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Introduction

Numerical time integration of mechanical systems is used in many applications in civil and struc-
tural engineering, modelling of engines and other rotating machinery as wellas in robotics. Tradi-
tionally the numerical integration has been carried out by reformulating the appropriate differential
equations to difference equations for finite time increments by substituting Taylor expansion rep-
resentations. While these methods often work well for unconstrained linearproblems, problems
are often encountered for strongly non-linear problems, e.g. in connection with moving bodies,
and when implementing constraints, e.g. via Lagrange multipliers.

Figure 1: Incremental development of linear momentum, Principia (1686)

A different type of time integration algorithms has been developed over the last 15-20 years, based
on an integrated form of the equations of motion. The basic idea can be illustrated with reference
to the famous momentum diagram from Newton’s Principia [1]. Loosely stated the equation of
motion can be given in the form of a differential equation, or its integrated momentum form,

d

dt

(
mv

)
= f(r) ,

[
mv

]
∆t

=

∫

∆t

f(r) dτ (1)



In the classic approach the differential on the left side of the equation of motion is represented
by an approximate difference expression, while in the momentum-based methods the integrated
form is used, and the approximation lies in the representation of the force integral. In Newton’s
figure the momentum increment is the development fromBc to BC, and the differencecC is
the force integral. The momentum increment approach enables exact representation of certain
conservation theorems, e.g. for momentum and energy for single or multiple particles, see [2, 3].
A general survey of conservation type integration methods has been given by Hairer et al. [4].
However, a number of special procedures have been developed fortime integration of large motion
of deformable solid bodies, and a survey of some of these is presented in the following.

Geometric stiffness in conservation algorithms

Consider a body with displacement vectoru and internal forces given in terms of a potential
function asg(u) = ∇uG(u), where∇u denotes the derivatives with respect tou. The equation
of motion to be considered is of the form

Mü(t) + Cu̇(t) + ∇uG(u) = f(t) (2)

wheref(t) is the load vector, andC is a matrix representing linear viscous damping.

The energy balance equation corresponding to the equation of motion (2) isobtained from multi-
plication withu̇T , followed by integration,

d

dt

(
1
2
u̇TMu̇ + G(u)

)
= u̇T f − u̇TCu̇ (3)

The relation between the potential in the energy balance equation and the internal force vector in
the equation of motion follows from application of the ‘chain rule’ of differentiation as

d

dt
G(u) = u̇T

∇uG(u) (4)

The key to energy conservation is to develop an algorithm that contains the equivalent relation for
a finite time interval and thereby a finite displacement increment∆u.

The second order differential equation of motion (2) is recast into state-space format by intro-
ducing the independent velocity variablev = u̇. When this definition is multiplied by the mass
matrixM the augmented system for the state-space variables[u,v ] can be given in the following
symmetric form, [

C M

M 0

][
u̇

v̇

]
+

[
∇uG(u)

−Mv

]
=

[
f(t)

0

]
(5)

The purpose of a single step time integration is to advance the state-space variablesu andv from
time tn to tn+1. Therefore the equations are integrated over the time interval[tn, tn+1].

[
C M

M 0

][
∆u

∆v

]
+

[ ∫
∇uG(u) dt

−M
∫

v dt

]
=

[ ∫
f(t) dt

0

]
(6)

The time integral of the external force is represented as the interval length∆t times the arithmetic
mean of the end-point valuesf̄ , and the velocity integral is similarly represented as∆t v̄.



The material is now assumed to be linear elastic in terms of the Green strain tensorE and the
second Piola-Kirchhoff stress tensorS. This implies the linear relationS = DE whereD is the
constant stiffness tensor. When using the fact that the Green strain is a quadratic function of the
displacement gradient it can be demonstrated that the increment of the internal energy takes the
form [

G(u)
]n+1

n
= ∆uT

∫

V0

(∇uET ) S̄ dV0 (7)

This is a finite increment form of (4) and an exact integral is therefore obtained, when the internal
force is represented by the integral of the mean value product. This was originally shown by Simo
& Tarnow [5] for linear elasticity, and extended to more general material models by Gonzalez
[6]. It has later been demonstrated [7], that the internal force as defined by the integral in (7) can
be expressed as the mean value of the internal force at the end-points ofthe integration interval,
minus a correction term,

g∗ = 1
2

[
gn+1 + gn

]
− 1

4
∆Kg ∆u (8)

where∆Kg is the increment of the geometric stiffness matrix, usually available in finite element
programs.

Algorithmic high-frequency dissipation

The energy equation corresponding to the discretized equations derived in the previous section can
be expressed in the form

[
1
2
vTMv + 1

2
uTKu

]n+1

n
= ∆uT f̄ − ∆uTC∆u (9)

This is quite similar in form to the energy balance equation (3). However, a frequency analysis
of the algorithm reveals that for discrete time increments∆t the damping effect from a viscous
damping matrixC vanishes for high frequency response.

It is desirable to have a controllable damping of he high-frequency response components, as these
are often of spurious nature due to errors introduced by spatial discretization in the form of ele-
ments. This can be obtained by introducing balanced terms in both of the state space equations
[8, 9] [

C+ 1
2
αhK M

M −1
2
αhM

][
∆u

∆v

]
+

[
K 0

0 −M

][
∆t ū

∆t v̄

]
=

[
∆t f̄

0

]
(10)

The algorithmic dissipation is controlled by the non-dimensional parameterα. In the absence of
viscous damping the corresponding energy balance equation is

[
1
2
vTMv + 1

2
uTKu

]n+1

n
= ∆uT f̄ − 1

2
α
(
∆uTK∆u − ∆vTM∆v

)
(11)

It is seen that the dissipation term has the same form as the energy, but with the state space variables
[u,v] replaced by their increments[∆u, ∆v] over the finite time increment∆t.

The low-frequency algorithmic damping ratio is given in terms of the parameterα and the non-
dimensional frequencyΩ = ω∆t, whereω is the modal frequency of the structure,

ζ = 1
2
α Ω

[
1 + O(Ω2)

]
(12)

It is seen that the algorithmic damping ratio increases linearly with the natural frequency, and thus
this type of algorithmic does not leave the low-frequency response unaffected as intended. The



damping characteristics are conveniently represented in terms of the amplification factorλ which
is the (complex) factor that propagates the modal state-space response one time increment. The
amplification factor of the scheme (10) is shown as dashed curves in Fig. 2.
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Figure 2: Algorithmic damping with|λ∞| = 0.6. a) Amplification factorλ, b) Spectral radius|λ|max.

It has recently been shown that improved low-frequency damping properties can be obtained by
changing the mechanism of the algorithmic damping [9]. In the balanced dissipation algorithm
(10) the energy dissipation is introduced via the diagonal terms containing∆u and∆v. In the
low and mid-frequency regime these terms are roughly equivalent to∆tu̇ and∆tv̇. The idea is to
replace these terms formulated by use of the state-space variables with similar terms using a new
set of variabless(t) andt(t) defined via first order filters with scalar coefficients,

α∆t ṡ + s = ∆t u̇ , α∆t ṫ + t = ∆t v̇ (13)

whereα∆t defines the attenuation time of the filter. The resulting algorithm takes the form ofthe
state-space equations
[

C M

M 0

][
∆u

∆v

]
+∆t

[
K 0

0 −M

][
ū

v̄

]
+ 1

4
α2∆t

[
K 0

0 −M

][
∆s

∆t

]
= ∆t

[
f̄

0

]
(14)

supplemented by the discretized filter equations

α

[
∆s

∆t

]
+

[
s̄

t̄

]
=

[
∆u

∆v

]
(15)

The energy balance relation of this algorithm without viscous damping is
[

1
2
vTMv + 1

2
uTKu + 1

8
α2

(
tTMt + sTKs

) ]n+1

n
=

∆uT f̄ − 1
4
α3

(
∆sTK∆s + ∆tTM∆t

) (16)

It is seen that the dissipation now only depends on the auxiliary variables[s, t]. This removes the
low frequency damping, and leads to the algorithmic damping ratio

ζ = 1
4
α3 Ω3

[
1 + O(Ω2) ] (17)

proportional to the third power of the frequency. The two algorithms with builtin algorithmic
damping lead to monotonous decay of free vibrations, and avoid the spurious oscillations associ-
ated with collocation type algorithms, [9].



Moving frame of reference

Modelling of rotating bodies introduce new problems associated with the non-commutativity of
rotations, see e.g. [10]. The problem, as well as an effective numericalprocedure, is here illus-
trated with reference to a rigid body with local inertial tensorJ, local angular velocityΩ, and
instantaneous orientation defined by the rotation tensorRn. The local equation of motion is

J
dΩ

dt
+ Ω̂ JΩ = M (18)

In a time increment[tn, tn+1] the body rotates further by the local angular ‘vector’Φ. A momen-
tum and energy conserving scheme was set up for this problem by Simo & Wong [11] consisting
of a discretized form of the equation of motion (18) and a relation between theincremental angle
Φ and the angular velocityΩ. It turns out to be convenient to represent the incremental rotation in
terms of the Cayley vector

Ψ =
1

ϕ
tan(1

2
ϕ)Φ (19)

with the associated representation of the incremental rotation tensor

R(Ψ) = (I − Ψ̂)−1(I + Ψ̂) (20)

By use of this representation the angular moment balance leading to (18) canbe expresseddirectly
as [12],

J∆Ω + 2Ψ̂ JΩ =
(
M + 1

2
Ψ̂∆M

)
∆t (21)

whereΨ̂ = Ψ× represents the shew-symmetric component matrix associated with the vector
components. The corresponding discretized form of the angular velocityrelation is

Φ =
[
(1
2

+ α)Ωn+1 + (1
2
− α)Ωn

]
∆t (22)

whereα = 0 corresponds to energy conservation, whileα > 0 leads to energy dissipation [12].
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Figure 3: Local angular velocity components for∆t = 0.1: Ω1 (—), Ω2 (- -), Ω3 (-·-).

Figure 3 shows the undamped whirling motion of a box with side lengths [1,3,2] and mass 12.
The intermediate axis is vertical and the box is started spinning withΩ = [0.0, 0.05, 10.0], corre-
sponding to a small deviation from the intermediate axis. The algorithm is very effective with only
about 2.5 iterations for a relative error of10−6, and reproduces the well known tilting behavior.



Concluding remarks

Some of the main points of the new generation of conservation time integration procedures have
been illustrated. An important additional aspect, which can not be coveredhere is the fact that
momentum and energy conserving algorithms can include constraints in terms ofLagrange mul-
tipliers, [13, 14, 15]. This removes the numerical problems with spurious oscillations typically
associated with Langrange multipliers when using collocation methods.
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