

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Comparison of a Local Linearization Algorithm with Standard Numerical Integration
Methods for Real-Time Simulation

Cook, Gerald; Lin, Ching-Fang

Published in:
I E E E Transactions on Industrial Electronics

Link to article, DOI:
10.1109/TIECI.1980.351664

Publication date:
1980

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Cook, G., & Lin, C-F. (1980). Comparison of a Local Linearization Algorithm with Standard Numerical Integration
Methods for Real-Time Simulation. I E E E Transactions on Industrial Electronics, IECI-27(3), 129-132. DOI:
10.1109/TIECI.1980.351664

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13720848?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/TIECI.1980.351664
http://orbit.dtu.dk/en/publications/comparison-of-a-local-linearization-algorithm-with-standard-numerical-integration-methods-for-realtime-simulation(45a8f855-ac88-4d0e-9a0a-b8f033e49cf0).html

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS AND CONTROL INSTRUMENTATION, VOL. IECI-27, NO. 3, AUGUST 1980 129

Comparison of a Local Linearization Algorithm
with Standard Numerical Integration Methods

for Real-Time Simulation
GERALD COOK, SENIOR MEMBER, IEEE, AND CHING-FANG LIN

Abstract-The local linearization algorithm is presented as a possible
numerical integration scheme to be used in real-time simulation. A
second-order nonlinear example problem is solved using different
methods. The local linearization approach is shown to require less
computing time and give significant improvement in accuracy over the
classical second-order integration methods.

I. INTRODUCTION
T HERE have been extensive studies made to obtain more

accurate less time-consuming techniques for approxi-
mately transforming continuous systems to discrete systems.
This area is especially important for real-time simulation
applications.
Selection of a particular method would depend on the

specific simulation problem. It is a general rule, however, that
there is a trade off between speed and accuracy. In other
words, a more accurate discretization method is in general
more time-consuming. For example, integration by a Runge-
Kutta (RK) method, which is obtained by truncating a Taylor
series expansion of the function, can provide an approxima-
tion which closely matches the ideal integration when a small
step size T is used. The fourth-order Runge-Kutta method
(RK-4) truncates the expansion after the term proportional to
T Therefore the truncation error in this case is proportional
to T5. This method requires four evaluations of the system
equations at each sample point, however, and so is generally
too time-consuming for many real-time applications.

In the search for a fast and accurate discrete-time simulation
method a general algorithm, based on a local linearization
procedure, has been developed. This algorithm is extremely
simple and thus relatively fast. In the proceeding sections this
algorithm will be developed and then applied to an example
problem. Comparisons made with other numerical methods
regarding speed and accuracy indicate that this is a very
promising algorithm.

II. LOCAL LINEARIZATION ALGORITHM
Let the nth-order ordinary differential equation, describing

a general nonlinear time-varying system, be expressed in state

Manuscript received October 24, 1978; revised February 29, 1980.
G. Cook is with the Control Engineering Laboratory, Technical

University of Denmark, Copenhagen, Denmark, on leave from the
Department of Electrical Engineering, University ofVirginia, Charlottes-
ville, VA 22901.
C-F. Lin was with the Department ofElectrical Engineering, University

of Virginia, Charlottesville, VA. He is now with the Department of
Mathematics, University of Michigan, Ann Arbor, MI 48104.

variable form as

*(t)=f(x, u) (1)
where x(t) is the n-dimensional vector representing the system
states and f is the n-dimensional vector composed of general
nonlinear time-invariant functions of the state vector x(t) and
the r-dimensional control vector u(t).
When (1) is expressed as a Taylor series in x(t) about the

pointx (tk) or xk one obtains

X =f(xfkU(t)(+af(X U(t))\ - (X(t) - Xk)+ *\ ax~ k) (2)

or

x = Ax + g(k, U(t)) + -.
where

afA = (xk, U)

and

g(Xk, u) =f(xk, U) - a (Xk, U) Xk.ax

When (3) is integrated, it becomes

(3)

tk*+ I

Xk+ 1 = [exp (AT)IXk + . exp [A (tk+ X -)0

- g(Xk, U(r)) d-] (4)
where

T-=tk+l tk
Let us assume that our integration interval is such that

U(t) -- U(0k3 tk -<- t < tk 1 (5)
Almost all numerical integration methods require this to be

the case. RK-4 does sample the input signal twice for each
integration interval so the time interval for (5) would be
halved for that case.
With the assumption (5), equation (4) becomes

tk+ 1

Xk+ 1 = exp (AT)xk +- 3 exp [A(tk+l - r)I dT

*g(xk, Uk)

0018-9421/80/0800-0129$00.75 1980 IEEE

(6)

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 9, 2009 at 09:34 from IEEE Xplore. Restrictions apply.

130 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS AND CONTROL INSTRUMENTATION, VOL. IECI-27, NO. 3, AUGUST 1980

or

- T

Xk+ 1 = exp (AT)Xk + fTexp (Ar) dT

[f(Xk, Uk) Axk]
or

Xk+ 1 = exp (AT)xk - A fTexp (AT) dr Xk

oT
+ f exp (Ar) dr f(Xk, Uk).

But

T
-A exp (Ar)d = -exp (AT)+I.

Therefore (8) becomes

~ T
Xk+ 1 -Xk + exp (Ar) dTr f(Xk, Uk).

It should be noted that (9) implies that f(xk, Uk) iS upda
at each sample time. However,A and the integral of exp (

may be updated less frequently depending on the severity
the nonlinearity.
The basis for this surprisingly simple algorithm is given

Barker et al. [1] . The purpose of this paper is to present
method and to compare it with some standard numeri
integration algorithms.

III. COMPUTATIONAL CONSIDERATIONS
The most time-consuming calculation for the local lineariza-

tion algorithm is the updating of the integral of the matrix
exponential

T
f exp (Ar) dr = IT + AT2/2! +A2T3/3! + --- (10)

For convergence one should take enough terms (N) in this
series such that

Xmax T/N<< 1 (11)

or

N> I10max T (12)
where Xmax is the magnitude of that eigenvalue of A with
greatest magnitude. Choosing N in this manner guarantees
that the last term retained in the series (10) will be small com-
pared to the previous term.
Defining T1 as the interval between updates of (10), this cal-

culation requires n3N multiplications and n3N additions every
T1 seconds. We shall assume that multiplication requires two
units of computing time and addition one unit. Thus calcula-
tion of (10) requires 3n3N/T, units per second of simulation
time.

Let us defne m as the average number of units of computing
time required to update each component of the vector f(xk,
Uk). Then to calculate the A matrix would require mn2 + 3n2
of computing time. This too would be done every T1 seconds
or would result in an additional (mnn + 3n2)/Tl units per

(7) second of simulation time.
Finally to implement (9) would require the nm units to

update f(Xk, Uk), n2 multiplications, and n2 + n additions.
This adds up to (nm + 3n2 + n)/T units per second of simula-
tion time.
The total time for the local linearization algorithm then

becomes

(8) NLL = (3n3N + 3n2 + mn2)/Tl + (nm + 3n2 + n)/T. (13)

For the Euler method

xk+ 1 = Xk + Tf(Xk, Uk)- (14)

The number of computing units per second of simulation time
is

NE = (tim + 3n)1T.
For the second-order Adams-Bashforth (AB-2) method

(9) Xk+ 1 = Xk + T(2 f(xk, Uk) - 2f(Xk- 1, Uk- 1))

(15)

(16)

the number of computing units per second of simulation time
is

NAB = (nM + 6n)/T.
For the RK-4 method

Xk+1 =Xk+6T(k6 +2k2 +2k3 =k4)

(17)

(18)

the number of computing units per second of simulation time
is

NRK = (4nmn + IlOn)IT. (19)

It should be noted that the integration step size required will
in general be different for the different methods. Thus T in
(13), (15), (17), and (19) is not necessarily the same. Also
note that one can immediately dismiss the Euler method by
comparing it with the AB-2 method. The number of computa-
tions per step size given by (1S) and (17) are very nearly equal
while generally the step size T required by the Euler method is
significantly smaller than that required by the AB-2 method.
Thus the Euler method will not be considered further. Further
comparisons, e.g., equations (17) and (19) indicate that unless
RK-4 can utilize a step-size four times as great as AB-2 it will
be more time consuming than AB-2. Experience has indicated
that RK-4 cannot use a step size four times greater than AB-2.
Therefore, RK-4 can also be eliminated in the competition for
real-time simulation methods.
The next section will compare the remaining two integration

methods, local linearization and AB-2, via an example problem.
RK-4 will be used with a very small integration interval to
establish a standard for comparison.

IV. EXAMPLE PROBLEM
The example to be used for comparing the integration

methods is

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 9, 2009 at 09:34 from IEEE Xplore. Restrictions apply.

COOK AND LIN: COMPARISON OF METHODS FOR REAL-TIME SIMULATION

0

10-60-
eLL LL

0: \ T=. 05
10-7 _ \

O-8_
, LL

10-9 T=7ne
1000 2000 3000 4000 5000 6000

Number of Computation Units per Second

Fig. 1. Comparison of accuracy versus computer requirements for
different algorithms and step sizes.

6 + ()3 +(1 -exp(-101)) sgn (0)=0 N= 5.

which is modeled in state variable form as

X1 -X

i2 -X23 -(1- exp (- Ix1) sgn (x1).
Initial conditions are

x1(0)= 10

and

x2(0)=O.
It was found that the major portion of transient lasted only Is.
Therefore, comparisons will be restricted to this time interval.
For the "ideal" solution, RK-4 was used with a step size of

0.01 s. Taking m to be 10, this means that 10 000 computing
units per second were required. We will assume that the mean-
squared error for this case is zero.
To use the local linearization algorithm it was decided to try

several different combinations of values for T and T1. This
was done by selecting T and varying T1 over a range of values.
First T was set at 0.025. The largest eigenvalue for A was in
the neighborhood of 10 which means

lOAT= 2.5

so

N= 3.

This yields a value forNLL of (124/T1 + 341T) or (124/T1 +
1360) computing units per second.
Another value selected for Twas 0.05 s. For this value,

IOXT=

so

This yields a value ofNLL of (172/T1 + 34/T) or (172/T1 +
680) computing units per second.
Finally T was set equal to 0.1 s. For this value

1OXT= 10

so

N= 10

and NLL became (292/T1 + 34/T) or (292/T1 + 340) comput-
ing units per second. Fig. 1 shows graphs of mean-square
error, defned as

1 If
MSE =- [Xlft-x1(t)- XIA(t)) + (x2(t) - X2A(t))] dt

tf
versus computation units per second. The X1A (t) and X2A (t)
represent the ideal solution obtained by RK-4 and as stated
earlier tf was taken as 1 s. For the curve labeled T= 0.025,
T1 was varied and as would be expected, the smaller T, was
(and the more computation units per second) the smaller was
the mean-square error. The end of the curve corresponds to
a value for T1 of 0.025 s., i.e., equal to T. This is the smallest
period one could use between updates ofA and the integral
of exp (Ar).
The curves for T taking on values of 0.05 and 0.1 s are also

shown. It is interesting to note that for a given number of
computation units per second, certain combinations of values
for T and T1 are better than others. For example suppose one
can tolerate 3000 computations units per second. Table I
shows the various combinations of T and T1 studied which
require 3000 computation units per second and the resulting
mean-squared error. This is the kind of information one
would like in order to optimize a simulation for a given

131

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 9, 2009 at 09:34 from IEEE Xplore. Restrictions apply.

132 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS AND CONTROL INSTRUMENTATION, VOL. IECI-27, NO. 3, AUGUST 1980

TABLE I
COMPARISON OF T,Ti AND MSE FOR 3000 COMPUTATION

UNITS PER SECOND

T T MSE

.025 .076 1 x10 7

.050 .074 8x107

.100 .110 3xl1 6

TABLE II
COMPARISON OF T, T1 AND COMPUTATION UNITS PER SECOND FOR MSE

= I x lo-,

T T1 CU/sS

.025 .190 2013

.050 .162 1740

.100 .136 2488

computing capability. Obviously the first combination is the
most accurate.
Conversely one could have a mean-squared error specifica-

tion and wish to achieve this performance with a minimum
computing capability. Table II shows the kind of comparison
one would make if for example the specification on mean

squared errors was 10'. Clearly the combination of

T = 0.050 s

and

T, = 0.162 s

is the most efficient.
In addition to illustrating the behavior of the local lineariza-

tion method, Fig. 1 also shows the performance versus com-
putation requirements ,for the AB-2 method. The AB-2
method required a value for NAB or 32/T computing units
per second. Although this method is very simple to use and is
definitely a fine method, the local linearization method out-
performs it for this particular example. It is interesting to
note that the AB-2 method experiences an extremum in
mean-squared error. This is due to growth of the round off
error caused by the large number of steps required as T be-
comes small. This minimum occurs at 4444 computation
units per second which corresponds to

T= 0.0072 s.

For the local linearization method, values for T this small
were not used. No doubt there does exist a point of diminish-
ing returns for the local linearization method just as for any
other numerical integration method.

V. CONCLUSION
A local linearization method for discrete-time simulation of

nonlinear time-invariant systems has been presented and tested.
Computational considerations have been treated. Comparisons
with other well-known methods indicate that this is a very
promising method, and depending on the problem under
consideration may be the best approach to use.

REFERENCES

[11 L. E. Barker, R. L. Bowles, and L. H. Williams, "Development and
application of a local linearization algorithm for the integration of
quaternian rate equations in real-time flight simulation problems,"
NASA Tech. Note TN D-7347, Dec. 1973.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 9, 2009 at 09:34 from IEEE Xplore. Restrictions apply.

