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1. INTRODUCTION

Spectral Properties of
Homogeneous and
Nonhomogeneous Radar
Images

S0REN N0RVANG MADSEN
Technical University of Denmark

On the basis of a two-dimensional, nonstationary white noise

model for the complex radar backscatter, the spectral properties of

a one-look synthetic-aperture radar (SAR) system is derived. It is

shown that the power spectrum of the complex SAR image is scene

independent. It is also shown that the spectrum of the intensity
image is in general related to the radar scene spectrum by a linear

integral equation, a Fredholm's integral equation of the third kind.
Under simplifying assumptions, a closed-form equation giving the

radar scene spectrum as a function of the SAR image spectrum can

be derived.
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Synthetic aperture radar (SAR) is a technique that
provides high resolution radar images. This is achieved
through use of a coherent radar system and advanced
signal processing [1].

The applications of SAR include sea ice mapping and
monitoring, agricultural and geological investigations, oil
spill detection, and more general oceanographic studies,
and the list is rapidly increasing. In order to derive the
most from the radar images, it is necessary to fully
understand the peculiarities of radar images. One of the
most important "artifacts" is the speckle effect. Since
radar systems are bandpass systems operating on a
microwave carrier frequency, it is found that the addition
of several scatterers within one resolution cell will
involve phase shifts due to different delays of the carrier
[2]. The result is the speckle effect that makes the radar
image of a homogeneous target field appear as a random
process and the amplitude of the image signal is given by
the Rayleigh distribution [3].

It has been reported that empirical distribution
functions (derived from analysis of data windows) is non-
Rayleigh (e.g., [4]). The present model deals with the
non-Rayleigh observations by modeling the scene as
being a nonstationary white-noise process.

Speckle has a strong impact on the relation between
spatial frequencies of the average backscatter coefficient
o-(x,y) (called the scene spectrum) and the spatial
frequencies of the power detected SAR image (the image
spectrum). The purpose of the paper is to present the
analytical relation between the scene spectrum and the
image spectrum, and thereby facilitate the inversion of an
observed spectrum. Such an inversion is important, for
instance, when SAR is applied to imaging ocean waves
[5, 6]. This application is mainly concerned with
extracting the wavelength and direction of the ocean
waves.

In this paper only complex images and one-look
power detected images are considered. Furthermore,
moving targets are excluded from the analysis. The
models applied to the scene and the radar system are
presented in Section II. In Section III a statistical
description of radar images is given, including formulas
for the power density spectrum of complex SAR images
and one-look power detected images, respectively. In
Section IV some simplifying assumptions are introduced,
and the theory of the paper is compared with a previously
used model.

11. RADAR SCENE AND SAR SYSTEM MODELS

A. Radar Scene Model

The model of a radar scene by necessity has to reflect
the fact that reflections are superimposed on a complex
signal basis, since both amplitude and phase are needed
to calculate the reflection from a compound reflection [1].
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A useful model is found by assuming that the scene
consists of a set of point scatterers, so that the complex
backscatter coefficient per area, cr,(r) = o-(x,y), can be
written

Gj(r) = v' exp(j81) 8(r - r1) (1)

where a, is the radar cross section (RCS) of scatterer 1,
is the total phase shift of scatterer 1 due to the reflectio
and the slant range delay, rl is the position of scatterer
and 8(r) is the two-dimensional Dirac delta function.

By introducing assumptions such as independence c

the phasors, uniform distribution from 0 to 2'r of the
phasors, and the presence of many scatterers within the
radar impulse response (IPR) it can be justified [7] that
Uj(r) is modeled as a white-noise complex circular
symmetric Gaussian process with the autocorrelation
function

R,'(rj, r2) = 8(rl -r2) (ro (r2).

For a homogeneous scene, which is equal to a spatially
stationary process we find

R,7(rj, r2) = Rec(rl- r2) = cr08(rl - r2)

with the corresponding power density spectrum

SaC(f) = fR,(r)exp(-jnrrf)dr = uc. (4)

B. SAR System Model

The problem of modeling a SAR system is many
sided. First, the system is not invariant, which is
generally required to define a frequency transfer function.
Second, a SAR system involves numerous nonlinear
mechanisms (e.g., aliasing, A/D conversion, processor),
which cannot be included in a linear model. However, it
can be argued, that the simple spatial invariant model
shown in Fig. 1 will be useful ([7, 8, 91), where ocr(x,y)
is the complex radar scene, He(fxJfy) and H,(fx,fy) is the
encoding and the compression transfer functions, and
n(x,y) is the thermal noise.

In the following we define:

H(f) = H(fx,fy) = He(fx,fy).Hc(fxt,fy) (5,

h(r) = h(x,y) = F- 1 {H(fx,fy)}

= f f H(fx,f,)exp[j21T(fxx+fyy)] dfxdfy (6'

Gc(X,Y) g(x,y) S(X,Y)

He (fx,fy) HeI f,fy it*igt2

n(x,y)

Fig. 1. Simplified spatially invariant SAR model, with power
detection.

Ill. STATISTICS OF RADAR IMAGERY

The autocorrelation of the radar target scene is, from
(2),

R,, (ro+ r, ro) = 8 (r) * a 0(ro). (7)

Within a target space, it is reasonable to assume that a
spatial average value of the radar backscatter will exist,
so that we have

cr° = (O.O)

1 (X fY
= lim lim u (x, y)dxdy.

x-> xY- 4XY -x Y
(8)

where the overbar and ( ) indicate space averages. (In
practice, the analyzed windows are always of finite
extent, and the behaveor of cro outside this window will
be irrelevant.)

The spatial averaged correlation function (see
Appendix A) is, from (7), (8), and (A6),

(9)R,,(r) = r°.8(r)

(3) and the corresponding average power spectrum is

Se (f) tj0, (10)

Equations (9) and (10) show that even for
nonhomogeneous (eventually periodic) scenes, the
backscatter process is still 'white (in the sense that the
power spectrum is constant as a function of frequency).
From (A8) and (10) we find the spectrum of the complex
radar image g,

Sg(f) = |H(f) 12. (1 1)

So, for nonstationary radar scenes the average spectrum is
given by the power transfer function of the SAR system.
Therefore, to estimate the power transfer function of a
SAR system homogeneous areas are not required. The
significant result is that the shape of the power transfer
function of the complex SAR data will not depend on
homogeneity of the scene. This is in contrast to the
detected images, where the scene spectrum has a direct
impact on the image spectrum as will be discussed below.

We shall start the analysis of the detected image s by
expressing the nonstationary autocorrelation function RS
by the autocorrelation of the complex image g.

R,(ro + r,ro) = E{s(ro + r) s(ro)}
- E{g(ro + r)g*(ro + r)g(ro)g*(ro)}

= E{g(ro + r)g*(ro + r)}.E{g(ro)g*(ro)}

+ E{g(ro + r)g*(ro)}

E{g*(ro + r)g(ro)}
= Rg(ro + r,ro + r) Rg(ro,ro)

+ |Rg(ro + r,ro) 12. (12)
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The third equality is based on a fundamental property of
zero-mean complex Gaussian processes [10].

We can evaluate the individual termns of the right-hand
side to be

Rg(ro+r,ro+r) fIh(a)2acr0(ro+r-a)da (13)

Rg (ro, ro) = Ih(b) 2 *a(ro- b) db

and finally,

Rg(ro+r,ro) = fh(a)h*(a -r)a4(ro+r-a)da.

For a homogeneous area this gives

Rs(r) = (c.0)2 {(f Ih(a)I2da)2

+ if h(a)h*(a - r)daI2}
= (aOr)2 {Rh (O)2 + IRh (r) 12}

where 0 = (0,0) and Rh is defined by

Rh(r) = fh(a)h*(a - r)da.

The spectrum of a homogeneous area is then

Ss(f) = (a0)2 {Rh(0)28(f)

+ f IH(f + X) 121H(X) 12dX)}.
The first tern is the dc component and the second ter
the autocorrelation of the power transfer function. Thi
shows that the spectrum of a homogeneous area is giv
if only the power transfer function JH(f) 2 is known.
However, (11) showed that the power transfer functioi
can be obtained from the complex image g without
assuming stationarity.

Next we find in the nonstationary case

R/(r) = ( ff h(a) 12 h(b)12a0(ro + r - a)
X a0(ro-b)dadb

+ ff h(a)h*(a - r)h*(b)h(b - r)
x a0(ro++r-a)a0°(ro+r-b)dadb)

= ff Ih(a) 2Ih(b) 2Rao(r + b - a)dadb

+ ff h(a)h*(a - r)h*(b)h(b - r)
x R (b - a)dadb.

We now calculate the average spectrum

SS(f) = fRs(r)exp-jI2wlr.f)dr
= Sl(f) + S2(f).

(14)

(16)

(17)

For convenience, we will transform the two terms on the
right-hand side of (19) separately.

S,(f) = 1ffIh(a)121h(b)I2Rco(r + b - a)

x exp(-j2trr.f)dadbdr

= S0o(f) fI h(a) 12exp(-i 2fT a)daI2

= S0.(f) T(0,f) (21)
where T is defined by

(15) T(r,f) = if h(a)h*(a-r)exp(-j2,rrf.a)daI2.
The second term of (19) can be expanded to

S2(f) = ffff h(a)h*(a - r)h*(b)h(b - r)

exp(-j2'frr)Sco(fI')
x exp[j2iTf'(b-a)]dadbdrdf'

= ff T(r,f') S 0(f')exp( -j2rf *r)drdf'

= f T'(f,f')S(f')df'

where

T'(f,f') = f T(r,f')*exp(-j2'rf'r)dr.
(18) In summary we find
m =S T
is S, (f) = Scro(f)T(0,f) + JTt(f,f Sor (f)dfV.

(22)

(23)

(24)

(25)

It is seen that to perform the conversion from S0ro(f) to

S/f) we must know T(r,f) from (22).
If we assume that the scene is homogeneous, (25) will

be reduced to

S/(f) = (al)28(f)T(0,0) + (afY)2T'(f,0)

= (a0o)2 {T(0, 0) * 8 (f)

+ f T(r,0)exp( -j2rrf * r)dr}.

By inverse Fourier transformation we find

R(r) = (a0)2{T(0,0) + T(r,0)}

(26)

(27)
which checks with (16) and (17). It must be noted that
only T(r,O), and not T(r,f) can be estimated from
homogeneous targets. By expansion of T(0,f) and
T'(f,f') one finds

(19) T(r,f) = | fH(g)H*( -f)
x exp(i2'nr.*)dI12

T(0, f) = fH(;)H*(- f)dI 2

(20) T'(f,f') = fH(g+f)H*(g+f-f')

(28)

(29)
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X H*(;)H(;-f ')d;. (30)

From these equations we observe that if the system is
bandlimited, so that

H(f) = H(fx,fy) = 0 for Ifxl 2Ix or If,I' BY
2 2

(31)

then the integration bounds of (25) can be limited to -Bx
fx Bx and -BY C fy _ BY.
When finite integration intervals are introduced in

(25), we find that the equation has the form of a
Fredholm integral equation of the third kind. To solve
(25) for SCro(f) numerical methods must in general be
applied. The approach to be used should depend on
properties of the impulse response function h(a) but also

[ofnRh (0)]2 + fSa0(f)T(0Of)df + 2cufRh (0)&o°Rh(0)
2

[krRh (0) + cnRh,(0)]2

(35)

Therefore, given a backscatter spectrum S 0(f) the
PMR varies with the signal to noise ratio. For pure noise
PMR = 2 and for pure signal

f S0 (f) T(0, f)df
PMRF=[=Rh()]2 (36)

If PMRUO is known, then (35) can in principle be
used to estimate signal to noise ratio SIN in an
uncalibrated radar. We find from (35) and (36) that

f S0 (f) T(0, f) d
1 + [&fRh(0)]2

(1

PMR=2=

If -(2 2

VCT.Rh (0)J

+'URh(O)!
CrnRhc (0)J

+ 2('fRh(0)
ucnRhc (°)J

on a priori knowledge of Sa0(f). The moment method
[1 1] should be considered.

The inclusion of thermal noise in the analysis is
straightforward though tedious. If we assume the thermal
noise is stationary, that is, constant, and we furthermore
use that thermal noise and signal are independent, then it
can be shown that

SS(f) = {(JnRh (0) + 2oJn C&Rh(0)Rhc(0)}8(f)

+ S 0(f)T(0,f) + f T'(f,f')Sao(f')df'
+ o Tc(f,0) + o,cu0[C(f) + C(-f)]

where the c index indicates parameters related to the
compressor filter, and Rh and T' are defined similar
to Rh and T'; see (17) and (24). C(f) is given by

C(f) = F{Rh(r)Rt,(r)}

= fIH( + f) 12IHc(g) 12dt.
From (32) one can by integration find the average im,
power

Rs(O) = (E{s(r)s(r)}) = 2{[(3nRh (0)12

+ fJ S(f)T(O,f)df
+ 2cnRhc(0)aORh(O)}

This again implies that the power to mean square
(PMR) of the image is

PMR= R(E{s(r)})2 S

2+ PMR 0* (S)2

[1 +

where

S
=

orRh(O)
N ornRh (°)

(37)

IV. SIMPLIFYING APPROXIMATION

One of the most widely used models of speckle noise
in radar images is

s(r) = a00(r) . sn(r) (38)
where &'(r) is the mean backscatter coefficient of the
scene, and sn(r) is a multiplicative speckle noise factor,
and a° and sn are independent [5, 6, 12]. Equation (38)
leads to

age R,(r) = Rcr0(r) . Rsn(r).

For a homogeneous area we have

R.0(r) = const = (er0)2

and therefore a comparison with (16) gives

(34) Rsn(r) = Rh(0)2 + IRh(r)12 = If lh(a)12da12
ratio

+ j h(a)h*(a - r)da 12.
If (39) and (41) are then compared with (19) we see that
(38) is only a useful model when R.0(r) is slowly
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varying compared to the system impulse response
function h(r).

If, however, we can assume &° is slowly varying, we
find, with no additional assumptions, that

Ssn(f) = a(f)| f IH(f)I2 dgj2

+ f IH(f + g) 12IH(g)I2d; (42)
and, using o as the convolution operator, we have

SS(f) = Sao(f) 0 Ssn(f)

= Sc0(f)I f IH()12d 12

+ Sff o(f')H(f-f' + g)12
x IfH)d)I+2fdfI+(d)

- SCo(f)| 1H(g) 12dg 12 + I 0(f')df'

. |I(ff +()12IH(f) 1d2d

SeS¢ (f) * T(O,O) + Ja(f')df' * T'(f,O). (43)

In cases where the assumption is applicable (43) is
found to be a major simplification. Firstly, only the
power transfer function needs to be known, and, as was
shown in (11), it can be estimated from the complex data.

Secondly, integration on both sides of (43) gives

f Ss(f)df = f Sa0(f')df'{T(O0,)+ f T'(f,O)df}
rr

- 2 . T(O,9) f So(f')df (44)

where the inverse Fourier transform of (24) has been
used. Then using (43) and (44), Scr(f) can be expressed
in the closed form

____ T'e(f,O0)Svo(f') = T(O,O) {SS(f) 2T(O,O)

fSs(f')df'}. (45)

Note, that T(O,O) and T'(f,O) are determined solely by
the power transfer function, IH(f)12, [see (29) and (30)],
which can be estimated from the complex image data
(11).

V. CONCLUSION

The model presented shows that the average power
spectrum of the complex SAR image is not dependent on
scene homogeneity. Therefore, estimation of the power
transfer function IH(f) 12 can be performed using
nonhomogeneous images. This is in contrast to extracting
similar spectral information from power images, where
scene homogeneity is essential. For nonhomogeneous

radar scenes, the relation between the radar scene
frequency spectrum and the radar power image spectrum
is not given by a simple transfer function, but by a linear
integral equation. This means that one frequency in the
radar scene will give rise to a set of frequencies in the
power image, as expressed by (25). To define the integral
equation completely, the complex IPR (impulse response
function) of the SAR system must be known. Usually this
can only be achieved through calibration against reference
reflectors.

If it can be assumed that the scene properties are
slowly varying compared with the width of the IPR, then
only the power transfer function needs to be known. As
mentioned, the estimation of this function can be
accomplished from the complex SAR data, whether the
scene is homogeneous or not. In this quasi-stationary
situation an inversion can be performed, so that the radar
scene spectrum-which is of interest-can be expressed
in a closed form involving the observed radar image
spectrum and the system power transfer function.

APPENDIX A
BASIC THEORY OF NONSTATIONARY PROCESSES

In this Appendix some definitions of the theory of
nonstationary processes relevant to this paper is reviewed.
For simplicity in notation, the processes are assumed to
be one-dimensional. Nonstationary processes is also
treated by Papoulis [13].

The correlation function of x and y is

RXy(tI,t2) = E{x(t1)y*(t2)}. (AI)

For a linear system with input x(t), IPR h(t), and output
y(t), we have

y(t) = fx(t- a)h(a)da

and hence

Ryy(t1,t2) = ff h(a)h*(f3)Rxx(tl- a, t2 -p3)dad3
= h(tl) o h*(t2) o Rxx(tl,t2)

where o indicates convolution.
We now introduce the two-dimensional Fourier

transformation of R(tl, t2)

S(fl ,f2) = JJR (tl, t2)

X exp[-j2fr(f1tl +f2t2)]dtIdt2
We find from (A3) and (A4) that

Syy(f1,f2) = H(fi)H*(-f2) Sxx(f J2)-

(A2)

(A3)

(A4)

(AS)
Even though R(tl,t2) is nonstationary, one can in general
define a space or time averaged correlation function. Its
form will depend on the observed signal, as to whether it
is a finite energy signal or finite power signal. For the
finite power signal we define
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1 fTR(T) = (R(t+T,t)), = lim - R(t+ T,t)dt (A6)
T-,oo2T J T

where ( ) indicates the time (or space) average operator.
The average power density is derived from

S(f) = f R(r)exp(-j21rfr)dT. (A7)

Combining (A3) and (A6) gives

S,,(f) = IH(f)12 SA.(f). (A8)
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