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The interaction between solitons of two weakly coupled sine-Gordon systems is considered. In
particular, the stability of bunched states is investigated, and perturbation results are compared

with numerical results.

I. INTRODUCTION

Recently there has been much interest in the subject of
coupled and perturbed sine-Gordon systems.' "* The in-
vestigation of the sine-Gordon system, especially, has
been done to model the fluxon dynamics of long Joseph-
son junctions (see, e.g., Refs. 5-7), where a magnetic flux
quantum is modeled by a localized solitary 27-kink solu-
tion of the perturbed sine-Gordon equation (PSGE) given
by

¢xx‘¢n—5iﬂ¢=a¢[—ﬂ¢m_'fl . (1)

Here ¢ is the phase difference between the quantum-
mechanical wave functions of the two separated super-
conductors. The spatial dimension (x) is normalized to
the Josephson penetration depth A; and the time dimen-
sion (1) to the inverse plasma-resonance frequency w, .
The normalized current density of Cooper pairs tunneling
through the junction is represented by the sing term and
the density of tunneling quasiparticles is represented by
the a¢, term, which is a dissipative term in the equation.
Surface loss in the superconductors is represented by the
parameter 3. The power input is 1 representing the ap-
plied bias current density forced through the junction. In
this paper we will study the dynamics of the interaction
between two solitons of different but weakly coupled
sine-Gordon systems (SGS’s). As shown in Refs. 1 and 2,
two colliding solitons of different SGS’s, can form a
bunched state, due to dissipation. Using the adiabatic
perturbation method from Ref. 5, simple criteria for the
existence of bunched states can be obtained and good
agreement between perturbation results and numerical
simulations of the perturbed and coupled wave equations
is found in the appropriate limit. Two kinds of energy
conserving coupling mechanisms will be discussed in de-
tail (inductive and capactive). In particular, the induc-
tively coupled sine-Gordon systems are of interest, since
good agreement between experiments and numerical
simulations is found® when inductively coupled SGS’s are
used to model the phase locking of fluxons in a system of
two parallel long Josephson junctions (LJJ’s).

II. THEORY

Considering the Lagrangian density L of two coupled
one-dimensional sine-Gordon systems of the two vari-
ables ¢ and ¢:

L= =5+ —95)
—2+cosp+cos+A,p, 1, + A0, . )

The equations of motion for ¢ and ¢ are then the two
coupled sine-Gordon equations, where the coupling terms
are nondissipative, A; and A, being the coupling con-
stants,

¢xx —an —Sin¢:A]‘/)xx +A2¢lt ’
1/)xx - wtt _Sind}:A1¢xx +A2¢rt .

From Eq. (2) we also get the total energy H of the system
as

(3)

H=H,+H, ,
Ho=[" (167 +1g2+1yi+ 1yl
+2—cos¢—cosyp)dx , (4)

Hl: fj:c(Aquld'l _A1¢xl/}x )dx »

where we will denote H, for the interaction energy, since
H, is the expression for the total energy of the two sine-
Gordon systems with no coupling.

The coupled sine-Gordon systems, can be modeled as
shown in Fig. 1, where two discrete analogs of LJJ’s are
inductively and capacitively coupled. The LJJ’s are
represented by the critical current density I, the shunt
capacitance per unit length C,, the leakage conductance
per unit length G, the surface resistance per unit length
Ry, and the surface inductance per unit length L. The
bias current densities of the two LJJ)’s are I, and I,, re-
spectively. The coupling of the LJJ’s is given by the ca-
pacitance per unit length C, and the mutual inductance
per unit length M.
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FIG. 1. Discrete electronic circuit of the system considered. The weak interaction is given by the mutual inductance M and the

capacitance C,.

The equations of motion for the phase differences are,
in the continuous limit, found to be
by — b, —sing=a¢, — B, —n + Ay + A, ,
¢xx - t/}tt - Sind}:alpt —Bl/jxxt — M + Al¢xx + A2¢" .

Here x and ¢ are normalized to

172
A= l
7| 2eL1,[1—(M /L))
and
. #c, c, 172
Wy = ’
2el, C,

respectively. The normalized loss parameters a and 3 are
given by

P 1/2
=G
@ Ya 1 el C,(1+C,/C))
and
B L 1 M 2 2eIC 1/2
Ry L #C,(1+C,/C,)

The normalized bias current densities are 9, =1,,/I. and
n,=1,,/1,. Finally, we have the coupling parameters as
Al:"‘M/L and A2: ——CZ/(CI +C2).

Note that the well-known Lorentz invariance of the
unperturbed sine-Gordon equation [left-hand side of Eq.
(1)] is preserved in the coupled equations, Eq. (5), for
a=B=0if A,=—A,.

The energy of the system Eq. (5) is clearly given by ex-
pression Eq. (4) and the time rate of change in energy is
then found to be

d ®
S H=T 7 It nsb, — a8t 9h) —Bg% +yi)ldx .
(6

where we have assumed ¢,,¢,,¥,,¥,—0,|x|— o. Note
that since the coupling mechanisms are nondissipative,
the parameters A; and A, do not enter the power expres-
sion Eq. (6).

III. PERTURBATION THEORY

The fundamental kink solution, considered in this pa-
per, is given by

0_ - — _x—ut
¢"=4dtan Z,, Z, = exp i(l_uz)x/z @

which is an exact solution to the left-hand side of Eq. (1),
u being the kink velocity and

Yo(u)_:(l_uZ)-—l/Z

is the inverse Lorentz contraction of the solution. The
difference between kinks and antikinks (solitons and an-
tisolitons) is shown by the choice of sign in Z,.. The
solution Eq. (7) is used to describe kinks in both sine-
Gordon systems.

One should note that in case of ¢=1vy and
a=p=7,=7,=0, Eq. (5) has the exact solution:

do=4tan"'{exp[y(ulE—ur)l},

f=— % et
V1-4,’ VI1+A,

The simplest interaction between two kinks belonging to
different systems is the internal oscillation in a bunched
state. Assuming a=pB=17,=1,=0 in Eq. (5) we use the
kink wave forms given by

¢=¢O+IJ” ]'U.[<<1 ’
V=¢otv,

Inserting Eq. (9) in Eq. (5) and linearizing the equations
in v and u, we find the equation:

9)
vl <<1, u=0.
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A 14,
1—a, ¥ 7Y% 14,

(L=v),,=(u—v)cosgy .

Looking for harmonic oscillating solutions for
f(&,7)=pu—v we use 3*/37>— — »? and obtain the eigen-
value problem:

1+4A, 1+4, 1+4,
1—A, 1—-A,7 % 1—4,

cospof = —w’f . (10)

For A;=A,=0 a solution to Eq. (10) is the translation
mode: w=0, f,=2sin(¢y/2) (see, e.g., Ref. 8). Regard-
ing A, and A, as small perturbations we find by use of
quantum-mechanical-like perturbation theory the eigen-
value ’ for the coupled system (to first order in A, and
A,) to be given by

1+4, 144, (o« ge 118 ra
1—A, 1—A, f_wfofo,gg §‘m:f_wfofocos¢od§
== [ fofodt
A, 1+A
—_— 2= 2 ! 2;:;1
©TITTa, 1-a, S0 (11)

From Eq. (11) we see that the capacitance coupling A,
plays a minor role in the internal oscillation of a bunched
state when ¥ =0.

Turning to the adiabatic perturbation method® we
neglect the perturbation of the kink wave form arising
from the right-hand sides of Eq. (5). By use of the kink
solutions of the form Eq. (7) we find the interaction ener-
gy H; between the two weakly coupled sine-Gordon sys-
tems. Let r be the distance between the two solitons.
The considered kink profiles are then given by

¢=4tan‘1{exp Yoluy) x—%—u,t }-l-sin"*q1 ,
(12)
¢=4tan‘1[exp Yoluy) x+§—u2t +sin" !y, .
For |u,|=|u,|=|u| we find that
Hy=—8y,(u)(A py)—— o) (13)
! YorultBy U taBe sinh[ryo(u)]

Using Eq. (13) as the only interaction seems to be a rather
crude approximation, since we have seen from Eq. (8)
that the coupling parameters are first-order perturbations
to the kink wave forms. However, for #« =0 we find that
H, [Eq. (4)] is unaffected to first order in the coupling pa-
rameters A, and A, when the solutions of the form ¢,
[Eq. (8)] is used. Thus in the framework of the adiabatic
perturbation method, we regard the right-hand side of
Eq. (5) as small perturbations and use the unperturbed
kink Eq. (7) [Eq. (12)] as a valid profile in the limit
|lu|—0, n,,a,—0. As we shall see relatively good
agreement between the results obtained from Eq. (13) and
numerical simulation of Eq. (5) is found when the stabili-
ty of the bunched state is studied.
Defining the momentum P of a sine-Gordon system as
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P==[" 6.4.dx, (14)
the result when the wave form Eq. (7) is inserted gives
P=8uy,lu) . (15)

The equations of motion for the two interacting kinks can
then be written as

aP, B . o0H,
—?—'—aPl—?Pl(l"FaPl)"‘Z’rr'r[l— 3 "6
opP, _ B . |
?—_apz_gpz(l+apz)+277772+ 3
where
oH, )
ar =—87/0(u)(A1—u1u2A2)
sinh[ry (u)]—ryq(u)cosh[ry (u)
y [rvo '] 270 [ryo(w)] ' an
sinh“(ryq(u))

By setting a=p=7,=7,=0, u,=—u,=u, (Ju|*<<1),

and u =1-9r /0t we find for the harmonic internal oscilla-
tion (r << 1) the frequency given by

w’=2A, . (18)

This is consistent with the expression Eq. (11) to first or-
der in the coupling parameters. The independence of A,
is caused by the assumption of nonrelativistic behavior
(lu|*<<1), which clearly eliminates the A, influence in
the interaction Eq. (17). Note that the frequencies Eq.
(18) and Eq. (11) are given for soliton-soliton interaction.
If one junction sustains a soliton and the other an antisol-
iton, a positive A, would give rise to a repulsive interac-
tion. However, replacing A; by —A, would again give
the preceding value of internal frequency in a bunched
state of a soliton antisoliton pair. Now we consider the
case where the two solitons move with equal velocity in a
steady-state motion. By adding and subtracting Eq. (16),
we get

0=—aP—§P(1+6_3P2)+7(n1+n2) ,
19
0=l o, "
=mn TIZ) or >

where P, =P, =P in a bunched state. The first of these
equations is simply the power balance velocity of the
bunched state given by the average of the two bias
values—i.e., (for 8=0)

1

= . (20)
¢ {1+[8a/‘”(771+772)]2}l/2

This result is of course also found (for 3=0) when Eq. (6)
is set to zero and Eq. (12) is used as kink profiles. The
second equation in Eq. (19) gives the balance between the
bias difference (7, —7,) of the two sine-Gordon systems
and the internal force between the kinks. This balance
can only be obtained when the steady-state distance r is
no greater than a certain value r, given by the r value
that optimizes the force Eq. (17). Numerically this is
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found to be ry=~1.606(1—u?)!"? and the corresponding
maximum internal force is

3H,

3 ~8y3(u)A,—u,u,A,)0.310 . 1)
;

r=r0

The criteria for the existence of a bunched state is then

4X0.310
T

Hm—ml< yHu) A —u’h,), (22)

and when the power balance velocity (for 5=0) Eq. (20)
is inserted, this gives

2
. 4X0.310 w1+ 1)
7"’]1_772|<‘—-— 1+ 8a
A
X |A— 2 1. @
1+ {8a/[m(n,+ny)]}

This is the threshold condition for traveling wave solu-
tions of bunched states of solitons belonging to two weak-
ly coupled sine-Gordon systems. When the coupling pa-
rameters satisfies the Lorentz invariant combination,
A,=—A,=A, we find that the threshold for B=0 is

given by
| ]

A=—A=A. (24

4X0.310

m(n,+m,)
e I

8a

1+2

The very simple perturbation result Eq. (22) is of course
valid only in the limit of small perturbations—i.e., when
the right-hand sides in Eq. (5) are small. Hence it must
be expected to deviate considerably from full numerical
solution of Eq. (5) as we increase the bias values 7,. A
threshold condition in the limit of high bias values is
found when we note that the condition |7;| <1 must be
satisfied to maintain a stable kink solution in a perturbed
sine-Gordon system. Thus we have

=l <1=3(n+my) . (25)

The limits of Eq. (25) and Eq. (22) are then to be com-
bined to estimate the threshold value for the bias
difference in a bunched state of solitons.

IV. DISCUSSION

Combining Eq. (25) and Eq. (23) we find good agree-
ment with the full numerical solution of Eq. (5) in case of
A,=0 and B=0. The choice of A,=0 has been made to
match the study of phase locking between two parallel
long Josephson junctions discussed in Ref. 3. The numer-
ical scheme, used to solve Eq. (5), is an explicit second-
order finite difference method where periodic boundary
conditions have been used to simulate an infinite spatial
dimension. Space and time grid sizes as well as the
length of the system have been chosen depending on the
bias values. As an initial condition we used the unper-
turbed soliton solutions Eq. (12) with » =0, and to elimi-
nate the excess energy coming from the initial soliton
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wave forms we used a relatively large damping parameter
a. The results of the simulations of Eq. (5) are displayed
in Fig. 2 as error bars, where the lower end of a bar
represents a simulation where the kinks formed a
bunched state, and the upper end of a bar represents a
simulation where the kinks could not form bunched state.
The perturbation result is shown as solid curves. The de-
viation between the results of numerical experiments and
the parabolic perturbation curve is, as noted above, due
to the lack of validity of the kink profiles when the per-
turbations are large. In particular, the Lorentz contrac-
tion of the kinks Eq. (12) is not a good approximation for
high bias values. Numerical experiments show that high
bias values do not give rise to the narrow Lorentz con-
tracted kinks. Hence the coupling, which is proportional
to the second derivative of the profile, is in the perturba-
tion treatment considered too high. This is in good
agreement with the comparisons made in Fig. 2. Another
characteristic that can be important to the existence of a
bunched state is that the individual momenta of the kinks
in a bunched state are not equal when the bias values are
not equal. The numerical simulations showed that the
“low bias” kink has larger momentum than the ‘“high

(a)
1=(n,+m2)/2
|
i
H
T T |
1.0
b= 00 (m,+72)/2
(b)
, 0.2 1
ST 1=(n,+72)/2
§ : .
’5 j a=0.1 / 1 ! 1
0.1 A I
1 N !
I
OO T T T T I T T T T ‘
).0 0.5 1.0
b= 002 (mi+m,)/2

FIG. 2. The upper limit of the bias difference |7, —,| /2 for
a bunched state of two solitons vs the average bias (1;+17,)/2.
Solid lines are perturbation results and the error bars represent
the results of the numerical experiments. Only A,=0 and =0
is considered. (a) A;=0.01. (b) A;=0.02.
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bias” kink. This is not considered in the perturbation,
where the momentum is uniquely determined by the ve-
locity Eq. (15).

We have discussed some energy conserving coupling
mechanisms between sine-Gordon systems. Criteria for
existence of a bunched state of kinks from different weak-
ly coupled systems have been obtained by simple pertur-
bation arguments. Comparisons with numerical simula-
tions of the coupled partial differential equations, Eq. (5),
and perturbation treatment have shown good agreement
in the expected region of parameters, when the stability
of the bunched states are studied. Also, we have shown
consistency between two different perturbation methods
leading to the frequency of the internal oscillation of a
bunched state [Egs. (11) and (18)].

We close this paper by noting that the threshold condi-
tion for the existence of bunched states can be closely re-
lated to the locking range in phase locking experiments
recently obtained with two long inductively coupled
Josephson junctions.® Our results in this paper are ob-
tained for infinite junction length, and consequently, the
boundary reflections of the magnetic fluxons are not con-
sidered. However, if the junctions are made very long, or
annular, the boundary effect would vanish.
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