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Time Integration in Solid M echanics.
From Asymptoticsto Conservation Principles

Steen Krenk

Department of Mechanical Engineering.
Technical University of Denmark, Lyngby, Denmark
e—mail: sk@mek.dtu.dk

Introduction

Numerical time integration of mechanical systems is used in many applicationsl iantstruc-

tural engineering, modelling of engines and other rotating machinery aasvigllrobotics. Tradi-
tionally the numerical integration has been carried out by reformulating fveppate differential

equations to difference equations for finite time increments by substitutingriexpansion rep-
resentations. While these methods often work well for unconstrained lpmeltfems, problems
are often encountered for strongly non-linear problems, e.g. in ctionegith moving bodies,
and when implementing constraints, e.g. via Lagrange multipliers.

[37]

SECT. IL
De Inventione Virinm Centripetarnm,

Prop. I. Theorema. L

Avreas quas corpora in gyros afta radiis ad immobile cemrum wirinm
dultis deferibunt, &-in planis immobilibus confiftere, o effe tem-
poribus proportionales.

Dividatur tempus in partes zquales, & prima temporis parte
defcribat corpus vi infita refam 4B. Idem fecunda temporis
parte,fi nil impediret,reta pergeret ad ¢,( per Leg. I') defcribens
lineam Be zqualem ipfi 4B, adeo ut radiis A4S, BS, ¢Sad
centrum adlis,
confe&tz forent
zquales arez 4
§B, BSe. "Ve-
rum ubi corpus
venit ad B, agat
viscentripetaim- -
pulfu unico fed z e O\t
magno, faciatqs e e \ i
corpus a refta e ol
Bc deflectere &
pergere in refta
BC. Tpfi BSpa-
rallelaagatureC  S£=
occurrens BC in
C, & completa fecunda temporis parte, corpus( per Legum Co-
rol. 1) reperietur in C, in codem plano cum triangulo A§ B. Junge
8C, & trangulvm § B C, ob parallelas S B, Qf? 2quale erit trian-
gulo $Be, atq; adeo etiam triangulo A B.” Simili argumento [i

vis

@agprpIte

@371 8

Figure 1: Incremental development of linear momentum,dizia (1686)

A different type of time integration algorithms has been developed over the3&20 years, based
on an integrated form of the equations of motion. The basic idea can be idstith reference

to the famous momentum diagram from Newton’s Principia [1]. Loosely stae@dhation of

motion can be given in the form of a differential equation, or its integrated mameform,

Gmv) =) D]y, = [ ) ®



In the classic approach the differential on the left side of the equation tbmis represented
by an approximate difference expression, while in the momentum-based raetieoihtegrated
form is used, and the approximation lies in the representation of the forggahtén Newton’s
figure the momentum increment is the development fiémto BC, and the differenceC is
the force integral. The momentum increment approach enables exaeseatation of certain
conservation theorems, e.g. for momentum and energy for single or multipieles see [2, 3].
A general survey of conservation type integration methods has been givHairer et al. [4].
However, a number of special procedures have been develop@uédntegration of large motion
of deformable solid bodies, and a survey of some of these is presentedfailtiwing.

Geometric stiffnessin conservation algorithms

Consider a body with displacement veciorand internal forces given in terms of a potential
function asg(u) = V,G(u), whereV,, denotes the derivatives with respecttoThe equation
of motion to be considered is of the form

Mii(t) + Cu(t) + VuG(u) = £(t) @)

wheref (¢) is the load vector, an@ is a matrix representing linear viscous damping.

The energy balance equation corresponding to the equation of motionof@gised from multi-
plication withu”', followed by integration,

d%(%tﬁmu + G(u)) — ot — w’Cu 3)

The relation between the potential in the energy balance equation and tmalritece vector in
the equation of motion follows from application of the ‘chain rule’ of diffetration as

d—iG(u) = u’ V,G(u) (4)

The key to energy conservation is to develop an algorithm that containgtiv@kent relation for
a finite time interval and thereby a finite displacement incremaint

The second order differential equation of motion (2) is recast into spateesformat by intro-
ducing the independent velocity variable= 1. When this definition is multiplied by the mass
matrix M the augmented system for the state-space varighles| can be given in the following

symmetric form,
C M u _ f(t) 5
M 0 v| T | o ®)

The purpose of a single step time integration is to advance the state-spatéegar andv from
timet, tot,,:. Therefore the equations are integrated over the time int@yal, . 1.

. [fVuG(u)dt] _ [ff(t)dt]

-M [vdt 0

VuG(u)
—Mv

C M
M 0

Au

Av (©)

The time integral of the external force is represented as the interval I&idtmes the arithmetic
mean of the end-point valuésand the velocity integral is similarly represented’sisv.



The material is now assumed to be linear elastic in terms of the Green strain st the
second Piola-Kirchhoff stress tens®r This implies the linear relatio8 = DE whereD is the
constant stiffness tensor. When using the fact that the Green strairuedaatjc function of the
displacement gradient it can be demonstrated that the increment of thaalrgasrgy takes the
form
n+1 ~ T\ O

[Gw)]"™ = Ad” VO(VuET) S dv; @)
This is a finite increment form of (4) and an exact integral is therefotaioéd, when the internal
force is represented by the integral of the mean value product. Thisngasadly shown by Simo
& Tarnow [5] for linear elasticity, and extended to more general materialatsdoy Gonzalez
[6]. It has later been demonstrated [7], that the internal force asedkfin the integral in (7) can
be expressed as the mean value of the internal force at the end-poihesiofegration interval,
minus a correction term,

g« = 5[8nr1+8n] — jAKI Au (8)

whereAKY is the increment of the geometric stiffness matrix, usually available in finite element
programs.

Algorithmic high-frequency dissipation

The energy equation corresponding to the discretized equationsdigries previous section can
be expressed in the form

[%VTMV + %uTKu]ZH = Aulf — Au’CAu 9)

This is quite similar in form to the energy balance equation (3). Howeveegquéncy analysis
of the algorithm reveals that for discrete time incremehtsthe damping effect from a viscous
damping matrixC vanishes for high frequency response.

It is desirable to have a controllable damping of he high-frequency nsgpmomponents, as these

are often of spurious nature due to errors introduced by spatial tlistien in the form of ele-

ments. This can be obtained by introducing balanced terms in both of the séate esguations

[8, 9]

Atf
0

Au Atua
Av Atv

The algorithmic dissipation is controlled by the non-dimensional parameter the absence of
viscous damping the corresponding energy balance equation is

C+30hK M
M —1ahM

0 -M (10)

[KO

[5v"Mv+ fu"Ku]™ = Au'f - Ja(Au"KAu - AvIMAV) (1)
Itis seen that the dissipation term has the same form as the energy, butergthtihspace variables
[u, v] replaced by their incremenfdu, Av]| over the finite time incremenkt¢.

The low-frequency algorithmic damping ratio is given in terms of the paranaeterd the non-
dimensional frequencf2 = wAt, wherew is the modal frequency of the structure,

¢ =1aQ[1+ 0(Q%] (12)

It is seen that the algorithmic damping ratio increases linearly with the natacaléncy, and thus
this type of algorithmic does not leave the low-frequency responseaatedf as intended. The



damping characteristics are conveniently represented in terms of the antiplifizector A which
is the (complex) factor that propagates the modal state-space respunsime increment. The
amplification factor of the scheme (10) is shown as dashed curves in Fig. 2.

11

Figure 2: Algorithmic damping with\..| = 0.6. a) Amplification factor\, b) Spectral radiup\|,ax-

It has recently been shown that improved low-frequency damping giepe&an be obtained by
changing the mechanism of the algorithmic damping [9]. In the balanced dissidgorithm
(10) the energy dissipation is introduced via the diagonal terms contaixingnd Av. In the
low and mid-frequency regime these terms are roughly equivalehtwoandAt¢v. The idea is to
replace these terms formulated by use of the state-space variables with simisuteng a new
set of variables(t¢) andt(t) defined via first order filters with scalar coefficients,

alAts + s = Ata alAtt +t = Atv (13)

wherea At defines the attenuation time of the filter. The resulting algorithm takes the fotine of
state-space equations

C M][Au K o |[a] ,,. [K o ][as
At _ | +3a”At = At (14)
M O Av 0 —M v 0 —M At 0
supplemented by the discretized filter equations
As | N s| Au (15)
“| At £ Av
The energy balance relation of this algorithm without viscous damping is
[ %VTMV + %uTK u+ %oﬂ (tTMt +sTK s) ]ZH =
(16)

Au’f — %oﬁ‘ (ASTK As + AtTM At)
It is seen that the dissipation now only depends on the auxiliary varighlgs This removes the
low frequency damping, and leads to the algorithmic damping ratio
(=120 [14+0(Q%)] (17)

proportional to the third power of the frequency. The two algorithms with lhuikilgorithmic
damping lead to monotonous decay of free vibrations, and avoid the spusgillations associ-
ated with collocation type algorithms, [9].



Moving frame of reference

Modelling of rotating bodies introduce new problems associated with the oimmatativity of
rotations, see e.g. [10]. The problem, as well as an effective numericeédure, is here illus-
trated with reference to a rigid body with local inertial tendorocal angular velocity?, and
instantaneous orientation defined by the rotation teRsorThe local equation of motion is

Q-
Jcil—tJrQJQ:M (18)

In a time incrementft,,, ¢, 1] the body rotates further by the local angular ‘vec@®r’ A momen-

tum and energy conserving scheme was set up for this problem by Simong Y¥&] consisting

of a discretized form of the equation of motion (18) and a relation betweendhemental angle

® and the angular velocit§2. It turns out to be convenient to represent the incremental rotation in
terms of the Cayley vector

1
v = —tan(%gp) P (19)
¥
with the associated representation of the incremental rotation tensor
R(¥) = (I-¥) I+ ®) (20)

By use of this representation the angular moment balance leading to (18 expressedirectly
as [12], R R
JAQ +2¥JQ = (M + LW AM )AL (21)

where ¥ = Wx represents the shew-symmetric component matrix associated with the vector
components. The corresponding discretized form of the angular vetedityon is

® = [(53+0a) Qi1 + (53— ) Q] At (22)

wherea = 0 corresponds to energy conservation, while- 0 leads to energy dissipation [12].
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Figure 3: Local angular velocity components fat = 0.1: 4 (—), Qs (- -), Q3 (---).

Figure 3 shows the undamped whirling motion of a box with side lengths [1,32h®ass 12.
The intermediate axis is vertical and the box is started spinning®ith [0.0, 0.05, 10.0], corre-
sponding to a small deviation from the intermediate axis. The algorithm is Viegtige with only
about 2.5 iterations for a relative error i —%, and reproduces the well known tilting behavior.



Concluding remarks

Some of the main points of the new generation of conservation time integratioaduies have
been illustrated. An important additional aspect, which can not be covenedis the fact that
momentum and energy conserving algorithms can include constraints in tetragraihge mul-
tipliers, [13, 14, 15]. This removes the numerical problems with spurioa#laifons typically

associated with Langrange multipliers when using collocation methods.
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