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Generation of sub-Poissonian photon number distribution
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2800 Lyngby, Denmark

P. S. Ramanujam
Danish Institute of Fundamental Metrology, 2800 Lyngby, Denmark
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An optimization of a nonlinear Mach-Zehnder interferometer to produce sub-Poissonian photon
number distribution is proposed. We treat the system quantum mechanically and estimate the
mirror parameters, the nonlinearity of the medium in the interferometer, and the input power to
obtain minimal output uncertainty in the photon number. The power efficiency of the system is

shown to be high.

Squeezed states of light! provide the possibility of
studying states with small uncertainties in one observable,
at the expense of a large uncertainty in the conjugate ob-
servable. Elliptical squeezed states (ESS),?> where the
minimum product of the phase-quadrature uncertainties is
given by (Aa;)2(Aa;)?= 1, can exhibit sub-Poissonian
statistics: (An)? <(A). It has been shown in Ref. 3 that
photon number uncertainties less than (An)2=(#)%3 can-
not be achieved for these states.

However, Kitagawa and Yamamoto* have demonstrat-
ed the possibility of obtaining a photon number uncertain-
ty (An)2~(A)"" using a nonlinear photon-number-con-
serving interaction (Kerr interaction) followed by a
coherent displacement in the phase space. This type of
squeezed state, called crescent squeezed states (CSS), re-
sults in states that approach the number states directly,
whereas the ESS approach one of the phase quadratures.
Obviously there are some advantages in dealing with the
CSS when a photon state with a low uncertainty is need-
ed.

The system proposed in Ref. 4 is shown in Fig. 1. It
consists of an interferometer, in one arm of which is
placed a Kerr medium and in the other, a phase shifter.
The mirrors M, and M, have a field transmittance and a
reflectance (7,,p1), (72,p2), respectively, and M3 and M,
are 100% reflecting. The interaction Hamiltonian H; of
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FIG. 1. Nonlinear Mach-Zehnder interferometer.
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the Kerr medium is given by
Hi=hynaa?, (1)

where 4 is the annihilation operator for the observed mode
and ynL is proportional to the third-order nonlinearity of
the Kerr medium.® This four-wave interaction, unlike a
second-order interaction, is photon conserving and thus
also conserves the photon number statistics. However, as
shown,* the mixing at M, gives rise to a collapse in the
photon number uncertainty in the output ¢ mode.

In the Heisenberg picture, the annihilation operators
for the different modes in the interferometer are given by
assuming that the input mode s is in a coherent state:

= —_Io._lz_ 5 o‘” 2
| 095 exp[ 5 ngomht), )

where o is a complex number and |n) is the nth number
state. Coherent states | a) and | 8) propagate as a and d
modes givin% rise to the energy conservation |al?
+|512=|0ol%

The b-mode state is given by the unitary transformation
U

b=UtaU, U=expltiyi(i—1)], b=expliny)d, @3)

where b is the annihilation operator in the b mode, and y
is the normalized nonlinearity of the Kerr medium:

L
ANL- @)
v

y=2

Here v is the propagation velocity and L is the length of
the Kerr medium.

If ¢= | a|%siny is the phase shift in the Kerr medium,®
and A is the phase difference between the b mode and the
d mode at M, it was argued® that the interaction at M,
could, in the case of |&|>— oo, be described by a dis-
placement £ =naexpli(¢p+A)], where 7 is the mixing ra-
tio, |8[/|Bl=18]/lal in the ¢ mode. The optimal
value of A was found to be — /2. Fixing the nonlinearity
y and the photon number |a|? in the Kerr medium, and
assuming that | §|?— oo, it was possible to minimize the
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Fano factor, F=(An)?/{#) (Ref. 7) with respect to 7.
The obtained minimal Fano factor was found to be
Fmin~{#.) -,

The aim of the present paper is to demonstrate that
even away from the limit | §|>— o, a considerable reduc-
tion in the photon number uncertainty can be found in the
output state. This is done by fixing the photon number in
the s mode instead of in the a mode.

We treat the mixing at M, as an interaction for the
quantum-mechanical beam splitter,® instead of as a sim-
ple displacement as is done in Ref. 4. Because of the
orthogonality between the b and the d mode, b and d must
commute. Choosing A= — /2 by using the same argu-
ments as in Ref. 4, we find the annihilation operator ¢ in
J

@'eym=(a)y=p3lal?+ 3| 612,

the ¢ mode as

5_p25+fszei(0+A) , (5)
é=pyexpliyiiz)d — itad exp(ig) .

The boson commutator relation [¢1,61=1 is fulfilled for
the ¢ mode.
Using the following relations:

aexp(iyng) =exp(iy)expliyn,)a,
expliyiiz)a' =expliy)atexplivi,) , )
(a|expliyAia) | a) =exp(— | a|?expl| a|?exp(iy)],

we obtain

(&Y% mpt|a|*—41p3| al?| 5] exp(— + r)siny+2p3t?| a|?| 6|2[2 —exp(—2t)cos(y—rsiny) 1+ 73| 8|4, (D)

r=4|a|%sin2(%y), t=|al|*sin?y.

The following relations are obtained at the beam splitter
M{:

la|*=1f|c|?=|B]2,
(8)
[86]2=ptlal?.

Note that a possible phase shift at M is not important,
because of the use of the phase shifter in the linear inter-
ferometer arm to adjust A= — x/2. Inserting Eq. (8) into
Eq. (7), we find the Fano factor for the ¢ mode,

_(an)? _ (A +(E1e) —(A,)?

F " ,
(Ac) (n.)
which finally gives
23 3 — 12p2e2p2
Fm]— TIPITZIZ’ZP 21;721 2p29 )
tfpd+pfcs
where
p=2|o|*exp(— ¥ r)siny,
g=2|o|*[1 —exp(—2t)cos(y —rsiny)],
(10)

r=4tt|o|%sin*(+7),
t=1f|o|*sin’y.

The mean photon number in the ¢ mode {#.) and the ratio
n between the field contribution from the b and the d
mode to the ¢ mode are given by

(i) =| o |X(ztpi+pitd),

T
p=2 (1)
7102

Fixing the input photon number | o |? and the nonlinearity
y, we minimize the Fano factor F [Eq. (9)] with respect to
the independent variables p; and 7,.

The optimization of Eq. (9) is done numerically and the
result is displayed in Fig. 2 where the minimized Fano
factor and the optimized parameters p;, 72, and 7 are

r

shown as a function of ¥ for four different values of | o |2

It is clear that sub-Poissonian statistics are observed for
the optimized parameters. We observe that p; and 7 are
small and decrease for increasing | o|? in the y region of
interest. The abrupt change in the mirror parameters
above the optimal y values can be understood as a reac-
tion of the system to the large nonlinearity. The system
reacts by lowering the photon number in the Kerr medium
(increasing p;) and to compensate for the consequent
higher photon number in the d mode, the transmittance of
mirror M5, 7, has to be decreased. Another important
characteristic in Fig. 2 is that 7, and p, are almost equal,
for optimal values of y. The minimized Fano factor and
the optimized parameters 75, p;, and y as a function of
|o|? are displayed in Fig. 3. We observe that all the
curves, for | o|? values above 103, are straight lines in the
logarithmic plot. We find from Fig. 3(a) that

Fmin“(ﬁs) —04 s

(12)
7’opt~(ﬁs> —0.6 .
Although this reduction is less than the one obtained by
Kitagawa and Yamamoto,* it still represents a smaller
photon number uncertainty than the smallest attainable
for elliptic squeezed states, (#,.) =13 The most remark-
able feature of our description is revealed when we calcu-
late the power efficiency of the system, given that
71'2 +Pi2 =1,

GO
o2
(A
lo]?

From Fig. 3, we find 7= p{<1 for reasonably large
values of | o|% and Eq. (13) reduces to

(Ac)
|2

p3+pics,
(13)

=1+2pft3—3—pf.

=~1—-2tf=1. (14)

lo
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FIG. 2. Minimized Fano factor and optimized system parameters as a function of Kerr nonlinearity ¥ for four input photon num-
bers: (a) |o|>=16, (b) |o|>=103 (c) | o|>=10% and (d) |o|>=10°.

The output power in the ¢ mode can then be seen to be al-
most equal to the input power. This must be compared to
the near-zero efficiency in Ref. 4.

We can make a rough estimate of the optimal mirror
parameters by inserting t7=~pf{<1 (r;=1) and yop
= (| &%) ~%6into Eq. (9). The Fano factor becomes

F=1-2tp+1iq. (15)

'Oglo(fgmimphn,n,y)

. Ryl
_Z_j T
E +Fmin
ﬁB__
_4_: n
_5_: Yy
7 ()
_6‘“1 T T T T I T T T T
2 4 6 8 10

'Og1o<|0|2>

The minimum value of F is obtained when
t3=plq. (16)

The above value is acceptable; however, if used in Eq.
(15), a realistic behavior of F is not found. This is due to
the fact that the Fano factor is generated as a difference
between two almost equal numbers. The approximations
made in Eq. (9) will then give rather large relative varia-

|Og1o<Fm;m,Ow ,7’2,77,7>

P
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FIG. 3. Minimized Fano factor and optimized system parameters as a function of input photon number |o|% (a) Numerical op-

timization, (b) “approximate” optimization.
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tions in F.

However, by using Eq. (16) and the optimal y value
given by Eq. (12) in the true expression Eq. (9), we get
Fig. 3(b) as an analog to Fig. 3(a). It is seen that the
above analysis of the sg'stem gives the same values of 7,
p1, Fumin, and 7 for | o|* above 103. The plots differ in de-
tail only for |o|? below 103. We have thus designed the
system parameters for a given nonlinearity or given
input/output mean photon number to get a sub-Poissonian
output field. Given y(|o|?), one can use Eq. (12) to get
| 6|*(y). Then, using Eq. (16) and tf= 1, the optimal
parameters can be found. The system with A= —z/2 acts
as a passive optical component that lowers the output field
photon number uncertainty to (An)%~(#)%$, with only a
negligible power loss.

Finally, we shall derive the expression for the Fano fac-
tor in the case of infinite photon number in the d mode as
a special case of Eq. (9). To get |§|*— o0, we must
demand that | 6|2— 0. The relevant fixed photon mean
number is then | a |2 This implies that

a=del o

-
lol

|612=(—D)|ol*=|o]|?.

a7

We must now expect 7; to be very small to prevent the
large d-mode power getting transmitted into the ¢ mode.
From Eq. (9) we find

_2pnfu—gd/id

F=1
(A +13/td)

’

(18)
Fai - 20B=dn
(1+12)
where the ratio of the field contribution 7 is given by
_pn
T1p2

and the functions p and g are

—~
=

'%:i; (r, 1) K1, (19)
1

p=1fp=2|a|*exp(— ¥ r)siny,
(20)
g=ttqg=2|a|*[1 —exp(—2t)cos(y —rsiny)].

Our Eq. (18) is identical to the expression for Fp, dis-
cussed by Kitagawa and Yamamoto,® where it was
analytically optimized with respect to 7 for fixed | a |2

10(25 — G0) . Y2112 _

_ No\ep —4qMno/. 9 .

Foin™1 s -]+ .

™ a+nd) ™ 25 25 ]
Qn

This state, obtained by minimizing F for |§|>— oo, was
shown in Ref. 4 to be a minimum uncertainty state with
respect to phase and number, i.e., ApAn = +. This is not
true for a state with a limited number of photons as in our
case. An easy way to see this is to compare the optimal
nonlinearity as a function of the number of photons in the
Kerr medium in our treatment and the one in Ref. 4. For
a given number, our optimization demands a slightly
larger nonlinearity than Ref. 4. This results in a larger
phase uncertainty of the b mode (¢ mode). Moreover, we
do not obtain a smaller uncertainty in the photon number
to compensate for this increased phase uncertainty. Thus,
the uncertainty product A¢An is not minimized for the
state obtained in this paper.

In conclusion, we have optimized the system proposed
by Kitagawa and Yamamoto,* with respect to the Kerr
nonlinearity and the mirror parameters to obtain the
minimum output photon number uncertainty, with a fixed
input photon mean number in a coherent state. It is
shown that the system produces an output state with Fano
factor F == () ~%%, which is better than the best obtain-
able using elliptical squeezed states. Moreover, the power
lost in this process is found to be vanishingly small com-
pared to the input power. Simple expressions for the op-
timal mirror parameters and the optimal nonlinearity are
given. Finally, the expressions given in Ref. 4 for infinite
input power are derived as a special case of our expres-
sions.
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