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Abstract (max. 2000 char.): 
 
On the basis of Corrsin’s independence hypothesis, in conjunction 
with specific assumptions about the form of the distance-neighbour 
function, an equation is derived for twoparticle dispersion in 
isotropic turbulence with no mean motion. It is formulated in terms 
of the mean-square difference between the particle positions r 1(t1) 
and r2(t2) at arbitrary times t1 and t2 after the release of the particles 
with a given initial separation. Eddy removal and eddy decay are 
included with wave-number dependent time scales. The equation, 
which in general must be solved numerically, has been considered 
for the scale free k−5/3 energy spectrum as well as for the von 
K´arm´an spectrum. The model implies that only when the outer 
scale is infinite, i.e. in the limit where the energy spectrum is of the 
form k−5/3, will there be a Cεt 3 range of the mean-square separation 
between the two particles. In this limiting case it is possible to 
estimate the dimensionless Richardson- Obukhov constant C as a 
function of a dimensionless eddy-decay parameter. A reasonable 
choice of this parameter leads to a C-value of the order 1. 
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Foreword

The work described in this form was originally formulated as article and submitted to
Journal of Fluid Mechanics in 2005. It was reviewed by three referees. Based on their
report to the editor the manuscript was rejected. One of the three referees had made a
strong effort to understand our ideas and provided constructive comments. In this report
we have, where we agree, reformulated and expanded the text in accordance with these
comments. We are grateful to this referee for the effort.
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1 Introduction

We imagine that we follow neutrally buoyant particles suspended in a fluid in which the
turbulence is stationary and isotropic. Our main purpose is to predict the time evolution of
the mean-square separation D2(t) between two particles which are initially separated by
the distance d◦. We consider a fluid in rest. The implication is that the Eulerian velocity
field has zero ensemble mean and that, due to stationarity, all the particle-velocities have
zero ensemble means.

Real fluids are of course neither isotropic on all length scales nor stationary over infinite
long times. In the real world there are only approximately locally isotropic and approx-
imately stationary fluids. For these flows it is particularly interesting to study pairs of
particles with spatial displacements d which are not large compared to a turbulence spa-
tial scale � defined as

� = 〈U2〉3/2

ε
. (1)

Here 〈U2〉 is the variance of one velocity component and ε the rate of dissipation of spe-
cific kinetic energy. Angle brackets indicate ensemble averaging. We consider � the outer
scale of the turbulence in the sense that eddies with linear dimensions larger than � start
having decreasing spatial density and start becoming—usually—increasinglyanisotropic.
The turbulence temporal scale is also defined by means of 〈U 2〉 and ε:

T = 〈U2〉
ε

, (2)

It follows that

�2 = ε T 3. (3)

In the following we consider initial-separation magnitudes large compared to the Kol-
mogorov microscale η = (ν3/ε)1/4, given by ε and the kinematic viscosity ν.

The description of neutrally buoyant particle pairs in a turbulent fluid has a long story
going back to Richardson (1926) and one of the conclusions from that time, namely that
D2(t) is proportional to ε and t 3 when D(t) has become large compared to the initial
separation d◦, is still widely accepted. This law,

D2(t) = C ε t3, (4)

is called the Richardson-Obukhov law as explained by Ott & Mann (2000) in a discussion
of the theoretical and experimental investigations of relative dispersion. They present
an account of the various determinations of the dimensionless factor of proportionality
C, the Richardson-Obukhov constant, which seem to vary from about 0.1 to about 5.5.
A comprehensive review of the theoretical and experimental investigations concerning
relative dispersion in turbulent media has been given by Sawford (2001).

More recent investigations are reported by Ishihara & Kaneda (2002), and by Yeung &
Borgas (2004) and Borgas & Yeung (2004) in two juxtaposed articles. These investiga-
tions are based on numerical simulations of particle trajectories in isotropic and stationary
turbulence. The first two are based on direct numerical simulation (DNS) of the Navier-
Stokes equations to obtain a box of an isotropic, stationary Eulerian velocity field at
Reynolds numbers Rλ, based on 〈U2〉1/2 and the Taylor microscale λ = (15ν〈U 2〉/ε)1/2,
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ranging from 90 to 280. Many thousands of particle pairs were released and tracked in this
velocity field and the statistics of two-particle separations as functions of time are calcu-
lated. In the third investigation (Borgas & Yeung 2004) particle pairs were followed by a
Langevin equation in a Lagrangian frame and the results are compared to those obtained
by the (Yeung & Borgas 2004) DNS simulation.

Here we suggest, as an alternative, a simple statistical model. We derive equations for
second-order ensemble means of particle positions, in single and in pairs. Basically we are
therefore dealing with the Lagrangian problem of the statistics of particle trajectories. For
a single particle Taylor’s (1921) theory provides a very accurate and useful description
in the limits of small times and large times. When it comes to the relative dispersion of
two particles the situation is much more difficult (Batchelor 1952) because information
about the spatial structure of the turbulence is required. In other words, a connection
between Lagrangian and Eulerian statistics is must be spedified. The model presented
here makes use of the bridge known as ‘Corrsin’s independence hypothesis’ (Shlien &
Corrsin 1974). In this way it becomes possible to establish an auxiliary relation between
the Lagrangian velocity covariance of two particles and the covariance between their
positions. A similar approach was described by Ishihara & Kaneda (2002) and also for
the growth of a collection of particles, a puff, by Kristensen & Kirkegaard (1987).

In the following section we will present some preliminary considerations about relative
dispersion. In section 3 the model will be described. It will include a presentation of
Corrsin’s independence hypothesis for one particle and for particle pairs, the time-lag
dependent energy spectrum, and the distance-neighbour functions to be used. Sections
4 and 5 will contain results of integrating the model equations and a discussion of the
solutions. In the final section we will review the assumptions and the results.

2 Preliminary Considerations

We consider two particles with the initial separation d ◦, where d◦ = |d◦| is assumed
small compared to �. Their positions are

rn(t) = r◦
n +

t∫
0

vn(t1) dt1, n = 1, 2, (5)

where

r◦
n = rn(0) (6)

is the initial position of particle no n and vn(t) its velocity. The initial positions are con-
sidered non-random. It is customary to include the initial position r ◦

n as a parameter in
the velocity. We have decided to omit this extra argument to make the equations easier to
read.

The separation vector between the two particles is

d(t) = r2(t) − r1(t) (7)

with the mean square D2(t) = 〈d(t)2〉.
Obviously,

〈d(t)〉 = r◦
2 − r◦

1 = d◦. (8)
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At this point it is convenient to introduce the mean-square excess separation D 2
E(t)

(MES) as the mean square of the vector d(t) − d ◦:

D2
E(t) =

〈
(d(t) − d◦)2

〉
. (9)

Clearly we have

D2(t) = d2◦ + D2
E(t). (10)

Initially, i.e. when D(t) � d◦, the positions of the two particles are strongly correlated so
that

d(t)−d◦ = r2(t)−r1(t)−d◦ � (v2(t)−v1(t)) t � (u(r◦
1+d◦, 0)−u(r◦

1, 0)) t,(11)

where v(t) and u(r, t) are Lagrangian and Eulerian velocity vectors, respectively. Hence,

D2
E(t) � 〈(u(r◦

1 + d◦, 0) − u(r◦
1, 0))2〉 t2 = Dii(d◦) t2, (12)

expressed in terms of the trace of the structure-function tensor

Dij (�) ≡ 〈(ui(r + �, 0) − ui(r, 0)
) (

uj (r + �, 0) − uj (r, 0)
)〉

. (13)

Incompressible, isotropic turbulence has the property that this tensor reduces to the ex-
pression

Dij (�) = DT (	) δij + (DL(	) − DT (	))
	i 	j

	2
, (14)

where DL(	) and DT (	) are the scalar structure functions of 	 = |�| for the velocity
components along and transverse to the displacement vector �, respectively.

For turbulence in the inertial subrange where local isotropy prevails we further have

DT (	) = 4

3
DL(	) = 36

55
�

(
1

3

)
α (ε	)2/3, (15)

where α ≈ 1.7 is the empirical Kolmogorov constant for the energy spectrum. This means
that

Dii(d◦) = DL(d◦) + 2 DT (d◦) = 9

5
�

(
1

3

)
α (εd◦)2/3 (16)

which, combined with (12) and (10), yields

D2(t) = d2◦ + 9

5
�

(
1

3

)
α(εd◦)2/3 t2 = d2◦ + 8.25 (εd◦)2/3 t2. (17)

Sawford (2001) stated the same conclusion.

When D � � the two particles move independent of one another and D 2(t) becomes
just twice the mean square excursion (MSE) σ 2(t) of the position of a single particle,
i.e., D2(t) is proportional to t . As discussed by Batchelor (1952), there should be three
regimes of D2(t): the initial stage, where D(t) follows (17) (DE(t) ∝ t), the intermediate
stage, where D(t) according to the Richardson-Obukhov law is proportional to t 3/2, and
the final stage where D(t) ∝ t1/2. Figure 1 summarizes the situation.
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Figure 1. Sketch of the asymptotic behavior by Batchelor (1952) of the root-mean-square
excess distance DE(t) between two particles, initially separated by the distance d◦. The
variables are made dimensionless by means of (1) and (2).

3 Model Formulation

To proceed we introduce the generalized, mean-square excess separation (GMES)

Σ2(t1, t2) =
〈(

r2(t2) − r1(t1) − d◦
)2
〉
, (18)

which is a symmetric function of t1 and t2
∗. Comparing with (9), we see that

Σ2(t, t) = D2
E(t) = D2(t) − d2◦ (19)

and that, according to (8),

Σ2(t, 0) =
〈(

rn(t) − r◦
n

)2
〉

(20)

becomes the MSE σ 2(t) of the displacement of a single particle from its position at t = 0.
This quantity can be expressed as (Taylor 1921)

σ 2(t) =
t∫

0

dt1

t∫
0

dt2RL(t2 − t1), (21)

where

RL(τ) = 〈vn(t + τ ) · vn(t)〉 (22)

is the Lagrangian autocovariance function.
∗The turbulence is isotropic, which includes reflection and rotation symmetry, and the vector d◦ enters only

with its magnitude d◦.
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Note that from (21) follows

dσ 2(t)

dt
= 2

t∫
0

RL(τ)dτ (23)

and

σ 2(t) = 2 t

t∫
0

(
1 − τ

t

)
RL(τ) dτ. (24)

The asymptotes of (21) are:

t → 0:

σ 2(t) �
t∫

0

dt1

t∫
0

dt2 RL(0)︸ ︷︷ ︸
3〈U2〉

= 3〈U2〉 t2 (25)

t → ∞:

σ 2(t) � 2 t

∞∫
0

RL(τ) dτ, (26)

where (26) follows from (24).

Then we get

σ 2(t) = 6 〈U2〉TL t, (27)

where

TL = 1

RL(0)

∞∫
0

RL(τ) dτ (28)

is the Lagrangian integral time scale.

An equation for the GMES Σ 2(t1, t2)—the counterpart to the MSE σ 2(t) of the one-
particle distance from the initial position—is obtained by expanding (18):

Σ2(t1, t2) = σ 2(t1) + σ 2(t2) − 2

t1∫
0

dτ1

t2∫
0

dτ2RL2(τ1, τ2), (29)

where we have introduced the symmetrical, two-particle Lagrangian covariance function

RL2(t1, t2) = 〈v1(t1) · v2(t2)〉 . (30)

RL2(t1, t2) depends on the initial separation d ◦, but according to our convention, the
initial positions have been suppressed as arguments in the velocities.

10 Risø–R–1691(EN)



3.1 Lagrangian and Eulerian Statistics

The model we propose requires the establishment of a relation between Lagrangian and
Eulerian second-order velocity statistics and at this point we introduce Corrsin’s inde-
pendence hypothesis with the aim of reformulating both (21) and (29). We shall follow a
step-by-step procedure and consider first a single particle with the velocity v(t) and the
position r(t).

The identity

v(t) = u(r(t), t) (31)

allows us to reformulate RL(t2 − t1) in terms of Eulerian velocities:

RL(t2 − t1) = 〈u(r(t1), t1) · u(r(t2), t2)〉. (32)

If the difference r(t2)− r(t1) were not random, but rather a specified vector �, this would
have been equal to the trace of the Eulerian autocovariance tensor defined by

Rij (�, τ ) = 〈ui(r, t) uj (r + �, t + τ )〉 (33)

with the time lag τ = t2 − t1.

This is obviously not the case, and to remedy this problem we rewrite (32) in the equiva-
lent form

RL(t2 − t1)=
∫

d3x1

∫
d3x2

〈
(u(x1, t1) · u(x2, t2)) δ(x1 − r(t1)) δ(x2 − r(t2))

〉
. (34)

One way of formulating Corrsin’s independence hypothesis is to assume that r(t) and
u(x, τ ) are statistically independent for all (x, t, τ ). Then we may write (McComb 1990,
Cambon et al. 2004)

RL(t2 − t1) =
∫

d3x1

∫
d3x2 Rii(x2 − x1, t2 − t1)

〈
δ(x1 − r(t1)) δ(x2 − r(t2))

〉
, (35)

where we have used (33) and where summation over double indices is assumed. Intro-
ducing new variables{

x

y

}
=
{

x2 − x1

(x2 + x1)/2

}
(36)

(35) reduces to

RL(t2 − t1) =
∫

Rii(x, t2 − t1)
〈
δ(x − {r(t2) − r(t1)})

〉
d3x. (37)

The quantity 〈δ(x − {r(t2) − r(t1)})〉 d3x is the relative average number of cases (out of
infinitely many trials) where the difference r(t2) − r(t1) falls in the volume element d3x

around x. Hence

〈δ(x − {r(t2) − r(t1)})〉 = p1(x; t1, t2) (38)

can be interpreted as the probability density function for r(t 2) − r(t1) = x (McComb
1990). The isotropy implies that it depends on x only through the magnitude x. The para-
metric time dependence of p1, which enters through the difference t2 − t1, is conveniently

Risø–R–1691(EN) 11



expressed in terms of the MSE σ 2(t2 − t1) = 〈{r(t2)− r(t1)}2〉 in the period of time from
t1 to t2:

p1(x; t1, t2) = ϕ1

(
x; σ 2(t2 − t1)

)
. (39)

Inserting (39), we get

RL(t2 − t1) =
∫

Rii(x, t2 − t1) ϕ1

(
x; σ 2(t2 − t1)

)
d3x. (40)

The next step is to consider the two-particle case. We go back to (30), and by an anal-
ogous procedure we obtain an equation similar to (37) for R L2(t1, t2) = 〈u(r1(t1), t1) ·
u(r2(t2), t2)〉:

RL2(t1, t2) =
∫

Rii(x, t2 − t1)
〈
δ(x − {r2(t2) − r1(t1)})

〉
d3x. (41)

We also interpret 〈δ(x −{r2(t2)−r1(t1)})〉 as a probability density function p2(x; t1, t2),
now for two particles with r 2(t2) − r1(t1) = x. This generalization of Corrsin’s inde-
pendence hypothesis was also applied by Ishihara & Kaneda (2002). We assume that p 2

depends on x through |x − d ◦|. Such a dependence is clearly justified at the initial stage
x � d◦, and when |x| is large the influence of d ◦ is weak in any case. We shall make the
extra assumption that the dependence on t1 and t2 can be parameterized in terms of the
quantity Σ2(t1, t2) introduced in (18). Thus we assume the form

p2(x; t1, t2) = ϕ2

(
|x − d◦|; Σ2(t1, t2)

)
. (42)

With this assumption (41) becomes

RL2(t1, t2) =
∫

Rii(x, t2 − t1) ϕ2

(
|x − d◦|; Σ2(t1, t2)

)
d3x. (43)

We now reformulate (40) and (43) by means of the spectral tensor Φ ij (k, τ ) which, in
turn, can be expressed in terms of the energy spectrum E(k, τ ) by (Batchelor 1953)

Φij (k, τ ) = E(k, τ )

4πk2

{
δij − kikj

k2

}
, k = |k|. (44)

This means that

Rii(x, τ ) =
∫

Φii(k, τ ) exp(i k · x) d3k =
∫

E(k, τ )

2πk2
exp(i k · x) d3k, (45)

so that (40) and (43) become

RL(t2 − t1) =
∫

E(k, t2 − t1)

2πk2
d3k

∫
exp(i k · x) ϕ1

(
x; σ 2(t2 − t1)

)
d3x

= 1

2π

∫
E(k, t2 − t1)

k2
ϕ̂1(k; σ 2(t2 − t1)) d3k. (46)

and

12 Risø–R–1691(EN)



RL2(t1, t2) =
∫

E(k, t2 − t1)

2πk2
d3k

∫
exp(i k · x) ϕ2

(
|x − d◦|; Σ2(t1, t2)

)
d3x

= 1

2π

∫
E(k, t2 − t1)

k2
ϕ̂2(k; Σ2(t1, t2)) exp (i k · d◦) d3k. (47)

Here we have introduced the three-dimensional Fourier transform of the function ϕ n(r; Λ2)

by

ϕ̂n(k; Λ2) =
∫

ϕn

(
r; Λ2

)
exp(i k · r) d3r, n = 1, 2. (48)

We note that the triple integral (48) can be reduced to a single integral over r = |r|:

ϕ̂n(k; Λ2) = 4π

∞∫
0

ϕn(r; Λ2) sinc(kr) r2 dr, (49)

where sinc(x) = sin x/x, and by a similar reduction over k = |k| both (46) and (47) can
be expressed as single integrals over k as follows:

RL(t2 − t1) = 2

∞∫
0

E(k, t2 − t1) ϕ̂1(k; σ 2(t2 − t1)) dk, (50)

and

RL2(t1, t2) = 2

∞∫
0

E(k, t2 − t1) sinc(kd◦) ϕ̂2(k; Σ2(t1, t2)) dk, d◦ = |d◦|. (51)

Combining (29) and (51) we obtain the following hyperbolic partial differential equation
for Σ2(t1, t2)

∂2Σ2

∂t1∂t2
= −4

∞∫
0

E(k, t2 − t1) sinc(kd◦) ϕ̂2(k; Σ2) dk (52)

with the boundary conditions Σ 2(0, t) = Σ2(t, 0) = σ 2(t), which follow from (21) and
(29).

At this point we must specify the Eulerian energy spectrum E(k, τ ) for isotropic turbu-
lence as well as the functions ϕn(r; Λ2).

3.2 The Energy Spectrum

We assume that the temporal part of the energy spectrum is an exponential decay factor
and write

E(k, τ ) = E◦(k) exp(−|τ |/T◦(k)), (53)

where the mean presence time T◦(k) of an eddy of the size k−1 will in general be a
function of k.

Risø–R–1691(EN) 13



A Eulerian eddy can in general disappear in two ways. It may be advected away by larger
eddies or decay by the action of smaller eddies. Since we must assume that more intense
turbulence causes shorter presence times, both of these times will be inversely propor-
tional to characteristic turbulence velocities: va(k) for advection and vd(k) for decay. We
assume the forms

T −1
a (k) = μ◦

a k va(k) (54)

for presence time under the advective action of the larger eddies and

T −1
d (k) = μ◦

d k vd(k) (55)

for the mean lifetime of an eddy which decays due to the action of the smaller eddies. μ ◦
a

and μ◦
d are two dimensionless constants, which must be determined by means of auxiliary

information. The total mean presence time is then given by

T◦(k)−1 = Ta(k)−1 + Td (k)−1. (56)

We assume

v2
a(k) =

k∫
0

E◦(k′) dk′ (57)

and

v2
d (k) =

∞∫
k

E◦(k′) dk′. (58)

At this point we specify the wave-number part of the energy spectrum. Often the scale
free form

E◦(k) = α ε2/3 k−5/3, 0 < k < ∞, (59)

is applied to obtain general results. Therefore we assume (59) to see if we may obtain
such general results.

We first note that the integrals in neither (50)–(52) nor (57) are convergent if E ◦(k) is
given by (59). However, when this form is used it is required that k � �−1 so that (57) is
approximated by

v2
a(k) �

∞∫
0

E◦(k′) dk′ = 3

2
〈U2〉. (60)

To obtain an equation which can replace (52), we recast the problem by including single-
particle dispersion. From (50) and (23) we deduce

∂2σ 2(t2 − t1)

∂t1∂t2
= −4

∞∫
0

E(k, t2 − t1) ϕ̂1(k; σ 2(t2 − t1)) dk (61)

Introducing

Σ̃2(t1, t2) = Σ2(t1, t2) − σ 2(t2 − t1), (62)

14 Risø–R–1691(EN)



we obtain the hyperbolic, partial differential equation

∂2Σ̃2

∂t1∂t2
=

4

∞∫
0

E(k, t2 − t1)
{
ϕ̂1(k; σ 2(t2 − t1)) − ϕ̂2

(
k;Σ̃2 + σ 2(t2 − t1)

)
sinc(kd◦)

}
dk (63)

with the boundary conditions Σ̃2(t, 0) = Σ̃2(0, t) = 0. We note that

Σ̃2(t, t) = Σ2(t, t) = D2
E(t). (64)

Applying (60) and carrying out the integration (58), (54) and (55) become, in view of the
relation (3),

T −1
a (k) = μa

k�

T (65)

and

T −1
d (k) = μd

(k�)2/3

T , (66)

where we for convenience have introduced

μa =
√

3

2
μ◦

a (67)

and

μd =
√

3α

2
μ◦

d . (68)

Thus the energy spectrum in (63) can be written

E(k, τ ) = α ε2/3 k−5/3 exp

(
−
{
μa k� + μd (k�)2/3

} |τ |
T

)
. (69)

and (63) becomes

∂2Σ̃2

∂t1∂t2
= 4 α ε2/3

∞∫
0

exp

(
−
{
μa k� + μd (k�)2/3

} |t2 − t1|
T

)
×

{
ϕ̂1(k; σ 2(t2 − t1)) − ϕ̂2(k; Σ̃2 + σ 2(t2 − t1)) sinc(kd◦)

} dk

k5/3
. (70)

We simplify this equation by noting that we are here considering dispersion for which
t � TL. This means that σ 2(t) can be approximated by (25) and, consequently, also, as
(3) shows, that σ 2(t) � �2. Now (70) becomes
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∂2Σ̃2

∂t1∂t2
= 4 α ε2/3

∞∫
0

exp

(
−
{
μa k� + μd (k�)2/3

} |t2 − t1|
T

)
×

{
ϕ̂1(k; 3〈U2〉{t2 − t1}2) − ϕ̂2(k; Σ̃2 + 3〈U2〉{t2 − t1}2) sinc(kd◦)

} dk

k5/3 . (71)

In the limit (t1, t2) → (0, 0), both (39) and (42) approach delta functions. The corre-
sponding Fourier transforms (48) are therefore both equal to unity. In this case (71) re-
duces to

∂2Σ̃2

∂t1∂t2
= 4 α ε2/3

∞∫
0

{1 − sinc(kd◦)} dk

k5/3
(72)

with the solution

Σ̃2(t1, t2) = 9

5
�

(
1

3

)
α (εd◦)2/3 t1t2. (73)

Applying (10) and (64), we retrieve for t 1 = t2 = t the solution (17) for the initial stage.

3.3 The Functions ϕn(r; Λ2)

These functions satisfy the norm and second-order moment constrains

∫
ϕn(r; Λ2) d3r = 4π

∞∫
0

ϕn(r; Λ2) r2 dr = 1 (74)

∫
r2ϕn(r; Λ2) d3r = 4π

∞∫
0

ϕn(r; Λ2) r4 dr = Λ2. (75)

Considering first the dispersion of a single particle, Batchelor argued (1949, 1953) that
there are good reasons to believe that p1(r; t1, t2) is a three-dimensional Gaussian in r

with the one-component variance σ 2(t2 − t1)/3 = Λ2/3, i.e.

ϕ1(r; Λ2) =
(

3

2πΛ2

)3/2

exp

(
− 3r2

2Λ2

)
. (76)

For two particles the function ϕ2(r; Λ2) is equal to the distance-neighbour function, intro-
duced by Richardson (1926) in the special case when Λ 2 = Σ2(t, t) = D2

E(t). Batchelor
(1952) subsequently discussed the form of this function. Richardson’s (1926) original
form can, if we neglect the initial displacement d ◦, be written

ϕ2(r; D2
E(t)) = 1

315

(
1287

2π D2
E(t)

)3/2

exp

⎛⎝−
{

1287

8

r2

D2
E(t)

}1/3
⎞⎠ . (77)

Batchelor (1952) found it more reasonable to assume that ϕ 2(r; D2
E(t)) has a Gaussian

form, i.e. ϕ2(r; D2
E(t)) = ϕ1(r; D2

E(t)), given by (76). Later experiments, e.g., Ott &
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Mann (2000), seem to support the assumption (77) by Richardson (1926). Taking this
into account, ϕ2(r; Σ2(0, t2)) (particle one fixed at its initial position) must be expected
to be Gaussian, whereas ϕ2(r; Σ2(t1, t2)) with t1 � t2 is of the form (77). Instead of
devising a gradual transformation from the Richardson (1926) form where t 1 = t2 to the
Gaussian form where t1 = 0—an interpolation which, in any case, will be arbitrary and
probably very complicated—we have decided to consider the two possible cases where
ϕ1(r; Λ2) and ϕ2(r; Λ2) are given by the same form. The two cases are

ϕ1(r; Λ2) = ϕ2(r; Λ2) =
(

3

2πΛ2

)3/2

exp

(
− 3r2

2Λ2

)
≡ ϕB(r; Λ2) (78)

and

ϕ1(r; Λ2) = ϕ2(r; Λ2) = 1

315

(
1287

2π Λ2

)3/2

exp

⎛⎝−
{

1287

8

r2

Λ2

}1/3
⎞⎠

≡ ϕR(r; Λ2). (79)

The corresponding Fourier transforms (49) are

ϕ̂B(k; Λ2) = exp

(
−k2Λ2

6

)
(80)

and

ϕ̂R(k; Λ2) = W(k2Λ2), (81)

where we have introduced the function

W(x) =
(

143

6 x

)11/6

U

(
11

6
,

2

3
,

143

6 x

)
, (82)

expressed in terms of the confluent hypergeometric function U(a, b, x) (Wolfram 1999).

3.4 Dimensionless Formulation

For convenience, we restate the basic equation (71) in a dimensionless form by using �

and T and their interrelations (3) as scaling parameters. The new variables are defined by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s

θ

Ψ (θ1, θ2)

χ(θ)

Δ◦

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k�

t/T

Σ̃2(t1, t2)/�
2

D2
E(t)/�2

d◦/�

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (83)
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We have in the purely Gaussian case, suggested by Batchelor (1952),

∂2Ψ

∂θ1∂θ2
= 4 α

∞∫
0

exp
(
−
{
μa s + μd s2/3

}
|θ2 − θ1| − (θ2 − θ1)

2s2/2
)

×
{

1 − exp

(
− s2Ψ

6

)
sinc(sΔ◦)

}
ds

s5/3 , (84)

and in the “Richardson case”

∂2Ψ

∂θ1∂θ2
= 4 α

∞∫
0

exp
(
−
{
μa s + μd s2/3

}
|θ2 − θ1|

)
×

{
W(3s2{θ2 − θ1}2) − W(s2[Ψ + 3{θ2 − θ1}2]) sinc(sΔ◦)

} ds

s5/3 . (85)

The boundary conditions are in both cases Ψ (θ, 0) = Ψ (0, θ) = 0.

4 Results

The two equations (84), the “Batchelor case”, and (85), the “Richardson case”, are solved
numerically in the (θ1, θ2)-plane. The integration is initiated at the point (θ1, θ2) = (0, 0)

and the reflection symmetry with respect to the diagonal line θ 2 = θ1 is utilized. Ulti-
mately, the solution χ(θ) = Ψ (θ, θ) on the diagonal is obtained by calculating Ψ (θ 1, θ2)

on a progressing front, characterized by θ 2.

We note that (73), which in dimensionless form can be written

Ψ (θ1, θ2) = 9

5
�

(
1

3

)
α Δ2/3◦ θ1 θ2 (86)

is an exact, asymptotic solution for the initial stage in both the Batchelor and the Richard-
son case.

It is possible also to obtain an exact, asymptotic solution far from the origin (θ 1, θ2) =
(0, 0) in the Batchelor case, for “frozen turbulence”, where μa = μd = 0. Near the
diagonal θ2 = θ1 (84) becomes

∂2Ψ

∂θ1∂θ2
= 4α

∞∫
0

{
1 − e−Ψ s2/6sinc(Δ◦s)

} ds

s5/3

= 62/3α�

(
2

3

)
Ψ 1/3

1F1

(
−1

3
; 3

2
; −3

2

Δ2◦
Ψ

)
, (87)

where 1F1(a; b; x) is the Kummer confluent hypergeometric function (Wolfram 1999).
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When θ1 and θ2 are so large that Ψ � Δ2◦, (87) reduces to

∂2Ψ

∂θ1∂θ2
= 62/3α �

(
2

3

)
Ψ 1/3. (88)

The solution is in this case

Ψ (θ1, θ2) = 6

{
2

3
�

(
5

3

)
α

}3/2

θ
3/2
1 θ

3/2
2 . (89)

For θ1 = θ2 = θ this becomes the Richardson-Obukhov law (4) in dimensionless form
with C = 6 {(2/3)�(5/3)α}3/2 � 6.3.

Figures 2, 3, and 4 show the results of integrating (84) and (85). The solutions χ(θ) =
Ψ (θ, θ) are in all cases divided by θ 3 in order to demonstrate that the curves for large
values of θ approach the Richardson-Obukhov constant C.

10−3

10−1

101

103

105

10−4 10−2 100 102 104

χ(θ)

θ3

θ
10−4 10−2 100 102 104

θ

Figure 2. Integration results for (μa, μd) = (0, 0) (thin lines), (μa, μd) = (0, 1) (thick
lines). The initial separations are Δ◦ = 0.001 (lower thick lines) and Δ◦ = 0.01 (upper
thick lines). The left frame is the Richardson case and the right frame the Batchelor case.
The dotted lines correspond to the asymptotic solutions (86) for the initial stage and the
Batchelor-case solution (89) for frozen turbulence ((μa, μd) = (0, 0)) on the diagonal
θ = θ1 = θ2.

Figures 2 and 3 demonstrate that for small values of θ the Richardson and the Batche-
lor cases become identical and that at large values of θ the dimensionless, mean-square
excess separation χ(θ) for the Richardson case falls below that of the Batchelor case.
Figure 2 also demonstrates C is a decreasing function of μd .

According to Fig. 4 the advection parameter μa does not influence the solution for neither
θ → 0 nor θ → ∞. This means that the Richardson-Obukhov constant C in both the
Richardson case and the Batchelor case is a function only of the decay parameter μ d .
Figure 5 shows how C depends on μd in both cases. We see that the Richardson curve
falls below the Batchelor curve for all values of μd . The curves in Fig. 5 are obtained
by analyzing (84) and (85) in the far field on lines perpendicular to the diagonal θ 2 =
θ1. Here it is possible to reduce the equations (84) and (85) to second-order, ordinary
differential equations from which values C(μd) are obtained.

Risø–R–1691(EN) 19



10−3

10−1

101

103

105

10−4 10−2 100 102 104
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Figure 3. Results for (μa, μd) = (0, 1). The initial separation is Δ◦ = 0.01. Thick line:
Richardson case, thin line: Batchelor case.
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Figure 4. Results in the Richardson case for (μa, μd) = (0, 1) (thick line) and (μa, μd) =
(1, 1) (thin line). The initial separation is Δ◦ = 0.01.

5 Discussion

Since the present model is based Corrsin’s independence hypothesis as presented in (37)
and, in a slightly generalized form for two particles, in (41), it is appropriate at this point
first to illustrate that this hypothesis can only in a limited sense be consistent with the
generally accepted Lagrangian description of the random motion of marked particles.
Considering just the one-particle case, we note that—with reference to (31), (32), and
(40)—it is a condition for the last equation that r(t) and v(t) = u(r(t), t) are statistically
independent. To test this independence we consider the correlation coefficient ρ vr(t) be-
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Figure 5. The Richardson-Obukhov constant with distance-neighbour functions by
Richardson (thick line) and by Batchelor (thin line).

tween the particle displacement r 1(t) − r◦
1 and its velocity v1(t). By definition,

ρvr(t) = 〈v1(t) · (r1(t) − r◦
1)〉{〈v2

1〉 〈(r1(t) − r◦
1)

2〉}1/2
= 〈v1(t) · (r1(t) − r◦

1)〉
〈v2

1〉1/2 σ(t)
(90)

Noting that

〈v1(t) · (r1(t) − r◦
1)〉 =

〈
v1(t) ·

t∫
0

v1(t
′) dt ′

〉

=
t∫

0

RL(t ′) dt ′ �

⎧⎪⎪⎨⎪⎪⎩
3〈U2〉t, t � TL

3〈U2〉TL, t � TL

, (91)

and that, according to (25) and (27),

σ 2(t) �

⎧⎪⎪⎨⎪⎪⎩
3〈U2〉t2, t � TL

6〈U2〉TLt, t � TL

, (92)

the correlation coefficient becomes in the limits of small and large times

ρvr(t) =

⎧⎪⎪⎨⎪⎪⎩
1 t � TL√

TL
2t

t � TL

. (93)

We see that for large times the position and the velocity of a Lagrangian particle be-
come uncorrelated. Thus, in this limit a necessary condition for Corrsin’s independence
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hypothesis is fulfilled. At small times the two quantities are highly correlated. However,
Corrsin’s hypothesis is obviously exactly true in this limit. It is in all likelihood not true
in general, but perhaps defendable as a tool for our purpose.

Inspecting Figs. 2, 3, and 4, we note that the asymptotes of constant value of χ(θ)/θ 3

are reached at values of θ much larger than one, with corresponding values of χ(θ) also
much larger than one. These asymptotes are supposedly the dimensionless forms of the
intermediate stage of C = D2

E(t)/(εt3), i.e. the Richardson-Obukhov law with the con-
stant C. The problem is of course that the corresponding dispersion time t is much larger
than the temporal scale T of the turbulence and that the square root of the mean-square
excess separation DE(t) is much larger than the scale of the turbulence. For so large times
and separations the assumption of isotropy is not warranted. Rather, we would expect the
two marked particles to move independent of one another with D 2

E(t) being proportional
to t . This problem is related to the assumption (59) for the wave-number part of the spec-
trum E◦(k). This limiting form of the spectrum implies that the velocity variance 〈U 2〉 is
infinite. According to (1) and (2) both the outer scale � and the time scale T are then also
infinity. It also means that the Reynolds number Rλ is infinitely large. The only dimen-
sional quantity with a physical interpretation is consequently the dissipation ε. From this
point of view we have the freedom to reinterpret � and T as finite scales interconnected
by (3) and disregard (1) and (2) entirely. In all the following equations 〈U 2〉 is replaced by
�2/T 2. If we accept this view, we have obtained a method of obtaining the Richardson-
Obukhov constant C for two different assumptions about probability density functions
entering (61) and (63). Since we cannot specify just one of the parameters � and T , we
cannot use the present model to predict where the initial range (17) of D 2(t) goes over
into the intermediate range (4). Further, the final range, where the two particles move
independent of one another, does not exist in this picture.

Instead of assuming a spectrum E◦(k) of the scale free form (59) we could have assumed
the less general von Kármán spectrum

E◦(k) = α(εL)2/3(kL)4L

(1 + (kL)2)17/6 (94)

with the finite length scale L. With the original definition (1) of the outer scale, L and �

are proportional. Their ratio is

L

�
=
(

1

3
B

(
5

2
,

1

3

)
α

)−3/2

≈ 0.78, (95)

where B(a, b) is the beta function (Wolfram 1999).

Solving (52), we need the MSE σ 2(t) for the boundary conditions. The MSE is obtained
by solving the differential equation

d2σ 2

dt2
= 4

∞∫
0

E(k, t) ϕ̂1(k; σ 2) dk, (96)

equivalent to (61), with the initial conditions (σ 2(t), dσ 2/dt)|t=0 = (0, 0). We have used
the Batchelor distance-neighbour function (78) and the more complete equations (57)
and (58) for determining the eddy presence time T ◦(k). Figure 6 shows results with two
different initial separations.

We note that the solution apparently does not go through the εt 3 regime before it enters
the final range, where it becomes proportional to t .
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Figure 6. Two solutions to (52) with the Batchelor distance-neighbour function and with
(μa, μd) = (0, 1). The normalized χ(θ) divided by θ 3 is shown as a function of the
normalized time. The two initial separations are Δ◦ = 0.01 (left frame) and Δ◦ = 0.001
(right frame). In each frame the thick line is the solution to (52) and the thin line the corre-
sponding scale free solution. The dotted lines correspond to the initial stage of D 2(t)−d2◦ ,
given by (17).

6 Conclusions

We have predicted the mean-square separation between two particles as a function of time
in isotropic, stationary turbulence. The model assumptions are:

1. Corrsin’s independence hypothesis (Shlien & Corrsin 1974, McComb 1990).

2. The probability density function for the one-particle excursions and the (generalized)
distance-neighbour function for the two-particle (excess) separation are assumed to
be of the same form, either that of Richardson or that of Batchelor (Richardson 1926,
Batchelor 1952).

3. The time-lag dependence of the energy spectrum E(k, τ ) is assumed to be exponen-
tial, just as spontaneous radioactive decay.

4. The calculations are taken to the limit where the outer scale � is infinitely large.

There is a general agreement that the first assumption is at best a useful approximation
for connecting Lagrangian and Eulerian statistics. However, we suggest that it is in itself
interesting to study its application to two-particle dispersion.

The second assumption about the probability density functions represents two limits, the
Richardson case and the Batchelor case. As discussed by Batchelor (1953), the excur-
sion of a single particle is from an experimental and a theoretical point of view most
certainly Gaussian. Batchelor (1952) argued that for two particles the (excess) separation
|d(t) − d◦| should also be Gaussian. It seems, however, that this is not the case when
the two particles do not move independently of one another. Rather, |d(t) − d ◦| has a
probability density function which, compared to a Gaussian, is more pointed at small val-
ues and has longer tails for large values. This was predicted by Richardson (1926) and
confirmed experimentally by Ott & Mann (2000). On the other hand, when the positions
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of the two particles are taken at two different times t1 and t2, as our model requires, their
asynchronous distance |r 2(t2)−r1(t1)−d◦| will have a probability density approaching a
Gaussian as |t2 − t1| increases. This will also be the case if one of the times t1 or t2 is kept
fixed. Instead of assuming a form which gradually changes from the Richardson form,
when t1 and t2 are almost equal, to a Gaussian form, when t1 and t2 are far from that,
we have carried out the calculations in two limiting cases where the probability density
functions for single-particle dispersion as well as for |r 2(t2) − r1(t1) − d◦| are either of
the Richardson form or of the Batchelor form. As it turns out, the predicted difference be-
tween the corresponding two values of the Richardson-Obukhov constant C is, according
to Fig. 5, about 30%.

Concerning the third assumption, there is no a priori reason forcing us to assume expo-
nential decay of eddies, but it is justified by noting that in a turbulent fluid it just means
that the number of eddies of a given size, which are being removed in a short interval of
time, is proportional with this number, with a factor of proportionality that is a function
of the eddy size only. The removal process can be either destruction by smaller eddies
or advection by larger eddies. This analysis shows that the destruction is more important
than the advection which, in the limit of large times, becomes insignificant. The explana-
tion is that advection by eddies larger than the distance between the two particles will in
most cases sweep them away together.

The fourth assumption shows that in this limit there is no final stage where the two parti-
cles move independent of each other. The initial stage goes over into the intermediate
stage with a constant value of C = D2

E(t)/(εt3) and stays there. Checking the cal-
culations with a wave-number spectrum with a finite spatial length scale, we used the
von Kármán spectrum and discovered that the intermediate range with C = D 2

E(t)/(εt3)

does not seem to exist. The initial stage, where D2
E(t) is proportional to t 2, goes over

into the final stage, where the two particles move independently of each other and where
D2

E(t) is proportional to t , without going through the intermediate t 3-range. This result is
contradicted by the experiments by Ott & Mann (2000) where such a range has been iden-
tified with C = 0.5 ± 0.2. A similar result was obtained by Ishihara & Kaneda (2002)
who, applying direct numerical simulation (DNS), found that C is about 0.7. As men-
tioned earlier, Ishihara & Kaneda (2002) also applied a closure similar to that presented
here. Their equation is equivalent to (84) (Gaussian distance-neighbour function) except
that it is presented on integral form and without eddy removal by decay and advection
(μa = μd = 0). Solving their equation by means of Taylor expansion in what here cor-
responds to (θ2 − θ1)T as described by Kaneda et al. (1999), they found a value of C

very close to the value they obtained by DNS. They also solved their equation by using
the Lagrangian renormalized approximation (LRA) (Kaneda 1981) and found the slightly
larger C-value 1.3. The results by Yeung & Borgas (2004) are not inconsistent with these
findings, but as pointed out by Borgas & Yeung (2004), not even at the largest value of
Rλ = 230 there seems to be a significant range with Richardson-Obukhov similarity.
In their model for two-particle dispersion in kinematic simulations of turbulentlike, two-
dimensional flows Fung & Vassilicos (1998) consider two forms of unsteadiness, alge-
braic and geometric. In this interesting study they identify regions where the two particles
stay close to one another (eddy regions and streaming regions) and regions with high sep-
aration rates (straining regions). They obtain a C-value of about 0.01. Their model in the
algebraic mode has some similarity to the present model in that the unsteadiness “thaws”
the turbulence so that eddy decay in terms of a wave-number eddy turnover-time is in-
cluded. Their dimensionless unsteadiness parameter λ is proportional to our eddy-decay
parameter μd . It seem reasonable to assume that the ratio is μd/λ = √

α/(2π) ≈ 0.2.
Fung & Vassilicos (1998) find that λ � 0.5 most convincingly produces a four-decade
t3 regime for D2

E(t). However, this value will, according to Fig. 5, in our model result in
C � 3, in striking disagreement with the result by Fung & Vassilicos (1998).
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We conclude that Corrsin’s independence hypothesis in this model with Rλ = ∞ leads to

• the observation that the choice of distance neighbour function significantly influ-
ences the prediction of the Richardson-Obukhov constant C as a function of the
dimensionless decay parameter μd for eddy destruction. This constant is about 30%
larger in the Batchelor case than than in the Richardson case.

• a maximum value of C equal to 6.3, corresponding to frozen turbulence (μ d = 0),
and

• the observation that the intermediate t 3-range, predicted by Richardson (1926) and
observed by Ott & Mann (2000), apparently does not exist for turbulence with a
finite length scale. The causes of this discrepancy call for further investigations. One
cause could be related to the application of Corrsin’s independence hypothesis in the
present model.
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