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x 3 = R T t - z - j b T j c  (27) J. E. Keller [ 2 ] :  

x 4 = R + t + z + j b T j c  (28) 6 - eedge - %dge 

x5 = R T t rf: z COS +. (29) 
t -  2 (1 a) 

All quantities  not defined here  are deked  in  the  main texf. - eedge + %dge 
2 (1 b) 
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Let the  total singly edgediffracted field be defined  by 
e - j k R  

Ea = [&e(e, d)% Ed,#,(e,d)a+I - (2) 

where the angles and  unit vectors for  both  sets of feeds are 
defined in the sense indicated in Fig. 1. Then  the  components of 
Ed can be decomposed into  contributions  from  both QE+ and 
QE- 

Ede(@, d) = Ede+(e, ‘$1 Ede-(O, 4) (3a) 

R 

Ed,#,(e,d) = Ed,$+(e,d) + Ed@-(o,d)* (3b) 

Considering first the diffracted  field from QE- (because no 
transition  functions  are  required  for  these rays) 

Ede- ( 4  dl 
Efe(n - e;dge, 4 i- 7C)e-’kpedgo 

Pedgc 

The Geometrical  Theory of Dfiaction for Axially 
Symmetric  Reflectors Ed,$- (0, #) 

Abstract-The  geometrical  theory  of  diffraction (GTD) (cf. [l], for 
example) may be  applied  advantageously to many axially symmetric 
reflector  antenna  geometries.  The  material in this communication  presents 
analytical, computational,  and  experimental  results  for commonly en- 
countered  reflector  geometries, both to illustrate  the  general  principles 
and to present a compact summary of  generally  applicable formulas. 

Pedge I 

. {eXP [ik [(2c .+ Zedge) COS 6 - (Dred2) sin e ]  1 IDs- 

(4b) 

I. AXIALLY Snm~mc REFLECTOR FOR VECTOR 
SPHERICAL-WAVE POINT SOURCE ON &US 

If a point-source feed  is located on the axis of an axially sym- 
metric reflector, then only two singly  edge-diffracted rays are 
possible for  a  distant field point P(R,B,$), if 0 # 0,n (Fig. 1). 
These rays are  “diffracted”  from QE+, where the  plane 4 inter- 
sects the edge on the same side  of the Z axis as the field point, 
and  from QE-, where the plane 4 + .n intersects  the edge 
diametrically opposite Qs+ on the opposite side of the Z axis 
from  the field point. 

The geometry of the edge-diffracted ray  from QE- is shown in 
Fig. 2. (The surface is assumed to be  convex.) The ray  from the 
feed to QE- defmes e&., and  the  corresponding extreme geo- 
metrically  reflected  ray,  when extended back to the Z axis, 
defines e,,,,. These two angles may then be used to  define two 
intermediate angles used in the edge-diffraction notation of 

where E,, and EfS are  the 8 and 4 components of the incident 
field, pedge is  the distance from feed to QE- ,  Zedge is the z CO- 

ordinate of QE-(Zedge < O), Dren is the reflector diameter, 
Z = -2c is an  arbitrary phase reference point on the negative 
Z axis, and  the  diffraction coefficients are given  by [ e - j (a /4 )  [ 1 

2 ~ 2 n k  COS (e + 6, + w 
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Fig. 1. Geometry of edgadifkaction points for axially symmetric  reflector with feed on axis. 
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Fig. 2. Geometry of ray  diffracted from Q; . 
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Fig. 3. Geometry of ray  diffracted  from Q.+. 
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0,- is zero in the  direction of the surface  tangent, 0 = x/2 - 6, 
but Dh- i s  not. Slightly  modified but principally the same diffrac- 
tion coefficients for singly  edge-diffracted rays may be derived 
for concave surfaces. 

The geometry of the  ray  difftacted  from QE+ is shown in 
Fig. 3. The fields  of this  ray  are given  by 

E@+ (094) 

F(kLa) = 2 jJkLa  dkLa e-jr2 dr. (8b) 

The  transition  functions F(kLa) remove the  singularities at  the 
shadow  boundary (8 = a -  e&.,) and  at  the reflection boun- 
dary (e = Oed.J. Furthermore, 

= Pedge (9a) 

where Dl' and DZr are  the  principal  radii of curvature of the 
re5ected geometrical ray at QE+ and (Drefl/2)/sin e,,,, is the 
caustic  distance  evaluated in the direction of the reflection 
boundary. 

For  the point  source on the 2 axis illuminating the axially 
symmetric reflector, the  resulting single  edge-diffracted rays have 
a  caustic at all points on the Z axis. Thus all ray path-lengths 
FQEP are  the  same if both F and P lie on the axis of symmetry. 
Ray  optical  solutions fail in the neighborhood of these caustics, 
as, for example, the sin 0 denominator in the  square-root  factor 
of (4) and (6) vanishes. Alternative  solutions  near caustics are 
canonical  solutions [2] ,  asymptotic  solutions [3], [4], and 
integral  solutions [l], [5 ] .  The  latter  technique consists of re- 
placing the edge-diffracted rays with contributions  from equiv- 
alent  electric  and magnetic ring currents lying along  the  edge: 

- 

.- 

Fig. 4. Geometry of four possible edge rays. 

where E@ and H+ are  the  edge-tangential incident  electric and 
magnetic fields, Ds(4,&;x/2) and Dh($, &;n/2) are  the soft  and 
hard edge-diffraction  coefficients, and 4,qY are  the angles of 
diffraction and incidence in the  "Ray-hed"  coordinate systems 
dehed  by Kouyoumjian [l 1. For  an  arbitrary field point 4 is 
different at various  points on  the rim. However, for  a field point 
on axis I$ is constant  (at great distances on axis 4 = 4 2  - 6,. 
Furthermore,  for  this symmetric case 4' = 4 2  + a). 

The most commonly encountered feed function is that of a 
far-field, m = 1, spherical-wave source  for which the tangential 
fields  incident on the edge are 

The easily computed  ring  current fields then become as follows. 

e = u: 

e = n: 
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8 small but nonzero: 

* [Jo(B) + J A B ) ]  cos 8 cos I 1 1  (1 2 4  

where B = k(Dre,,/2) sin 8. Equation (124 is an approximation 
in that  the changes in D, and D, in  equations (loa)  and  (lob)  at 
various  points on  the rim  have been  assumed to be second order 
for relatively small values  of 8. 

II. AXIALLY SYMMETRIC REFLECTORS FOR 
VECTOR SPHERICAL-WAVE POINT SOURCE OFF A X I S  

If a point-source  feed  is  located off the axis of the axially sym- 
metric reflector, Fermat's  principle  reveals that  there  are a 
maximum  of four possible diffraction points  around  the  rim of 
the reflector [ 6 ] .  The situation becomes  somewhat  less  compli- 
cated when the point-source feed, the reflector axis, and  the 
observation  point all lie in the same plane (taken, for example, 
to be the X - Z plane in Fig. 4). Under these  conditions, dif- 
fraction  points 1 and 2 are possible for all possible  positions  of 
the distant field point. However, if the field point is on  the 
opposite  side of the axis from  the  source  point,  then two addi- 
tional diffraction points 3 and 4 are also  possible in the  range of 
8 values, 8, 5 8 5 e,, [7] where 

8, corresponds to a  caustic at in6nity form  point 2, while e, 
corresponds to a caustic at infinity from  point 1 .  Thus, as 0 
increases from 0, to e,, the additional  roots 3 and 4 move  from 
2 to 1. In practice, for typical reflector geometries the  range of 
values from to 0, is sufficiently  small so that  the entire  range 
is covered  by radiation  from the equivalent  ring  sources to avoid 
unrealistically large  predicted  fields. An example of a multi- 
caustic  region is for values of e between 0, and 8, in the plane 
of  scan as considered  previously. Under these conditions  it is 
necessary to account  for  the  variations of E@, H+, D,, and Dk by 
evaluating the radiation integrals numerically.  Examples  of 
typical results are shown in Fig. 5 for a laterally defocused 

X- - X- --i Geometr lcal   Opt lcs + G T D  
0-  0-0 Geometrlcal  Opttcs. Rang Currents 

P h y s i c a l   O p l ~ c s  

.4 0 

. 3 5  

2 5  

2 0  

5 
I 
I 

0 6 

hyperboloid. On  the opposite side  of the axis in  the  plane of scan 
the multiroot  range lies between 3.01 and 3.11  deg.  However, the 
simple  geometrical theory of diffraction (GTD).  two-edge ray 
description  of the field is seen to become unrealistically large 
outside  the  multiroot range. The ring-current, contribution, on 
the  other hand, is  well  behaved and very  close to  the physical 
optics results over a relatively wide angular range. 

LII. SURFACE DIFFRACTED RAYS 

First-order surface rays will  ordinarily not be directly excited 
by the feed in a reflecting antenna system.  However,  they  may be 
excited  by  tangential  edge-diffracted rays. An example  may  be 
seen in Fig. 2 where an edge-diffracted ray  from QE- in the 
direction e = 4 2  - 6, will  tangentially  graze the surface. Only 
the tangential H-field component will  be nonzero  in  this direction, 
but  the excited  surface  rays are necessary to provide  a continuous 
field. In most instances, however, the edge-diffracted  rays provide 
sufficiently accurate surface rays. 

IV. APPLICATIONS 

A .  Radiation from Prime-Focus Paraboloid 
The Kouyoumjian  group  has used  a combination of a single 

edge-diffracted GTD, equivalent ring-currents, and physical 
optics to compute  the complete radiation  pattern of a prime focus 
paraboloid [8], [9]. The calculated pattern was compared with 
the experimental results of Afifi, which  were  measured for a half- 
paraboloid on a groundplane with  a monopole feed at the  focus 
[IO]. This experimental arrangement virtually eliminated aperture 

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 9, 2009 at 07:34 from IEEE Xplore.  Restrictions apply. 
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blocking. The vertical polarization eliminated the possibility of 
exciting surface-diffracted rays. The deep reflector (F/D = 0.25) 
eliminated rear spillover. The agreement between the calculated 
and measured patterns was  very good between 0 deg and 130 deg. 
Beyond 130 deg the agreement was also  quite good, considering 
that  at such low signal levels part of the discrepancy was due to 
measurement error. 

B. Radiation fiom Hyperboloid with Spherical- Wave Feed 
at Its External FOCI*.; 

Results have been obtained for a “focused” hyperboloid using 
physical optics, geometrical optics, GTD (Keller), and  GTD 
(Kouyoumjian) [ l l  1. The geometrical-optics results are dis- 
continuous at the reflection boundary. The physical optics and 
Kouyoumjian GTD results agree closely in m a - ~ t u d e  and phase, 
both in the illuminated and shadowed regions as well as  in the 
vicinity of the reflection boundary. 

Fig. 6 is a complete H-plane pattern based on  GTD.  The fields 
at the reflection boundary  at 64 deg and  the shadow boundary at 
152.4 deg are finite and continuous, and  the two axial caustics 
are computed using the equivalent ring sources. This technique 
yields  slightly  different results at the  rear axial caustic than the 
caustic correction factor of Keller [2], which did not yield 
E-plane-H-plane continuous fields on axis. 

Results were also reported in [11 ] that compare the calculated 
and measured scattered H-plane patterns from a hyperboloid 
illuminated by a corrugated horn with its phase center at the 
hyperboloid’s external focus [12]. The  GTD results included 
two edge rays from the reflector and one from  the leading edge 
of the horn  on the field-point side of the axis. Equivalent ring 
currents  around  both the reflector and  horn rims were used for 
field points near the axis. These GTD results agreed with the 
measured patterns within the experimental uncertainties. 

V. EVALUATION OF FOCUSED EQUIVALENT PARABOLOID 
USING GTD 

The techniques of GTD provide a computational procedure 
to obtain RF performance data  that hitherto was excessively 
costly in computer time. A prominent example of this is the 
dual-reflector antenna. Hitherto, it was only possible to analyze 
dual-reflector systems  by integrating over both reflectors. The 
subreflector in a system of this type generally creates a shaped, 

> u 
- (cos B )” Feed 

w z 100- -_- (COS e) ’  Feed 

: 90- _ _ _ _ _ _ _ _ _ _ - _ _ _ _ - _ _ _ _ _ _ _  -- E P  PAR. 

80.. 

3 70- 

8 60- F I  0 E 0 1 .  d l 0  = 0.25 

.- DBL DlFFR 
W 

&- 
a 

U 

50. 
0 I00 200 300 400 

PARABOLOID DIAMETER, A 

Fig. 7. Comparison of aperture  efficiency  values  using GTD and  equiva- 
lent  paraboloid. 

rather  than a focused, beam and consequently is readily amenable 
to  GTD determination of the scattered field. This rapidly deter- 
mined scattered field then provides the illumination function for 
a physical optics integration over the large focused primary 
mirror. 

The equivalent paraboloid is said to provide an accurate 
technique for the calculation of performance characteristics for 
Cassegrain and Gregorian systems [13]. GTD provides an ac- 
curate and relatively economical technique to verify this asserta- 
tion quantitatively. For example, in Fig. 7, the aperture efficiency 
(exclusive  of spillover) is calculated for a Cassegrain system with 
a paraboloid FID = 0.4 and subreflector diameterlmain reflector 
diameter ratio = 0.25. Diffraction from  the subreflector causes 
the illumination of the main reflector to be tapered. However, 
this taper is not included in the equivalent paraboloid calculation, 
and its predicted efficiency  is significantly higher, even for sub- 
dish diameters as large as 100 wavelengths. Since the edge 
illumination of the equivalent paraboloid is higher than  the 
actual edge illumination, it generally predicts higher wide side- 
lobes than actually exist [14]. 
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Relation Between the  Radiation  Pattern of an  Array and the 
Two-Dimensional Discrete Fourier Transform 

S. HAYKIN AND J. KESLER 

Abstract-A linear wideband  array with each element followed by 
a tappeddelay line  may  be  considered as a two-dimensional  digital filter. 
Amrdingly, the radiation pattern of the  processor  may  be  expressed as 
the product of a pair of two-dimensional  discrete  Fourier transforms 
(DFT’S). 

ARRAY 
ELEMENTS \ PLANE 

WAVEFRONT 

Fig. 1. Linear  array. 

the  array is 
dsin 8 

fd = - 
If 

where,  according to Fig. 1, d is the spacing  between  elements, 
8 is the direction  of  incidence of the plane wavefront  impinging 
on the array elements, and 3. and f are  the wavelength and fre- 
quency,  respectively. The N elements  of the array  are assumed 
to be  isotropic  point sources radiating uniformly inall directions 
with equal  amplitude  and phase. 

Consider a wideband array processor in which the received 
signals are delayed,  weighted, and summed as shown in Fig. 2. 
The tapped-delay line connected to each element  permits  adjust- 
ment of gain and phase  as desired at a number of frequencies 
over the frequency band of interest. Thus,  this system can 
perform filtering in  both  the space and time  domains. In general, 
time delay T is different from  the equivalent  sampling  period td. 

Assuming that  the  array processor  consists of N radiating 
elements and ( M  - 1) delay  elements, as in Fig. 2, the values  of 
the weights in the processor form a two-dimensional N x M 
matrix, as  shown by 

I. INTRODUCTION 

It is well known that z transform relations in linear systems 
can be used to describe the behavior of linear antenna  arrays 
[l]. The objective of this  article is to extend  this  treatment to 
a wideband array processor  consisting  of a linear array,  each 

r woo 

Define a polynomial W(z,,z2) in the two variables z1 = 
exp (jmta) and z, = exp ( j m ) ,  as follows : 

element  of  which  is  followed  by a tapped-delay line network [2]. 
It will be  shown  that the radiation  pattern of  such  a  processor 
can  be expressed as the product of a pair of two-dimensional 
discrete Fourier  transforms (DFT’s). 

11. THE INTERPRETATION OF AN ARRAY PROCESSOR AS A 

TWO-DIMENSIONAL  DIGITAL FILTER 
A linear  antenna  array may  be  viewed as a sampled data 

system in the sense that  the  current  distribution  in  the discrete 
elements  of the array  may be  considered as  the sampled  values 
of a continuous  function [l 1. The equivalent  sampling  period of 
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The polynomial W(z,,z,) may be expressed in  the  form of  a two- 
dimensional z transform, 

W(z, , z2)  = w n , Z 1 - n Z 2 - m .  (4) 
N - 1  M - 1  

n=O m=O 

Given an N x A4 input data matrix of sample  values  defined 
by 

x00 x01 . * .  X O , M  - 1 

X1.M-1 
... 1 ... 

~ x - 1 , M - l  J 
its z transform is 
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