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Monte Carlo computer-simulation techniques are used to elucidate the equilibrium phase
behavior as well as the late-stage ordering dynamics of some two-dimensional models with
ground-state ordering of a high degeneracy, @. The models are Q-state Potts models with
anisotropic grain-boundary potential on triangular lattices — essentially clock models, except
that the potential is not a cosine, but a sine function of the angle between neighboring grain
orientations. For not too small @, these models display two thermally driven phase transitions,
one which takes the system from a low-temperature Potts-ordered phase to an intermediate
phase which lacks conventional long-range order, and another transition which takes the system
to the high-temperature disordered phase. The linear nature of the sine potential used makes
it a marginal case in the sense that it favors neither hard domain boundaries, like the standard
Potts models do, nor a wetting of the boundaries, as the standard clock models do. Thermal
fluctuations nevertheless cause wetting to occur for not too small temperatures. Specifically,
we have studied models with @ = 12 and 48. The models are quenched from infinite to zero as
well as finite temperatures within the two low-temperature phases. The order parameter is a
nonconserved quantity during these quenches. The nonequilibrium ordering process subsequent
to the quench is studied as a function of time by calculating the interfacial energy, A E, associated
with the entire grain-boundary network. The time evolution of this quantity is shown to obey the
growth law, AE(t) ~ t™", over an extended time range at late times. It is found that the zero-
temperature dynamics is characterized by a special exponent value which for the @ = 48 model
is » 2~ 0.25 in accordance with earlier work. However, for quenches to finite temperatures in the
Potts-ordered phase there is a distinct crossover to the classical Lifshitz-Allen-Cahn exponent
value, n = %, for both values of Q. This supports the conjecture that the zero-temperature
dynamics for models with soft domain boundaries belong to a special universality class, and
that all models with nonconserved order parameter, independent of ordering degeneracy and
softness and origin of domain boundaries, obey the classical growth law at finite temperatures.
In quenches to the Potts-ordered phase vortices and antivortices occur and annihilate mutually
without pinning the ordering process. The ordering dynamics for quenches into the intermediate
phase is also found to be described by an effectively algebraic growth law.

I. INTRODUCTION

There is now significant theoretical evidence that the
dynamical processes of ordering in condensed matter
obey dynamical scaling! and mainly fall into two dy-
namical universality classes.!=3 These classes, which are
distinguished by the order parameter being a conserved
quantity or not, are characterized by different values of
the kinetic growth exponent, n, of the growth law

R(t) ~ t", (1)

where R(t) is a linear measure of the growing do-
mains. The first universality class is that of model A (in
the classification scheme of Halperin and Hohenberg?®)
in which the order parameter is not conserved and
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where it has been found that n = % independent of the
degeneracy, p, of the ordering,51°=2% independent of ad-
ditional conservation laws,'® independent of details of the
interaction potential,!* and even independent of the spa-
tial dimension.!®2! The second class [that of model B
(Ref. 9)], in which the order parameter is a conserved
quantity, has been investigated much less thoroughly.
However, recent computer-simulation work®%22-26 has
produced strong evidence in favor of an exponent
value n = %, again independent of details of the dy-
namical model?*?® (e.g., whether it is the Langevin
model, the Cahn-Hilliard model, or the kinetic Ising
model) and independent of the spatial dimension.?%23:2%
For this class, less is known about the possible depen-
dence on the ordering degeneracy.2” Very recently® some
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new information has also been gained about dynamical
scaling and ordering dynamics in tricritical systems with
coupled order parameters, one of which is conserved and
the other of which is not (model C). This information
is consistent with n = % Careful experimental work
on two-dimensional?®2° and three-dimensional3°—32 re-
alizations of these universality classes are generally in-
terpreted to be consistent with the theoretical findings.
It is somewhat surprising to note that the exponent val-
ues n = -,i; and % are precisely those predicted by the
early classical theories of Lifshitz,3® Allen and Cahn,34
and Lifshitz and Slyozov3® using very basic assumptions
about the driving forces for the ordering processes (for a
review, see Ref. 1).

In reality, the picture of a universal classification of
ordering dynamics is, unfortunately, much less clear
than that just outlined. This is true of many model
theoretical studies as well as a variety of experimen-
tal studies. The reasons for this are manifold. On
the theoretical model side the picture is often ob-
scured by crossover effects in either temperature!®:36:37
or in some model parameter.14:18:33 Specific examples in-
clude crossover to low-temperature freezing-in!4:18,36-38
or zero-temperature soft-wall dynamics.!%:3%40 Experi-
mentally, the growth exponent values may be influenced
by similar effects in addition to effects due to imperfec-
tions and impurities.** At the present stage of a theoret-
ical development, where a definitive theory still does not
exist, and where the major theoretical evidence, at least
for highly degenerate systems, comes from computer-
simulation studies, it is therefore important to take the
simulation studies beyond the level of the most simple
models. Firstly, this is important in order to further
test the current universal picture and maybe more impor-
tantly to guide the development of a theory. Secondly,
studies of more complicated models constitute an impor-
tant step towards an understanding of more material-
specific problems.

We have performed a Monte Carlo computer-
simulation study of the ordering dynamics (or grain
growth) in two dimensions in a particular highly degener-
ate @)-state Potts model with anisotropic grain-boundary
potential. This model was first proposed by Grest et
al %213 ag a model of grain growth in polycrystalline ag-
gregates. From Monte Carlo simulations these authors
found that for quenches to zero temperature the model
potential for large @ leads to a growth law, Eq. (1), with
n =~ 0.25, and argued that this is consistent with similar
findings for other models3® that are capable of support-
ing “soft” grain boundaries, i.e., domain walls of a finite
thickness. The anisotropic Potts model for large Q leads
at zero temperature to such broad interfaces made up of
a conglomerate of very small Potts-ordered domains.42:43
Several authors!?15:4% have, however, recently reported
computer-simulation results on the finite-temperature dy-
namics of a variety of soft-wall models which show that
the exponent value n ~ 0.25 is at most only valid at zero
temperature and that the classical Lifshitz-Allen-Cahn

law with n = % is recovered, independent of the value
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of Q, as soon as the thermal fluctuations are allowed
for. It is therefore obviously of interest to extend the
study of the dynamics of the high-Q Potts model with
anisotropic grain-boundary potential to nonzero temper-
ature quenches.

The results of the present work show that also the
anisotropic grain-boundary potential leads to ordering
dynamics with n ~ 1 at finite temperatures. This find-
ing has important consequences for the interpretation of
experimental data for grain growth in polycrystalline ag-
gregates in terms of an anisotropic high-Q Potts model.
Furthermore, our model study demonstrates that the
morphology of the growing domains is dramatically dif-
ferent at zero and nonzero temperatures. At zero tem-
perature the domain pattern is characterized by com-
pact Potts-ordered domains bound by a network of fairly
straight domain boundaries merging predominantly in
three-line vertices. However, at low but finite temper-
atures, the morphology is completely different with for-
mation of distinct vortices and antivortices. From equi-
librium Monte Carlo calculations we show that for large
Q, specifically @ = 12 and 48, the model potential leads
to two phase transitions, which separate an intermedi-
ate phase from a low-temperature Potts-ordered phase
and a high-temperature disordered phase. These results
are consistent with similar results for the standard Q-
state clock models**~47 for which it has been shown**
that an intermediate Kosterlitz-Thouless phase arises
for @ > 5. Finite-temperature quenches into the low-
temperature phase show, again consistent with work on
isotropic high-Q Potts models**~%7 and vortex-forming
axial next-nearest-neighbor Ising models'® that the ki-
netic growth exponent is close to % in both phases and
independent of temperature.

The outline of the paper is as follows: in Sec. II we
present the microscopic interaction model and the model
dynamics. Section III is devoted to a description of the
equilibrium phase behavior of the @ = 12 and 48 models.
The results for the nonequilibrium ordering dynamics are
presented in Sec. I'V and analyzed in terms of an algebraic
growth law. The paper is concluded by a discussion in

Sec. V.

II. MODEL

A. Hamiltonian

The model is a Q-state Potts model arrayed on a tri-
angular lattice with a pair potential

Vij = J |sin (1(_5'.:5_3)) , ()

Q
defined in terms of the Potts wvariables S;, S;
=1,2,...,Q. J is a positive interaction constant. With

an interaction Hamiltonian

H==) (J—V), ®)

i>j

this model has been proposed*?*3 to provide a descrip-
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tion of the grain-boundary energy in polycrystalline ag-
gregates. In that context, S; labels the possible orien-
tations of a microcrystalline domain or grain. The in-
teractions of Eq. (3) are restricted to nearest neighbors
on the triangular lattice. The model implies a Q-fold
degenerate ground-state ordering (Potts ordering) at low
temperatures.

The Hamiltonian in Eq. (3) defines two energy scales:
its range J, and its gap Jsin(7w/Q@). In this respect it is
similar to and may be considered a variant of the stan-
dard @Q-state clock models. Hence it is expected?? that
the equilibrium phase behavior of the model for large @
(@ > 5 for the standard clock model) involves two ther-
mal phase transitions: one at 7y from a low-temperature
Potts-ordered phase to an intermediate phase, and an-
other one at T3 from this intermediate phase to the dis-
ordered phase. T3 is expected to depend on @ as the gap
in the link energy; T3 is expected to depend only on the
range J of the link energy and hence to be independent
of @. Thus for the standard clock model

kgTi/J ~1—cos(27/Q) ~ Q~2,

and for its variant studied here, Eq. (2), yields
kpTi/J ~sin(7/Q) ~ Q1.

For both clock models kgT3/J ~ 1.

B. Model dynamics

The dynamical model used is a local single-site Glauber
excitation mechanism that does not conserve the order
parameter. The dynamical model is implemented us-
ing Monte Carlo techniques.®®4® At zero temperature,
the specific Monte Carlo method is built on the conven-
tional Metropolis criterion, which accepts trial moves if
AFE < 0. A trial move involves the assignment of a ran-
domly chosen Potts state to the site under consideration.
If unsuccessful, up to six new trial moves are attempted
at the same site before proceeding to the next site. For fi-
nite temperatures, we have used the heat-bath method:5°
the variable on site 7 is updated to the value S; with prob-
ability

exp Z —(J = V;5)/ kT

J

P(S) = , @
4
where z; is a normalization constant, i.e.,
Q
1= )" Pi(S). (5)
Si=1

In Eq. (4) the summation is over sites j, which are nearest
neighbors to site 1.

The dynamical model is implemented on a vector pro-
cessor using a “checkerboard” updating algorithm: the
triangular lattice is divided into three identical sublat-
tices such that any site on any sublattice is surrounded
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by sites only from the other two sublattices. Toroidal
boundary conditions are imposed. The three sublattices
are updated one after another, and the updating of sites
in one sublattice may be viewed as simultaneous. The
time is measured in units of Monte Carlo steps per site
(MCS/S).

We have studied the model in Egs. (2) and (3) for
@ = 12 and for Q@ = 48. The dynamics of the order-
ing processes in both models is simulated at zero and at
nonzero temperature. The ordering processes have previ-
ously been studied in the (Q = 48)-state model by Grest
et al.,*?3 but only at zero temperature. As a prerequi-
site to the studies of finite-temperature dynamics we have
studied the equilibrium phase behavior of both models.

III. EQUILIBRIUM PHASE BEHAVIOR

Figure 1 shows Monte Carlo data for the internal en-
ergy per site, E(T) = (H)/N, and the specific heat per
site, C(T), for the (@ = 12)-state model on lattices with
N = L x L sites.- Data for three different system sizes,
N = 152, 302, and 602 are shown in order to illustrate
finite-size effects. The specific heat is calculated from the
fluctuation theorem,

C(T) = (NksT?)™' ((H?) - (H)?).
This function clearly exhibits two peaks signaling two
phase transitions. The size dependence of these peaks is

1 T
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FIG. 1. Equilibrium internal energy per site, £(T"), and
specific heat per site, C(T), for the (Q = 12)-state anisotropic
Potts model. The data are obtained from Monte Carlo simu-

lations on triangular lattices with N sites. O: N = 15%, A:
N =302, and o: N = 602,
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weak. For the high-temperature transition there is, how-
ever, a systematic increase in peak intensity and shift to-
wards lower temperatures as the system size is increased.
The corresponding energy and specific-heat data for the
(Q = 48)-state model are shown in Fig. 2. This model
also has two distinct peaks in the specific heat.

The specific-heat data presented in Figs. 1 and 2 are
strong numerical indications of two thermal phase tran-
sitions in both the (Q = 12)-state and the (Q = 48)-state
models. The low-temperature (cold) phase in each model
is a Potts-ordered phase in which the system is uniformly
long-range ordered in one of the @ Potts states. We
have found that the intermediate phase of the models we
have studied is one with a finite density of tightly bound
vortices and antivortices, as it is for the standard clock
model. %4

Although the specific-heat peaks in Figs. 1 and 2 are
strong signals of phase transitions, there is no simple re-
lation between the peak positions and the corresponding
transition temperatures.! It is known in general to be a
very difficult problem to accurately determine the transi-
tion temperatures related to Kosterlitz-Thouless phases
from computer simulation data.?”51~53 For dynamical
studies, however, we need only know the approximate lo-
cation of the phase boundaries, so we are satisfied with
the results shown in Figs. 1 and 2, more so because
the weak size dependence of C(T') found for these mod-

E(T)—1.2 T T T T T
Y Q=48 1

-1.8f © 1
—-21F O .
—2.4F T
-2.7} . .

-3.0
g:r_) 2.70} o e

2.25}

1.80F | ]
135} © N .
0.90} .

0.45} o 1

o]

D

6

N

o 8 10
J/kgT

FIG. 2. Equilibrium internal energy per site, E(T), and
specific heat per site, C(T), for the (Q = 48)-state anisotropic
Potts model. The data are obtained from Monte Carlo simu-
lations on a triangular lattice with N = 302 sites.
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els is similar to that encountered in the standard clock
models,?32 and a comprehensive Monte Carlo study of
the (Q = 6)-state clock model®! has shown that the size
dependence moves the two specific-heat peaks towards
each other, as the system size is increased. We shall as-
sume that this result also applies to the Potts models
studied here, so that the stable temperature region for
the intermediate phase is less than that suggested by the
peaks in Figs. 1 and 2.

If, for a moment, we neglect these subtleties, we may
identify the loci of the specific-heat peaks in Figs. 1 and
2 with 71 and T». That gives us

J/kpTh(Q =12) = 2.1
and

J/kpTi(Q = 48) = 8.1,
so that

Ti(Q = 12)/T1(Q = 48) = 3.9,
to be compared with

[sin(7/12)]/[sin(x/48)] = 4.0.

Taking the errors in 77 into account, these two ratios are
identical, and we see that T; depends on @ as expected.
Also as expected, we find that T, is independent of @,
since

J/kpT2(Q = 12) ~ J/kpT2(Q = 48) = 1.17.

IV. NONEQUILIBRIUM ORDERING
DYNAMICS

The dynamics of the ordering processes is studied sub-
sequent to temperature quenches from infinite tempera-
ture to some temperature, T', within the ordered phases.
The initial state is a disordered, completely random con-
figuration. The time evolution of the system is followed
qualitatively by monitoring time sequences of snapshots
of microconfigurations. To illustrate the evolution of the
morphology of the domain pattern, only the network of
interfaces between the domains is studied. Such a study
is facilitated by mapping the domain boundaries onto
the dual lattice, i.e., onto a honeycomb structure for the
triangular lattice. The growth process may be analyzed
more quantitatively by calculating the excess nonequilib-
rium energy

AE(t) = H(t)/N — E(T) (6)

associated with the entire network of interfaces between
the differently ordered domains. According to scaling,5*
AE(t) ~ R™1(t), and hence AF(t) may be used to in-
directly monitor the time-dependent linear length scale
of the growth process. In order to obtain reliable ensem-
ble averages, AE(t) is averaged over several independent
quenches using different initial configurations and differ-
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ent random-number sequences for the Monte Carlo algo-
rithm. The major part of the nonequilibrium simulations
is carried out on lattices of sizes N = 1022 and 2042.

A. Quenches to zero temperature

In the upper panels of Figs. 3 and 4 are shown time
series of snapshots of microconfigurations for the (Q
= 12)- and (Q = 48)-state model in the case of quenches
to T = 0. Like for the isotropic Q-state Potts models!®
it is found that the morphology of the growing domains
becomes more regular and less convoluted as the value
of @ is raised. In contrast to the isotropic models, how-
ever, the morphology of the boundary network of the
models with anisotropic grain-boundary potential has an
element of abnormal grain growth*3 by which conglom-
erates of small domains are intercalated between larger
domains. This feature, which is most pronounced for the
(Q = 48)-state model, cf. Fig. 4, has led to the concept
of wide or soft domain boundaries.3%42

A quantitative analysis of the domain-growth process
is provided in Figs. 5 and 6 which show that the data for
both models are quite accurately described by a power
law

AE(t) ~t~" )

N ) BeA
3¢ s G
. X s!&&}q
ﬂrf““ 'IJA“;} (X
}&.u‘“’"‘ TN
Ll 55

SR A

FIG. 3.
on a triangular lattice with N = 102? sites. The time parameter ¢ is in units of MCS/S. Results are shown at zero temperature
and for a temperature in the cold Potts-ordered phase.
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over more than two decades. The deviations from the
power law at late times are due to finite-size rounding
and insufficient statistics. The exponent values derived
from Figs. 5 and 6 are n ~ 0.36 for @ = 12 and n
=~ 0.24 for Q = 48. Our low exponent value for the (Q
= 48)-state model confirms the results of previous work
on this model.*? Moreover, the higher exponent value for
the (Q = 12)-state model compares to that found at zero
temperature for the Read-Schockley potential??43 with
Q@ = 12. The Read-Schockley potential is rather sim-
ilar to that of the present model, Eq. (2), and it also
leads to wide domain walls?? of the type seen in the up-
per panels of Figs. 3 and 4. In the earlier work on the
(@ = 12)-state model, the growth law and the growth
exponent were derived from the domain-size distribution
function. Our finding of the same growth exponent value
based on the excess energy lends further evidence to the
dynamical scaling property of the growth process which
implies® that R(t) ~ AE~1(t).

B. Quenches into the cold phase

Typical series of time evolution of microconfigurations
for the (Q = 12)- and (Q = 48)-state models are shown
in the lower panels of Figs. 3 and 4 for quenches into
the cold phase. It is immediately noted for both models
that the morphology of the domain-boundary network is

t=836

Snapshots of domain-boundary configurations as they evolve in time for the (Q = 12)-state anisotropic Potts model
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FIG. 4.

and for a temperature in the cold Potts-ordered phase.

fundamentally different from that at zero growth tem-
perature. Whereas the domains at 7" = 0 are compact
and regular and associated predominantly with vertices
of three rather straight lines, at finite temperatures the
domain-boundary network is more irregular. Due to the
concave shape of the sine potential the energy per unit
length,

AE(q) = |sin(7q/Q)],

of a domain boundary with AS = ¢ is lower than the
energy per unit length,

qAE(1) = qsin(7/Q)|,

of ¢ boundaries with AS = 1. So the Hamiltonian fa-
vors that several domain boundaries coalesce to form a
single boundary. The energy gained hereby is very small
though, when compared with other energy scales in the
Hamiltonian. The smallest gain is

2AE(1) — AE(2) = 2sin(7/Q) — sin(27/Q)
= (7/Q)* + O(7/Q)°].

This suggests that the models considered here may have
a wetting transition at a temperature 7}, that scales with

Q as
kpTy/J ~ (”/Q)S

for large values of Q. The finite temperatures quenched
to in Figs. 3 and 4 are both in the wetting range of tem-

DYNAMICS OF ORDERING IN HIGHLY DEGENERATE MODELS. ..
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Snapshots of domain-boundary configurations as they evolve in time for the (Q = 48)-state anisotropic Potts model
on a triangular lattice with N = 2042 sites. The time parameter ¢ is in units of MCS/S. Results are shown at zero temperature

AE(t)

o e e e
MCS
t< S>

FIG. 5. Double-logarithmic plot of the excess energy,
AE(t) in Eq. (6), vs time for the (Q = 12)-state anisotropic
Potts model on a triangular lattice with N = 1022 sites. The
time ¢ is in units of MCS/S. Data are shown for a series of
inverse temperatures, J/kpT.
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FIG. 6. Double-logarithmic plot of the excess energy,

AE(t) in Eq. (6), vs time for the (Q = 48)-state anisotropic
Potts model on a triangular lattice with N = 2042 sites. The
time t is in units of MCS/S. Data are shown for a series of
inverse temperatures, J/kpT.

peratures. The last snapshot in the lower panel in Fig. 3
shows two long domain boundaries that are wetted, and
several small wetted sections of boundaries.

The finite-temperature configurations in Figs. 3 and 4
apparently have a certain degree of vorticity. We have
defined a vortex or antivortex center as being a vertex
in the domain-boundary network which has the property
that the three changes AS in the spin variable encoun-
tered in a minimal loop sum to +£@Q), once they have been
shifted modulo @ to the interval

—Q/2< AS < Q/2.

A minimal loop is defined on the smallest triangles of lat-
tice points around each point of the dual lattice. Because
the network is formed by links on a honeycomb lattice, 0
and +@ are the only possible values of this sum. With

TABLE 1.

JEPPESEN, FLYVBJERG, AND MOURITSEN 40

this definition of vortex and antivortex centers we have
found that what looks like slowly annihilating vortex-
antivortex pairs in the lower panels of Figs. 3 and 4 in-
deed are what they look like. We also found that many
other vertices are vortex centers according to our defini-
tion, though this is not at all obvious to the eye. This is
easy to understand: as opposed to the cosine potential
of the standard clock model, the sine potential used here
does not make the domain boundaries radiating from a
vortex or antivortex center fan out to @) boundaries each
having AS = (—)1. Quite to the contrary, any fanning
out is entirely due to thermal fluctuations, as argued in
the preceding brief discussion of wetting. This is why vor-
tices and antivortices cannot be seen as they can in the
standard clock model. It probably also leaves vortices
and antivortices with no special status in the ordering
dynamics of the models studied here. We rather expect
that vortices and antivortices are of special relevance for
an understanding of the ordering dynamics only in mod-
els with potentials that make these configurations local
minima of the Hamiltonian.

Comparing the lower panels in Figs. 3 and 4 we ob-
serve that the presence of vortices and antivortices in the
ordering process is much more pronounced for the larger
value of Q. This was found also for the standard Q-state
clock models.*47 By comparison with typical equilib-
rium configurations in the cold phase we conclude that
the vortices seen in Figs. 3 and 4 are distinct features
of the nonequilibrium ordering process and are not typi-
cal thermal equilibrium excitations in the Potts-ordered
phase.

We have applied our definition of vortex and antivor-
tex centers to the zero-temperature configurations shown
in the upper panels of Figs. 3 and 4, and found that a
finite fraction of the vertices of the boundary network are
vortices and antivortices. This is not surprising: even if
the values of the three spin variables surrounding a ver-
tex were chosen at random, a finite fraction of vertices
would be vortices and antivortices.

Neither for quenches to finite temperatures nor to zero
temperature did we observe pinning of the ordering pro-
cess by vortices and antivortices. Instead we observed
them disappearing by mutual annihilation. This is seen
to happen in Figs. 3 and 4 to the visible vortex-antivortex
pair. This is similar to what has been found in finite-
temperature quenches of the clock models.%” However,
vortex pinning has been observed in these models?® to
slow down the growth at long times in the case of zero-
temperature quenching.

In Figs. 5 and 6 are shown the AFE(¢) data for quenches

Kinetic growth exponent n as a function of growth temperature for the (Q = 12)-

state Potts model with anisotropic grain-boundary potential.

Zero temperature Cold phase Intermediate phase
J/kT oo 12 6 1.7 1.5

n 0.36 0.46 0.50 0.65 0.61
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Kinetic growth exponent n as a function of growth temperature for the (Q = 48)-

state Potts model with anisotropic grain-boundary potential.

Zero temperature Cold phase Intermediate phase
J/ksT oo 15 115 6.6 3
n 0.24 0.44 0.51 0.55 0.69

into the cold phase. From these data we make the strik-
ing observation that the growth is still described by a
power law but now with an exponent that is close to the
classical Lifshitz-Allen-Cahn value, n = % The numer-
ical values of n are compiled in Tables I and II for the
two models. Approximately the same value of n is found
to hold for both the (Q = 12)- and the (Q = 48)-state
models, and the exponent value is moreover independent
of temperature within the cold phase. The data of Figs. 5
and 6 support the conclusion that vortex formation does
not lead to a pinning of the growth in the cold phase.

C. Quenches into the intermediate phase

Since we have not attempted to characterize the inter-
mediate phase by an order parameter, it is not possible
to illustrate unambiguously the ordering process by snap-
shots. However, it is instructive to study configurations
as they result from quenches into the intermediate phase
by applying the same domain-boundary criterion as for
the cold Potts-ordered phase. In Fig. 7 is shown a con-
figuration for the (Q = 12)-state model at some late time
after a quench into the intermediate phase. The pattern
of domains of different Potts order is extremely convo-
luted and rather large domains have evolved. A similar
convoluted pattern is found for quenches of the (Q = 48)-
state model into the intermediate phase, but at a given
time the domains in this model are much smaller than
those in the (Q = 12)-state model.

The growing domain patterns for quenches into the

FIG. 7. Snapshot of a domain-boundary configuration for
the (Q = 12)-state anisotropic Potts model on a triangular
lattice at time ¢t = 836 MCS/S after a quench from T = co to a
temperature J/kpT = 1.7 within the intermediate Kosterlitz-
Thouless phase. Domain boundaries between regions of dif-
ferent Potts order are shown. The results are obtained from
Monte Carlo simulations on a lattice with N = 1022 sites.

intermediate phase have no discernible vortex configu-
rations of the type seen in quenches to the cold phase.
Using our definition of vortex and antivortex centers we
found that they are there, however, in tightly bound
pairs, just like they are in equilibrium configurations in
the intermediate phase of the standard clock model and
in the Kosterlitz-Thouless phase of the XY model.

In Figs. 5 and 6 are shown the AE(t) data for quenches
into the intermediate phase. It is not clear that AE(t)
in this phase is a good measure of the time dependence
of a linear length scale since the scaling argument of
Binder and Stauffer®® does not necessarily carry over to
phases with topological ordering. Nevertheless, the data
in Figs. 5 and 6 suggest that the AFE(t) data effectively
obey a power law in time and that the exponent value
n is somewhat above %; cf. Tables I and II. When judg-
ing the implications of this apparent deviation from the
classical Lifshitz-Allen-Cahn growth, it should be kept in
mind that the locations of the phase boundaries of the
two models are subject to some uncertainty. In particu-
lar, it is not unlikely that both quench temperatures in
the intermediate phase for the (Q = 12)-state model as
well as the highest quench temperature in the intermedi-
ate phase for the (Q = 48)-state model are close to the
phase transition temperatures. In that case our statistics
may be too poor to describe the true dynamic behavior.

V. DISCUSSION

We have presented a study of the dynamics of the or-
dering processes in two-dimensional @Q-state Potts mod-
els with an anisotropic grain-boundary potential, Eq. (2),
using Monte Carlo computer-simulation techniques. The
ground-state ordering is highly degenerate. The two
particular models studied, @ = 12 and 48, have a
phase structure which involves two thermal phase tran-
sitions which separate an intermediate phase from a low-
temperature Potts-ordered phase and a high-temperature
disordered phase. '

The main results of the simulations show that the
domain-growth dynamics at zero temperature are de-
scribed by an algebraic growth law with an anomalously
low value of the growth exponent, n. For Q = 48,
the exponent value is n ~ 0.24 in accordance with ear-
lier work.*?43 The (Q = 48)-state model is character-
ized by a tendency to evolve wide domain walls; cf.
Fig. 4. The wide domain walls contain a conglomer-
ate of small domains of different Potts order. It has
been suggested!5:3942 that the zero-temperature growth
of models which support soft or wide domain walls may
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belong to a special dynamical universality class charac-
terized by n ~ %, independent of ordering degeneracy,
p, and the degree of wall softness. This suggestion has
been questioned by other authors.!?40 The other soft-
wall models which give rise to n 2 0.25 at zero temper-
ature include the herringbone model®® (p = 6), the XY
model with cubic anisotropy!®2%3° (p = 4), and the XY
model with uniaxial anisotropy!%:20:3%5% (p = 2). The
soft domain walls in these models correspond to a gradi-
ent in the order parameter going from one domain to the
other. It was recently shown'%:3¢ that the growth behav-
ior described by n ~ 0.25 in these models is restricted to
very low temperatures, possibly to T' = 0 exclusively, and
that there is a distinct crossover to the Lifshitz-Allen-
Cahn exponent value n = 1 at finite growth tempera-
tures. The finding in this work of a similar crossover cor-
roborates the general validity of this result. In a recent
theoretical analysis of the detailed microscopic motion of
the different domain-wall types, Castan and Lindgaard>®
have provided theoretical support for the special zero-
temperature dynamical universality class.

The dynamical ordering processes in the high-Q
Potts models with anisotropic grain-boundary potential
demonstrate distinct vortex formation involving vortex-
antivortex pairs of many rays at low, finite temperatures;
cf. Figs. 3 and 4. This vortex formation does not lead to
a pinning of the growth process. The same lack of pin-
ning was found at finite temperatures from Monte Carlo
quenching experiments on the high-Q clock models.*”
Similarly, computer simulation of the domain-growth dy-
namics in Ising models with competing interactions and
nonconserved order parameter, which leads to vortex for-
mation in (4 x 1) phases (p = 4), has demonstrated
that vortex pinning does not become operative and the
Lifshitz-Allen-Cahn growth-exponent value, n = %, ap-
plies. These findings are supported by a theory for
Q = p > 3 clock models due to Kawasaki®® (and ex-
tensions thereof!®) who considers the coupling between
vertices and domain boundaries. Kawasaki reduces the
problem of the interface dynamics to that of dissipa-
tive dynamics of opposite Coulomb charges. It is then
found for any value of p, at sufficiently late times, that
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the Lifshitz-Allen-Cahn exponent value should apply and
vortex pinning does not influence the growth law. It is
not obvious, however, how this theory may be generalized
to be valid for anisotropic Potts models.%¢

The ordering dynamics in the @Q-state Potts mod-
els with anisotropic grain-boundary potential is compli-
cated by the fact that these models, for large @, have a
Kosterlitz-Thouless-type phase at intermediate temper-
atures. In the present paper we have shown for the po-
tential in Eq. (2) that even in this phase is the ordering
dynamics effectively described by algebraic growth laws
with exponent values which are somewhat larger than 3.
Considering the possible influence of critical fluctuations
at these quench temperatures we are unable to decide
whether or not our exponent values are actually incon-
sistent with classical behavior. We are not aware of other
computer simulations of ordering dynamics in Kosterlitz-
Thouless phases.

The high-Q Potts models with anisotropic grain-
boundary potential have been proposed as models of
grain growth in polycrystalline materials.#3 However, our
finding of a grain distribution with a morphology involv-
ing vortex structures may well disqualify this model as a
model of real materials at finite temperatures. In fact our
results lead us to suggest that realistic anisotropic grain-
boundary potentials should have a pronounced superlin-
ear character, possible logarithmic,*? in order to suppress
the fluctuation-induced wetting phenomena. Further-
more, the result by Grest et al?3 of the anisotropy as
leading to anomalously low growth exponent values is,
from the present work, concluded to apply only at very
low temperatures, possibly only at zero temperature.
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