact, this distribution
can easily be derived analytically.!® On the left-hand side
of the figure, corresponding to initial angles ¢,<0.25
rad, the die lands relatively flat on one of its sides. Under
these conditions, the die suffers a considerable change in
its angular momentum, and its starts to rotate quite rap-
idly. At first sight one might suppose that this would
lead to a complex distribution of outcomes. However, a
large angular momentum after a flat collision implies that
a neighboring corner will collide with the table, before
the die really takes off. Thus the flight will be short, and

FELDBERG, SZYMKAT, KNUDSEN, AND MOSEKILDE 42
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~pyo/MV3a
W

T T T T T T T 1
0 /8 /4
Yo

FIG. 1. Outcome distribution after one iteration of the com-
bined collision-flight map Fo C. The horizontal axis represents
the orientation of the die before the first collision, and the verti-
cal axis shows the normalized initial momentum pyo/m\/g—a.
The die is assumed to fall vertically from an altitude
ho =py20 /2mg+(a/V2 )cos(gy—1/4). With the applied color
code, black represents 1, dark grey 2, light grey 3, and white 4.
The lack of structure on the left-hand side of the figure is due to
short flights. Note the discontinuity in the outcome variation

across the borderline between short and long flights.

it does not lead to a change in outcome. Our analytical
calculations confirm that the borderline for short flights
falls on top of the curve separating the black region of
constant outcome to the left in Fig. 1 from the zone with
varying outcome.

The outmost right-hand side of Fig. 1 corresponds to
tosses in which the die falls almost directly on one of its

5 4

~pyo/MVGa

T

0 /8

T T T J 1
/4
Po

FIG. 2. Outcome distribution after two iterations of FoC.
The second collision gives rise to a continuation of the outcome
distribution produced by the first impact into the left-hand side
of the space of initial conditions. Broadly speaking, this con-
tinuation has the form of a slightly deformed mirror image of
the structure on the right-hand side of Fig. 1. On the right-
hand side of this figure, additional structure has now emerged in
each of the previous bands of constant outcome.
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edges. In this case, the center of mass is right above the
point of collision, and the die suffers only a small change
in its angular momentum. Thus the narrow black region
of outcome 1 stretching along the right edge of Fig. 1
corresponds to flights in which the die rotates so slowly
that it maintains the same side up, until the next col-
lision. As the angle ¢, is decreased, the gain in angular
momentum in the collision increases, and the die rotates
faster and faster in the subsequent flight. This explains
the curtainlike structure of bands with constant outcome.
It is observed that these follow in a regular order. As one
would expect, the number of possible changes in outcome
during the first collision-flight process increases with in-
creasing initial momentum. Between these bands and the
region of constant outcome to the left there is an essential
discontinuity in the outcome variation. On one side of
the discontinuity, the die is caught by the impact of a
neighboring corner, on the other side, the die can fly and
rotate as long as its energy permits. This essential
discontinuity is not lifted by the subsequent iterations of
FoC.

Near the middle of the plot, one observes a vertically
running series of break points in the borderlines between
the various bands. These break points lie on the thresh-
old between sliding and nonsliding collisions, with sliding
collisions to the left. This is also directly confirmed by
analytical calculations.

By iterating Fo C a second time, we find the outcome
distribution after two collision-flight pairs. As illustrated
in Fig. 2, this distribution is considerably more complex
than the previous distribution. Nonetheless, we can still
understand the main elements of the structure.

On the left-hand side of Fig. 2 we observe a curtainlike
structure similar to the structure observed on the right-
hand side of Fig. 1. We recall that the lack of structure
in the left-hand side of that figure was due to short
flights. In such a flight, a neighboring corner collides
with the table almost immediately after the takeoff from
the first collision. Broadly speaking, the second collision
produces a continuation of the outcome distribution of
Fig. 1 into the right-hand side of the outcome space. Be-
cause of the additional losses in energy associated with
the second impact, this continuation is shifted to some-
what higher initial momenta, and the discontinuity in
outcome variation produced by the first collision is not
completely repaired. Otherwise, the continuation has the
form of a slightly deformed mirror image of the outcome
distribution in Fig. 1. In particular, we observe the series
of break points separating sliding and nonsliding col-
lisions, now with the sliding collisions to the right. Thus,
to the left of the borderline for short flights in the first
impact, the outcome structure is delayed one iteration of
FoC.

On the right-hand side of Fig. 2, additional structure
has developed in each of the former bands of constant
outcome. In particular, we observe how tongues
penetrate into these bands from the top and from the bor-
derline between short and long flights. Similar tongues
can be observed in the outcome distribution for coin toss-
ing.> Each band in Fig. 1 represents a variation of the
pre-collision angle ¢, for the second impact over the in-
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terval from — /4 to w/4. This is twice the angular vari-
ation considered for the first impact in Fig. 1. If this
variation was extended to —w /4, we would see the mir-
ror image of Fig. 1, only with the bands following in the
opposite order. Therefore one would expect that each
band from Fig. 1 now contains a substructure consisting
of a double version of the outcome distribution in Fig. 1,
only raised to higher initial energies.

This conjecture is readily verified. Thus, in Fig. 3(a)
we have magnified and transformed part of one of the
bands in Fig. 2 into a rectangular shape similar to the
shape of Fig. 1. One immediately sees the resemblance in
structure between the two figures. Even the borderlines
between sliding and nonsliding collisions are clearly visi-
ble. This recursive property is reminiscent of the self-
similar structure of fractal basin boundaries found in
many nonlinear dynamical systems.'""!? However, if we
wanted to trace a structure by repetitive magnifications
of parts of the final outcome distribution, we would have
to let p, increase for each iteration. This is in contrast to
fractal basin boundaries where the repetitions of struc-

(b)

FIG. 3. Amplification and transformation of one of the bands
in Fig. 2 show that the substructure produced by the second im-
pact contains a double version of the structure observed in Fig.
1 after the first collision. This is expressive of the recurrent
properties of the mapping process. The sketch in (b) shows the
part of Fig. 2 that has been transformed into (a).
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ture lie within the structure itself.

It is worth noticing that, like the outcome distribution
in Fig. 1, the substructure which has emerged in the
bands of Fig. 2 contains lines of discontinuity in the out-
come variation. These lines arise from the boundary be-
tween long and short flights after the second impact. In
this way, discontinuity in the outcome variation spreads
over the distribution.

After three iterations of Fo C, the outcome distribution
is more complicated. This is illustrated in Fig. 4. How-
ever, the qualitative changes that occur from Fig. 2 to
Fig. 4 are merely a repetition of the transformation that
leads from Fig. 1 to Fig. 2. The substructure already ob-
served on the right-hand side of Fig. 2 now appears on
the left-hand side of Fig. 4. On the right-hand side of
Fig. 4, many of the former areas of constant outcome
have been divided into several smaller areas, and again
there is a certain self-similarity in the process. In the
lower part of the plot, where the initial energy of the die
is relatively small, the change in outcome distribution is
only quantitative.

Further applications of FoC introduce additional
structure in the outcome distribution. The upper part be-
comes more complicated as each of the former regions of
constant outcome splits into several, but not infinitely
many, smaller areas. After a number of iterations, the
energy has fallen below E_, for all tosses within the con-
sidered region of the space of initial conditions. From
then on, further iterations no longer change the outcome
distribution. Figure 5 shows an example of such a final
outcome distribution. It is interesting to note that even
for relatively high initial momenta, one can still find re-
gions where the initial conditions can be varied
significantly without changing the outcome.

T

0 /8

T T T T 1

/4

®Po

FIG. 4. Outcome distribution after three iterations of Fo C.
The substructure observed on the right-hand side of Fig. 2 now
appears on the left-hand side of this figure. On the right-hand
side, additional substructure has appeared, as many of the areas
of constant outcome in Fig. 2 have been divided into several
smaller ones. Again there is a certain self-similarity in the pro-
cess.
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FIG. 5. Final outcome distribution for the case in which the
die is started with an initial horizontal momentum p,,=0.
Comparison with Fig. 4 shows that the basic structure in the
outcome distribution is determined by the first few impacts.
The later impacts introduce a good deal of fine structure.
Nonetheless, one can still find regions where the initial condi-

tion can be varied significantly without changing the outcome.

Figure 6 shows an enlarged version of part of Fig. 5.
The purpose of this figure is to illustrate the discontinuity
in the final outcome distribution existing along the bor-
derline between short and long flights after the first col-
lision. Along this discontinuity, small changes in the ini-
tial conditions can change the outcome by more than 1,
i.e., for instance, from 1 to 3. Along most of the other
basic boundaries, the outcome only changes from one
side of the die to a neighboring side.

Figures 7 and 8 show the final outcome distributions

4.0 -~
3.6 1
3.2 o

2.8 A

—pyo/MVga

2.4

2.0 A

T T T T T T T T

Po

FIG. 6. Detail of Fig. 5 illustrating the fine structure which
separates flat and nonflat collisions in the first impact. This fine
structure is not yet fully understood.

r T 1
0.23 0.28 0.33
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T T T T T T 1
0 /8 /4
Yo

FIG. 7. Final outcome distributions for the case where the
die is started with an initial momentum in the positive x direc-
tion equal to 10% of the maximum, initial vertical momentum
in the plot. The outcome distribution is deformed relative to
the distribution observed in Fig. 5 for vanishing, horizontal
momentum in the first impact.

for two cases in which the die is started with a finite ini-
tial momentum in the horizontal direction. In both
cases, the numerical value of p,, has been chosen to be
10% of the maximum initial vertical momentum in the
considered outcome distribution. For Figure 7, p,, is in
the positive x direction, enforcing the rotation gained by
the die in the first collision. For Fig. 8, p,, is negative
and counteracts the rotation gained in the first collision.
By comparison with Fig. 5, the presence of an initial hor-
izontal momentum is seen to give rise to a distortion of
the outcome distribution. Most of the basic features of
this distribution remain unchanged, however.

T

T
0 /8

T T T

Yo

FIG. 8. Final outcome distribution for the case where the die
is started with an initial momentum in the negative x direction
equal to 10% of the maximum, initial vertical momentum in the
plot.

1
/4
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V. PREIMAGE VOLUME
AND MIXING CALCULATIONS

Let us hereafter turn our attention towards the prob-
lem of measuring the sensitivity of the final outcome with
respect to changes in the initial conditions. This problem
was also touched upon by Vulovic and Prange,” who not-
ed that for any point in a given basin of attraction a max-
imal variation in the initial conditions exists, which al-
lows the point to remain in the same basin. This shortest
linear extension was then used as a measure of the local
uncertainty. In the present section we shall try to intro-
duce somewhat more refined measures, which account
both for the possibility of having more than two out-
comes, and for the local distribution of outcomes.

First we shall consider the cross measure of basin area
Ag. This measure is defined as the product Ap A, of
the ranges in momentum and orientation around a given
initial condition within which the outcome remains the
same. In contrast to a measure based on the linear dis-
tance to the nearest basin boundary, the cross measure
recognizes the different dimensions of the two directions
in the space of initial conditions. In the numerical calcu-
lations of A5 we have normalized Ap,, and Ag, by
division by mV'ga and w/4, respectively. In this way,
the maximum values for 4 become of the order of 3,
namely a factor of 1 for small values of p,, where the out-
come distribution is independent of ¢, times a factor of
the order of 3 for those particular values of ¢, where the
outcome is independent of p,, up to the highest values
considered.

Figure 9 shows the variation of the cross measure of
basin area with the initial conditions ¢, and p,, for the
case where p,,=0. We have applied a 16 grade, logarith-
mic grey-tone scale with white denoting cross areas
exceeding 2.2 and black denoting areas of less than
1.5X1073. Below a normalized initial momentum of

r T T T T

0 /8

Yo
FIG. 9. Variation of the cross basin area A with the initial
conditions @q and p,, for p,o=0. The 16 grade grey-tone code is

logarithmic with white denoting normalized cross areas exceed-
ing 2.2 and black denoting areas less than 1.5X 1077,

1
/4
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pyo/m V'ga =—1.1, the outcome is independent of ¢,
within the considered range of initial orientations. Close
to ¢o=0 and /4 there are initial orientations where the
outcome remains the same, even if the normalized initial
momentum becomes larger than 2. These are the regions
where we find cross areas in excess of 2.2. In the upper
part of Fig. 9, the cross areas are much smaller. Howev-
er, as previously noted, one can still find regions where
the initial conditions can be changed significantly without
changing the outcome. Also, it is interesting to note how
the cross area emphasizes the narrow tips in the fine
structure of the outcome distribution.

A definition of mixing properties is well established for

area-preserving maps.'> It expresses the idea of asymp-
totic measure invariance of map iterates on arbitrarily
chosen subsets and their intersections. In the context of
die tossing, the idea of a measure corresponds to the rela-
tive contents of different outcomes in a chosen subset of
initial condition space. The mixing property may then be
related to the uniformity of outcome distribution in all
subsets. In that sense the final outcome map can never be
fully mixing. Therefore we propose a local measure of
mixing.

Let us choose a fixed neighborhood of a point in the
space of initial conditions. For such a frame I', which is
taken to contain a finite number of data points, we define
a deviation from uniform distribution of the ith outcome
as
2

c(lLi) 1 , (32)

A= 17T "%

where ¢ (I',7) is the number of frame points with outcome
i, and n(T") is the total number of points in the frame.
The frame mixing coefficient m is defined as

4
m(T)=1—-%3 d(T,i) . (33)

1=1

This definition is insensitive to the distribution of out-
comes within the frame. In particular, it will not reflect
the occurrence of larger connected subsets with the same
outcome. Therefore we average over connected sub-
frames y; of a given size k to obtain the local mixing fac-
tor

HT, k)=~
( ) N(T,k)
where the summation runs over the chosen connected
subframes of size k, and N(I',k) is the number of such
subframes in I'. To avoid a dependence of subframe size,
we introduce the cumulative local mixing factor

y].CF (34)

i

max

Foum=T1 F ok (35)
I1=1

where k, is a predefined sequence of subframe sizes.

It is of interest to relate the mixing measure defined in
this way to randomness. We first observe that a homo-
geneous distribution (or a distribution with basins of at-
traction much larger than the frame size) will produce a
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FIG. 10. Variation of the cumulative local mixing factor
Feum With the initial conditions. The 16 grade grey-tone code
applied in this figure is linear with white denoting mixing fac-
tors less than 5X 10> and black denoting factors in excess of
0.6126.

cumulative local mixing factor of 0. It can easily be
shown that large (i.e., close to 1) values of ¥, may be
achieved for maps maximizing the factor in the same
manner for all frames. This kind of mapping will exhibit
a high degree of regularity in the form, for instance, of
cyclic sequences. A random outcome map gives inter-
mediate ¥, values (about 0.5) with a relative low vari-
ance as long as the frame size is reasonable.

The following calculations of F_,,, were performed on
the standard (gq,p,,) space with 640480 grid points.
We applied a quadratic progression of subframe sizes

slightly modified to give numbers divisible by 4. The

107"
10 7%
10 ™

10 ™

Average Feum

0.0 10 20 30 40 5.0
—Pyo/m ga

FIG. 11. Variation of the cumulative local mixing factor with
the normalized initial momentum after one, two, and four itera-
tions of the combined collision-flight maps. Also shown is the
corresponding variation for the final outcome distribution. All
curves on this figure represent averages over the initial orienta-
tion of the die. After the first four iterations of Fo C, little
change in the average ¥, occurs.
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FIG. 12.

Variation in the entropy function H(Ag,) as
the initial orientation interval of the die is gradually changed
for three different values of the initial vertical momentum,
Pyo/m Viga =3, 4, and 5, for (a), (b), and (c), respectively. In all
cases g, =1/8.

chosen progression is 4, 8, 16, 24, 36, 48, 64, 80, and 100
grid points. As shown in Fig. 10, the cumulative local
mixing factor depends heavily on both p,, and ¢, The
16 grade grey-tone code applied in this figure is linear
with white denoting mixing factors less than 5X 1075,
and black denoting mixing factors in excess of 0.6126.
The variation in ¥, clearly reflects the curtainlike
structure of the outcome distribution itself. Compared
with the cross basin area, the mixing factor gives more
emphasis to borderlines between outcomes and less em-
phasis to narrow tips. In Fig. 11, we have compared the
variation of ¥, obtained for the final outcome distribu-
tion with the variations observed after one, two, and four
collision-flight pairs. Within the investigated range of in-
itial energies, most of the mixing is found to be produced
during tke first four collisions.

As a third example of a measure of local uncertainty
we have calculated the variation in the entropy of the
outcome distribution

Ha=—3 K@ o wd (36)
2 ) %8 )

for a neighborhood of a particular point in the space of
initial conditions as the neighborhood is expanded by
gradually allowing a larger uncertainty in the orientation
of the die. A similar calculation can be performed for
changes in the vertical momentum. n =4 is here the
number of possible outcomes, and d = Ag, is the diameter
of the considered neighborhood in the space of initial
conditions. By u(d) we denote the measure of the whole
neighborhood (i.e., the number of the data points in Ag,)
and by u,(d) the measure of its intersection with the ith
outcome.

It is well known that the difference between the actual
entropy and the maximal value for a given outcome dis-
tribution can be used to characterize the deviation from a
uniform distribution. For a random sequence, H(d) ap-
proaches 1, as the number of data points become large.
For sufficiently high initial energies, the same result is ex-
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pected for the die. The interesting aspect of the problem
is therefore the manner in which this approach occurs.
As long as the number of data points is sufficient to
resolve the structure of the outcome distribution, H (d) is
independent of the density of data points. As in the case
with the mixing factor, this measure integrates informa-
tion associated with the interleafed basins of attraction
with the corresponding variation in outcome.

Figure 12 shows a calculation of H(Ag,) for three
points in the space of initial conditions with
Pyo/m Viga =3, 4, and 5, respectively. In all cases
@o=m/8. For all curves there is a range around Agp,=0
in which H(A¢,)=0. This is the range in which the out-
come remains constant. H(Ag,) thereafter increases to-
wards a saturation value for large Ag,. The rate at which
this increase occurs measures the uncertainty in the local
outcome distribution.

VI. CONCLUSION

In a rather surprising manner, the development of non-
linear dynamics has disclosed a number of misconcep-
tions in our traditional understanding of determinism. In
particular, it has been shown that the notion of predicta-
bility, according to which the trajectory of a system can
be precisely calculated if one knows the equations of
motion and the initial conditions, is related to textbook
examples of integrable systems. This predictability does
not extend to nonlinear, conservative systems in gen-
eral.'* Dissipative systems can also show unpredictability
provided that their motion is sustained by externally sup-
plied energy. Although traditionally considered as
unpredictable, die tossing does not belong to any of these
categories. Accordingly, the toss of a die only shows a
finite sensitivity to the initial conditions.

Nonlinear dynamics has also provided a variety of new
approaches to complex dynamic problems. One such ap-
proach involves the application of discrete maps to
represent continuous dynamical systems. Other examples
of techniques and concepts derived from nonlinear dy-
namics are those of symbolic dynamics and self-
similarity. These will be applied in a forthcoming publi-
cation to address the problem of the asymptotic proper-
ties of die tossing for high initial energies. In particular,
we shall calculate how rapidly the basins of attraction
shrink as the initial energy becomes very large.

In the present paper we have applied dissipative map-
ping to study the distribution of outcomes for a die toss.
This technique appears well suited for a number of prob-
lems involving multiple collisions. A simple example
could be the classical pinball (or Galton) machine, where
balls fall between horizontal pins to produce a binomial
distribution at the bottom. Traditionally, this problem
has also been treated in a stochastic manner, although
clearly the equations of motion are derivable from
Newton’s laws. A revised treatment would consider the
trajectories of the balls in a fully deterministic manner.
The stochasticity then identifies itself as arising through
amplification of uncertainties in the initial conditions,
when the balls enter the machine. Of course, this uncer-
tainty may again be related to the forces that the balls



4502

have experienced before they entered the machine. In
this manner, one can push the borderline between pre-
dictable and unpredictable behavior backwards.

Now, if die tossing and the motion of a ball in a pinball
machine are predictable, what is then random? For the
moment we think that the best answer to this question is
to notice that the word random is used to characterize
events (or processes) which, for one reason or another, we
cannot calculate (or control). Even if a process in princi-
ple is deterministic, we may consider it as random if the
complexity involved is so high that we cannot relate
cause and effect in detail. In this sense, die tossing is still
random. The predictability shows up, only if the initial
energy is small or, if the tossing is performed by a very
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accurate machine.

From a practical point of view, the main thing is that
the mapping technique allows us to deal with a number of
problems which hitherto have been considered untract-
able. In a more general version, the same approach can
be applied to systems which are integrable except for cer-
tain abrupt shifts associated, for instance, with logical
elements.
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FIG. 1. Outcome distribution after one iteration of the com-
bined collision-flight map Fo C. The horizontal axis represents
the orientation of the die before the first collision, and the verti-
cal axis shows the normalized initial momentum p,,/m Via.
The die is assumed to fall vertically from an altitude
ho=p}y/2m*g +(a /V2)cos(@,—m/4). With the applied color
code, black represents 1, dark grey 2, light grey 3, and white 4.
The lack of structure on the left-hand side of the figure is due to
short flights. Note the discontinuity in the outcome variation
across the borderline between short and long flights.
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FIG. 10. Variation of the cumulative local mixing factor
Foum With the initial conditions. The 16 grade grey-tone code
applied in this figure is linear with white denoting mixing fac-

tors less than 5X 107 ° and black denoting factors in excess of
0.6126.
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FIG. 2. Outcome distribution after two iterations of Fe C.
The second collision gives rise to a continuation of the outcome
distribution produced by the first impact into the left-hand side
of the space of initial conditions. Broadly speaking, this con-
tinuation has the form of a slightly deformed mirror image of
the structure on the right-hand side of Fig. 1. On the right-
hand side of this figure, additional structure has now emerged in
each of the previous bands of constant outcome.



(b)

FIG. 3. Amplification and transformation of one of the bands
in Fig. 2 show that the substructure produced by the second im-
pact contains a double version of the structure observed in Fig.
1 after the first collision. This is expressive of the recurrent
properties of the mapping process. The sketch in (b) shows the
part of Fig. 2 that has been transformed into (a).
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FIG. 4. Outcome distribution after three iterations of Fo C.
The substructure observed on the right-hand side of Fig. 2 now
appears on the left-hand side of this figure. On the right-hand
side, additional substructure has appeared, as many of the areas
of constant outcome in Fig. 2 have been divided into several

smaller ones. Again there is a certain self-similarity in the pro-
cess.
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FIG. 5. Final outcome distribution for the case in which the
die is started with an initial horizontal momentum p ,=0.
Comparison with Fig. 4 shows that the basic structure in the
outcome distribution is determined by the first few impacts.
The later impacts introduce a good deal of fine structure.
Nonetheless, one can still find regions where the initial condi-
tion can be varied significantly without changing the outcome.
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Detail of Fig. 5 illustrating the fine structure which

separates flat and nonflat collisions in the first impact. This fine
structure is not yet fully understood.
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FIG. 7. Final outcome distributions for the case where the
die is started with an initial momentum in the positive x direc-
tion equal to 10% of the maximum, initial vertical momentum
in the plot. The outcome distribution is deformed relative to
the distribution observed in Fig. 5 for vanishing, horizontal
momentum in the first impact.
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FIG. 8. Final outcome distribution for the case where the die
is started with an initial momentum in the negative x direction
equal to 10% of the maximum, initial vertical momentum in the
plot.
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FIG. 9. Variation of the cross basin area A with the initial
conditions @, and p,, for p,o=0. The 16 grade grey-tone code is

logarithmic with white denoting normalized cross areas exceed-
ing 2.2 and black denoting areas less than 1.5X 107,
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