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Suppression  of  Reflections by Directive  Probes  in  Spherical 
Near-Field  Measurements 
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Abstract-The influence  of  probe  correction  in  spherical  near-field 
measurements  on  signals  from outside  the  test  volume is investigated 
theoretically  and  experimentally. It is found  that  fhe suppression of 
reflections  obtained by a directive  probe is not disturbed by the  probe 
correction. A geometric  relation  between  the  antenna  “minimum 
sphere”  and the  probe  pattern  beamwidth is established,  whose  satisfac- 
tion  guarantees the  absence  of  numerical  instabilities in the  far-field 
computation.  The condition is sufficient, but not  necessary if the “min- 
imum sphere” of the  antenna  is in the  near  field of the  probe. 

I. INTRODUCTION 

I N THE SPHERICAL  near-field  far-field technique [ 11 -[4] , 
the near field is measured on a sphere surrwnding  the  test 

antenna.  Then  the  far field can  be  computed in all directions 
and  the directivity can be determined.  Often  a directive antenna 
is used as probe,  which leads to an  amplitude  taper over the  test 
aperture so that  the field contributions  from  the  outermost  parts 
of  the  test  antenna are attenuated.  The  probe  correction, being 
a  part  of  the near-field far-field transformation,  makes  a  correc- 
tion  for  this  effect.  Another way  of  describing the  correction is to  
say that  it  corrects  for  the  probe measuring a weighted average 
over the  probe  apertdre  rather  than  the value at  a single point. 

Probe  correction is also applied  in  planar  near-field  measure- 
ments  [5]. Here, the  correction can be regarded as  a division of 
the  Fourier-transformed measured data  by  the radiation pattern 
of  the  probe. Hence, the  correction  tends  to amplify the  test 
antenna  pattern in directions away from boresight. In the pres- 
ence  of  error signals and noise this  can lead to  large errors in the 
null directions  of  the  probe. 

In the spherical technique  there is no similar simple interpre- 
tation  of  the  probe  correction. Since the signals from  current ele- 
ments away from  the  center  of  the  test  volume are attenuated  by 
the  probe  pattern,  these signals must  be amplified by  the  probe 
correction.  For instance the sidelobes  of a  reflector  antenna are 
raised by the  correction [ 6 ] .  One could  think  that  spurious 
signals from  the  surroundings  outside  the  test volume could also 
be amplified  as in the planar technique.  The  question  of  how  the 
probe  correction  treats these error signals is the  subject  of  a  MSc. 
thesis [7] and  the present paper. 

11. EXPERIMENTAL STUDY OF REFLECTIONS 

In the  experimental part of our investigation we have per- 
formed  a series  of measurements  at  11.7 CHz with  the spherical 
scanner  in the radio anechoic  chamber  at  the Technical University 
of  Denmark. The  near field of a 30 h reflector  antenna was 
measured and  transformed to  the far field by use of the 
program  SNIFTC [8]. In order to study  the  influence  of  probe 
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directivity two  probes were used: a  15 dB gain conical horn  and 
an open-ended  circular waveguide with  a gain of  approximately 
5 dB. Corrections  for  the  probe  patterns were included in the 
transformations. 

The spherical  scanner geometry is shown in Fig. 1.  The  probe 
is f x e d  while the  test  antenna is rotated in 0 and 9. We inserted 
a 1 m X 2 m aluminum  plate  into  the  anechoic  chamber  with  the 
middle of the  plate  at the same height as the  probe  and  test  an- 
tenna, so that  a large reflected error field was produced. 

In the near field (not shown here),  the directive probe  ob- 
viously gives the best  suppression of  the reflected error signal; 
but  it is not  obvious  that  this also applies to  the  transformed  and 
probe-corrected far  field. Fig. 2(a) shows the  far field without 
reflections: while Figs. 2(b)  and  2(c) show the  far fields when  the 
large reflection is introduced, giving rise to  a large lobe  at 0 = 
50”.  The directive probe  pattern is 13 dB below the  pattern  of 
the waveguide probe in the  direction of  specular reflection,  and 
by  comparing Figs. 2(b)  and  2(c) we see that  this suppression of 
the reflection  in the  near field is maintained in the  far field. The 
probe  correction amplifies the lobes generated  by  currents inside 
the  test  antenna volume and away from  center  [9],  but  it  does 
not amplify the  error signals. Thus  the directive probe yields the 
best suppression of the reflections. 

A series of  computer  simulations of different  measurement 
situations has  been  carried out,  and  the  simulations  confirm  the 
experimental results [7]. 

111. THEORETICAL COMPARISON OF 
PROBE CORRECTIONS 

In the  planar  technique  the  probe  correction mechanism is 
normally described  as a “division” of  the measured and  Fourier- 
transformed  data  by  the  radiation  pattern  of  the  probe.  Although 
the cylindrical  and  spherical probe  corrections are not  as simple 
as this, we have established an analogy between  the  probe  correc- 
tions in the  three  techniques. . 

First,  let  us give a brief summary  of  the planar technique as 
described by Kerns [5].  Introducing  the transverse displacement 
of  the  probe P = xe, +ye , .  the received s ipa l  in the  probe is 

b b ( P ) = ~ ,  e i K ’ P S b 2 ( K )  * Slo(K)eiyd dK I (1) 
where K = k,e, + kyer is the  index  parameter  for  the  plane 
wave expansion. Sb2(K) is the receiving characteristic of the 
probe,  and Sl0(K) is the  wanted  transmitting  characteristic of 
the  test  antenna.  Both of  these are two-component  vectors,  and 
for  each K, the  two  components  correspond  to  two  orthogonal 
polarizations. Equation  (1) represents a Fourier  transformation, 
and  by inversion we obtain 

Sb2(K) Slo(K) = T / b b ( P ) e - ‘ ” . ’ d P .  
4rr a. 

e- iyd 
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\ 
Fig. 1. Spherical  near-field  measurement  geometry  with  reflecting  plate 

(top view). 
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Fig. 2. Par field  of 30 h reflector  antenna  computed  from  measured near- 
field  data  illustrating  the  suppression  of  reflected Signals. (a) 15 dB 
probe, no  reflecting  plate. (b) 5 dB probe,  with  reflecting  plate.  (c) 15 
dB  probe,  with  reflecting  plate. 
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Fig. 2. (continued) 

Equation (2) yields one  equation  with  two  unknowns.  Hence,  one 
must  apply a second  probe or. the same probe  rotated 90' to  ob- 
tain  a  second  equation.  Then  for  each K one can solve the system 
of  two linear equations  for S,o(K). The  right  side is computed 
independently  of  the  probe  pattern,  and  the  probe  correction 
enters  through  the  coefficients Sb2(K) which  actually  are the 
probe receiving patterns as a  function of K. 

The  probe  correction  concept  for  nonplanar scanning was 
originally introduced  by Brown and  Jull in a  paper [ 101 on two- 
dimensional  cylindrical  scanning. The field component E, from 
the  test  antenna is expanded in a discrete spectrum: 

m 

where a, are the  expansion  coefficients  and Hi2)(flr) are cylin- 
drical Hankel functions.  The received signal P in the  probe is 
expressed  as a  summation over the cylindrical modes: 

which  by  Fourier  transformation yields 

1 2 n  
arlcn(b> x 2rr 1 P(0)  exp (-j&) do. i s> 

Brown and  Jull  introduced  the  term response constants  for 
c,(b) expressing the probe's  sensitivity to  the  test  antenna  modes 

at  the measuring  radius b. Probe correction  enters  the  computa- 
tion of the  expansion  coefficients a, through  the division of  the 
measured and  Fourier-transformed  data by the response constants 
c,(b), which  depend on the  probe  pattern  and b. 

Also in the  three-dimensional spherical technique [9] a 
discrete  spectrum arises 

s=l n=l  m = - n  

in which Qs,FI,, are the  expansion coefficients with indices (s, r n ?  

n), where s = 1 for transverse  electric (TE)  modes  and s = 2 for 
transverse  magnetic (TM) modes.  The F s , n i l ( ~ :  0 ,  Q) are  spherical 
wave functions as defined in [4] .  The signal received by  the 
probe in a spherical  near-field measurement is expressed  as 

SJ71 tl /J 

where Fj is the signal received in  position (e, 4) at  the measure- 
ment radius A and  with x describing the  polarization angle of 
the  probe. eiin@d;,,,(0)eiFx are rotation coefficients of  the 
spherical wave functions, and P,,,(A) are  spherical  response 
constants,  corresponding  to c,(b) above. They express the 
probe's  sensitivity to  the test antenna  modes  at  the measuring 
radiusA in the position (4? 0 ,  x) = ( O , O ,  0). 

The  probe is assumed to be sensitive to  modes  with p = k1 
only.  Therefore, when orthogonality  relations are  applied to  both 
sides of (7). a system  of two linear equations is obtained 

(8) 
in  which 

djlm (6 )  sin 0 dr$e-'Mx dx. (9) 

Again the integrals on the right side of (8) are computed  inde- 
pendently of the  probe  pattern,  and each pair of expansion  co- 
efficients ( Q l m J l ?  Qznln)  is the  solution  to  a system of two  equa- 
tions  with  two  unknowns.  Then  the far field can  be evaluated 
by use of (6) with r = 00 or (7) with A = 00. 

Comparifig the  three  techniques we  see that  what  they have in 
common is that  some integral transformation is applied  to  the 
measured data,  and  this  transformation  separates  the  contribu- 
tions  to each pair of  modes.  The  integral transformation is in- 
dependent  of  the  probe  pattern as pointed  out by Wacker [3]. 
Thus  the process of solving the  equations, in which the response 
constants are coefficients,  compensates  for 

1) the  measurement  distance: 
2) the  probe  pattern. 

Probe  correction  only implies that  different response constants 
are applied for  different  probes.  Hence,  one  might say that  the 
solution  of  the  expansion-coefficient  equations (2): (5), and (8) 
makes  the near-field measurement plus transformation equally 
sensitive to all of  the  modes  (planar, cylindrical or spherical 
waves, respectively). 

If,  for  certain  modes,  the response constants are small in 
amplitude,  the  determination  of  the corresponding expansion 
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coefficients becomes unstable. In the  planar  technique  each pair 
of  expansion  coefficients  and each  pair of response constants 
(for  the  test  antenna  and  the  probe, respectively) is associated 
with a single far-field direction.  Therefore  the instabilities are 
associated with  nulls in the  probe  pattern  and  they are confined 
to  distinct  directions in the  computed  far field. For  nonplanar 
expansions, instabilities will occur  for  certain  modes  only,  and in 
the  far field the  mode fields and  hence  the  errors will generally 
contribute in all directions. 

IV. INVESTIGATION O F  THE  SPHERICAL 
RESPONSE CONSTANTS 

In  this  section  the spherical  response constants  are  computed 
for various probes in order  to  identify possible  instabilities in  the 
spherical  probe  correction. 

First we shall note  some  properties  of  the spherical wave func- 
tions Fsm, necessary for  interpretation  of  the results. The maxi- 
mum  mode  index n,,, in the spherical wave expansion  for  the 
field excited  by  the  test  antenna is approximately kr,, where ro 
is radius  of  the smallest  sphere (minimum  sphere)  surrounding  the 
antenna.  Further, a mode  with  index n can  only  be  excited  by an 
antenna  with ro > n/k. Therefore  we can also use the  term 
minimum sphere  in connection  with a single spherical wave, and 
in the near-field to  far-field transformation  one  only  needs  to 
calculate  response constants  for n $ nmax. Likewise, the  maxi- 
mum  mode  index vmaX for  the  probe  coefficients Pup,, is deter- 
mined  by  the size of  the  probe. 

The response constants are computed  by  the  formula: 

‘ ou 

where C g v ( A )  are translation  coefficients used  when  expressing 
the  test  antenna  modes Fspn in terms  of  modes Fop,, in the  probe 
coordinate system. Pupu are receiving coefficients  for  the  probe 
in  its  own  coordinate system. 

In spherical  near-field measurements a  conical horn  excited 
by a TE, mode in a  circular waveguide is used  as probe,  and 
hence Po,; and PSpR(A)  are nonzero  for p = +1 only. Usually 
the  probe is approximately linearly  polarized  in the E- and H- 
planes. For such  a probe,  the  matrix in (8) is nearly orthogonal, 
and  the  solution process is well conditioned. With the  additional 
requirement  that  the  E-plane  pattern is the  same  as  the  H-plane 
pattern  such  that  the  polarization is the  same  as  that  of a  Huygens 
source,  the  matrix  takes  the  form [6] : 

and  the  condition  number  of  the  matrix is one.  Our investigation 
is therefore  concerned  with  the variation of [ K,(A) I as  a function 
of d , A ,  and  probe directivity. 

Two  probes have been  modelled as linear endfire  arrays  of 
Huygens  sources, c.f. Table I. These probes have been  used be- 
cause each Huygens  source  measures a combination  of E- andH- 
field components so that  the received signal in the  simulations 
can be calculated exactly as  a  weighted sum over the  array ele- 
ments.  The receiving patterns of the  two  probes  are  shown in 
Fig. 3, and a series of  curves of IK,(A) I for  the  two  probes is 
shown in Figs. 4(a)-(f). 

When the  measurement range approaches  infinity  (correspond- 
ing to  far-field measurements), all spherical modes  tend  to  appear 

TABLE I 
DATA FOR  THE TWO PROBES,  MODELLED AS LINEAR ENDFIRE 

ARRAYS O F  HUYGENS SOURCES 

Directivity 
Length 
Number of elements 
Vmax 

15  dB 21 dB 
1.25 A 

6 
3.60.h 

13 
14 25 

dB 

R o b e :  
1s dB 
21 dB 

‘. : 
.t 

:i. : 
: \, : 
: \  ’ 

\ .  -.-. 
- 

-10 ....... i ..... . . ~  ................ . 5 . .  ............. 

-20 ...... ... .i.. .. .:. ...... .;. ...... .:. ....... I.. . . . . .  . .  

0 30 60 90 120 150 180 

e 
Fig. 3. Far-field radiation  patterns for the probes specified in Table I. 

as  plane waves with axial incidence on  the  probe. This means 
that  the variation of I K,(A)I with n follows the  amplitude 
of  the individual modes  on  the z-axis. Our mode  functions F,, 
are normalized so that  the  radiated power for each mode is 
1/2 1 Q,, ,, l 2  [4]  , and  for I rn I = 1 they satisfy 

where 9 is the  free space admittance. Accordingly, the  two 
curves  in Fig. 4(f) are  proportional to  d m .  The  difference 
between  the curves is equal to  the  ratio  of boresight gain for  the 
two probes. 

At a finite distance the  probe will still be in the  far field of  the 
low  order  modes, i.e., for n2 < k.4. Hence the d m  variation 
dominates  the  left  parts of Figs. 4(a)-4(e). 

In the right parts of Figs. 4(a) and 4(b) the curves  increase 
dramatically.  Mathematically this is due  to  the spherical  Hankel 
functions @ ) ( k ~ )  in the  translation coefficients c~;,(A). 
Hankel functions  of  order p up  to  n + vmax are included  and  for 
p > kA these functions become large. Physically, nmax  + v h a x  > 
kA implies that  the  minimum spheres of  the  test  antenna  and  the 
probe  intersect. This situation should be avoided  in  practical 
measurements.  On  the  other  hand large response constants  imply 
that  the  mode  contributions will be heavily attenuated in the 
near-field  far-field transformation.  Thus  they will not cause 
instabilities in the  computations, unless one  transforms  from  the 
measurement distance to a shorter  distance. Here, there is a 
danger  of  overflow  during the  computation of the response 
constants. 

For  most  of  the curves we observe some “nulls” indicating 
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: 

..................... ).............I...... . 
n A = 2 4 h  

Fig. 4. (continued) 

that  the  probe is insensitive to  particular modes. The  major 
feature of the Hankel functions  for kr < n2 is that  the phase 
variation with r is less than 27r per  wavelength. To a  first approxi- 
mation  the  mode field  can be described as having an angle of 
incidence u to  the  probe axis, different  from  zero. Using an 
asymptotic expression for  the phase  variation [ 11,  eq. (9.2.29)] 
one can  calculate the radial component of the  propagation 
vector: 

/ 

k,= dB,+1/2 (1 -x) n(n + 1) k 
dr 

and  get  the following  expression for  the angle on incidence: 

(1 4)  
Fig. 5. Illustration of the correspondence  between  minimum  sphere of a 

mode  and  angle of incidence. The specific geometry corresponds to 
Fig.  4(c) and the 21 dB  probe. The above  expression is close to  the incidence angle of a  ray from 

the edge of  the  minimum sphere given in Fig. 5. 
When u is calculated  from (n, A )  corresponding to  the first 

null  of  the curves for  the  15 dB probe in Figs. 4(a), 4(b), and 
4(c), we get  44.6", 44.1", and 44.5", respectively.  This is very 
close to  the angle of  the first  null in the  radiation  pattern  of  the 
15 dB probe, c.f. Fig. 3. Similarly, the  other nulls in Figs. 4(a)- 
4(d)  correspond  to nulls in the  probe  patterns in Fig. 3. 

For probe  corrected cylindrical near-field measurements, 
Borgiotti [ 121 , [ 131 has shown  that if the  test  antenna  can  be 
assumed to  be in the  far field of  the  probe,  then  the response 
constants can be calculated by a  saddle point  integration  and 
each response constant will depend  on  the  probe  pattern in one 
direction  only. Because of  the  appearance of a Legendre function 
in  the  formulas  for  the spherical waves, a similar derivation  has 
not been possible in the spherical case: but Figs. 4(a)-4(e) illu- 
strate  that  the  probe receiving patterns via the  concept  of inci- 
dence angle are  reflected  in the curves for  the response constants. 
Only,  the  fnst  null of the 21 dB probe changes to a  "shoulder" 
in the I K,(A) I curves. As long as the  minimum sphere of  the  test 
antenna lies within the main beam of  the  probe, instabilities will 
show  up  for n > n, ax only. 

The disappearance of  the first  null for  the  21 dB probe is 
caused by the distance to  the  minimum sphere of  the  correspond- 
ing modes (Le.: A - n/k) being  smaller than  the far-field  distance 
of  the  probe.  Thus  the response constants are  related to  the 
probe  pattern  at  the  actual  measurement distance rather  than  the 
far-field pattern.  Computer  simulations have verified that especi- 
ally the first  null tends  to vanish at  short distances. As an ex- 
ample, Fig. 5 corresponds to  Fig. 4(c)  for  the  21 dB probe. 
The first null at 0 = 25" would  imply  that  only a sphere up t o  
nmax = 38 could  be used.  However,  since the first  null has dis- 
appeared  at  this distance! antennas  with nmax up  to  50 can be 
measured. In the  extreme  situation where the  probe is larger than 
the  test  antenna,  the  situation is similar to a compact range 
measurement in which  the  far field is measured directly,  and  the 
response constants will therefore follow the curves  in  Fig. 4(f) 
without instabilities. 

Summarizing, we have verified the existence of instabilities 
for  the  probe  correction in the spherical technique,  where  error 
signals and noise could  introduce  errors in the  computed  far  field. 
Such  errors  would arise through  amplification  of  certain  critical 
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modes  and generally be "spread out" over the  entire angular 
space.  However, as long  as the  probe  illuminates  the  entire mini- 
mum sphere of  the  test  antenna,  the instabilities appear  outside 
the  mode range necessary to  represent  the  test  antenna field. 
Errors can therefore  be avoided by proper  truncation of the  ex- 
pansion for  the test antenna field. Further, since the response 
constants are always computed as a  part  of  a far-field transforma- 
tion, instabilities  can be detected in the  computer program. 

V. CONCLUSION 

In spherical near-field measurements  a directive probe in- 
creases the direct signals from  the  test  antenna  and suppresses 
reflected signals from  outside  the  test  antenna  volume.  The  probe 
correction in the  subsequent  data processing compensates  for  the 
probe  pattern variation over the  test  antenna  aperture.  Theoreti- 
cal investigations have shown  that numerical  instabilities may 
arise for  certain critical modes. However,  as  long as the  probe 
illuminates  the  entire  test  antenna  volume, these  instabilities 
will correspond  to directions from  outside  the  test  antenna. 
Accordingly, they can be avoided by proper  truncation of the 
spherical wave expansion  for  the test antenna field. Measure- 
ments have verified that signals received from  the  surroundings 
will not  be amplified by  the  probe  correction. 

It should be emphasized that  the results  above do  not  apply 
to  multiple reflections between  the  test  antenna  and  the  probe. 
In general these  reflections will increase with increasing size of 
the  probe,  and this effect  can in some cases put  a limit on  the 
feasible probe size. 
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