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Diagnosis of Equipment Failures
by Pattern Recognition

L. F. PAU

ABSTRACT-The main problems in relation to automatic fault finding and information about the past history of the system (in-
and diagnosis in equipments or production systems are discussed: cluding maintenance and operational utilization); all these

1) compression of the syndrome and observation spaces for better discrim- data determine the failure pattern vector.
ination between failure modes;

2) simultaneous display of the failure patterns and the failure instants, for The actual diagnosis will be made by comparing this
maintenance control and review of the reliability design; failure pattern vector with known pattern vectors found to

3) automatic production of a final set of diagnosis assumptions classified characterize the failure modes considered, and called learn-
according to their probabilities. ing patterns. The learning patterns originate from systems

4) sequencing of the inspections in accordance with the failure rates and for which the failure modes were found by maintenance
inspection costs.

personnel, and we assume that they are all stored in a fre-
READER AIDS: quently updated reliability and maintenance data bank.

Purpose: Widen state of the art Comparing the observed symptoms (described by the failure
Special math needed for explanations: Probability pattern vector) with the learning data, and classifying the
Special math needed for results: Same ill-working system into one of few classes of possible failureResults useful to: Reliability and systems engineers modes, can therefore be formalized as a pattern recognition

problem. Some research about this has been reported since

INTRODUCTION 1968 by Becker [1], Cortina [2], Hankley and Merrill [3],Page [4], and Pau [51.
The paper is concerned with automated diagnosis of In this paper, we treat some major problems in relation to

generic systems which cannot be modeled by a logical net- automatic diagnosis. First, we discuss a compression meth-
work, and have only a small number of identifiable failure od of the observations about each system, for better dis-
modes, given only the input and output evolutions. In other crimination between failure modes and to eliminate all
words, the analysis is based on representations of causality redundant tests and observations; this is the so-called
relations between the failure causes and the corresponding feature extraction problem. In Section 2, we explain how to
operating performances. This kind of approach is therefore display simultaneously the failure patterns and the failure
specifically useful, for example, for electromechanical equip- instants, for maintenance control or review of the reliability
ments, engines, and simple mechanical parts. design of the system. Section 3 deals with the production
The purpose of any diagnostic searching procedure is to of a satisfactory list of a few most-relevant diagnostic as-

recognize a failure mode, or a set of failures (also called sumptions,eclassifiedaccording to their probabilities. Lastly,
syndrome), on the basis of numerical information about the in Section 4, we give some rules for sequencing the inspec-
circumstances of the failure, results of non-destructive tests, tions by the element-by-element method, in accordance with

the diagnostic assumptions, failure rates, and inspection
Manuscript received October 2, 1973. costs.
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1. COMPRESSION OF THE LEARNING DATA of I-J, I-I, or J-J, is an overall statistical measure of the
AND MEASUREMENT SELECTION correspondence between these elements, independently of

all scale effects.
1.1 Definition of the Learning Data k(I,J) the "varimax" principle used to find orthogonal factors is

. .. not applied to the raw data in k(I,J), but to quantities
We basically assume that it has been possible to initiate a deducedfo a cte table p(I,J)b

good data collection system, monitoring the systems con-
sidered over time, and also their main operating parameters (
in service until some observable functional-failure happens. p(i,j) = k(i,j)l k(l,m))
The implementation of such a data bank is a difficult prob- IeI,meJ
lem, extensively discussed in Pau [6]. Let I, J respectively be with estimated marginal probability density functions
(at a given date) the set of measurements and the set of (pdf):
pattern vectors describing the failures of all systems of the
same type. The learning data k(I, J) =- {k(i,j) ) 0 iel jeJ} Pi p(i,.) = p(i,j) il Pr{ji} - p(i,j)/p(i,.)
are either qualitative or quantitative; and can then be JeJ
defined as follows: k(i,j) is the value of measurement i con-
cerning the system j; i.e., time since last overhaul TBOj, Pi p=( .,j) = E p(i,j) 1jeJ Pr{i j} p(i,j)/p( .,j)
voltage at some point, or any binary parameter indicating i6'
that a given subsystem was switched on. Some measure- Correspondence analysis may then be summarized as
ments i may also be made binary if their intervals of varia- follows:
tion have been sampled into smaller intervals. a) The metric on I is the distance function d,, while the
The past experiments have shown that misleading con- metric on J is the distance function dj

clusions may be drawn from once-compressed learning data,
either because of too-small learning samples, or because of d (i1 ,i2) =2E [Prj i}}-Pr{j i2}]2/p(.,j)
careless reports. Methods to account for these phenomena jEJ
have been thoroughly tested in practice and justified theo-
retically [5]. Other transformations may be made, in order dj1 ,12) = [Pr{ij1l}Pri- J]21p(i
to study the learning data from specific viewpointsI: je

a) the learning data k(I, J) are called explicit if one of the The weighing factors, such as 1 /p(i,.) are introduced in
sets I, J designates equipments, and the other, observations order to compensate for cases like the following; an obser-
about these equipments as previously defined. vation i may always be related to large conditional proba-

b) the learning data k(I,J) are called implicit if both sets bilities Pr{iLj} mainly because p(i,.) is large, and the differ-
I, J are observations; such a tableau is deduced from an ences between Pr {i[j} values will have an excessive impor-
explicit tableau by aggregating some observations with tance when comparing a system jI with a system i2.
respect to all equipments, or by classifying all equipments b) The element i has Card (J) coordinates (Pr{j i}, j =
with respect to some observations. For example, if J has 1, Card (J)); the element j has Card (I) coordinates (Pr
become the set of TBO intervals, we may define: k(i,j) is JiL4, i = 1, Card (I)). These coordinates are called profiles
the number of learning equipments having had a failure in of i and j resp. The element i has the weight p(i,.), while j
the TBO-intervalj, and on which the symptom i was present. has the weight p(.,j).
Design review generally uses learning data in the implicit c) Let the constant r be given such that r < Inf{Card (I),
form, while automated diagnosis uses the explicit form. Card (J)}. We want to minimize, in the sense of the d, or

dj metric, the dependence between I,J defined as the norm-
value ||p(I,J) - Pi 0 PJ 112. If this quantity had been zero,

1.2 Fetue xtaciobteeasfthen the sets {I} and {J} would have been independent in
Correspondence Analysis Correspondence Analysis the probabilistic sense and the observations about each
Assume that the tableau k(I,J) of non-negative numbers system would have been independent of the system con-

is given. The feature extraction procedure used herein is a sidered. But our goal is here to eliminate all redundancy in
special form of principal component analysis, characterized the data, and to find as many aggregate observations as
by the following additional properties demonstrated in possible (also called features) for which this independence
Benzecri [7], Pau [8], Lebart and Fenelon [9]: holds, and r features for which dependence holds so that

. . ~~~~~~~~discrimination can be done using only these. It can beno piorhypthess i mae abut he atur ofthedc-shown that the r-dimensional vector basis of basic features
ments in the sets I (failures) and J (observations or equip- whc miiie thsdpnec.fe rnfrigCr
ments), and all interactions are considered; in other words,()-oCadJ)-imnoalptesinkIJitor
we~~~~~~~~~donocaefrtelbl ntest I n J. dimensional vectors, can be constructed as follows [10)].all elements in both sets {I; and {J} can be displayed

simultaneously in the same reduced feature space, because for {I}, the r base vectorsf1 ,l =(l,r) are the r first prin-
they play symmetric roles in a tableau; in this reduced pat- cipal axes of inertia of the solid body made of the discrete
tern space, the Euclidean distance between any two elements Card (J) dimensional elements iel having the weights p(i,.);
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this inertia is computed for the d, distance; let 4(Jf) be the a) If any two observations ' ,i2 in I are conditionally
inertia of axisf1,l = (1,r) ordered by X(f1) ) f(f2) ) ... ) associated in the same way to all observations in J, then by
)4fr); the f's are normed to the unit length with respect to definition of d1, the corresponding features on a map will
d1. Andf1(2,1) is the (I + 1)'st eigenvector (resp. eigenvalue) be identical. Thus, if two failure modes i1 ,i2 are represented
of the S =[Sjjl2matrix: almost by the same point in the feature space, then one of

the following 2 statements is true: one of these modes is
Sil j2 = E P(U,JI)P(l,12)Vp(i,.)[P(.,j)p( .,i2) 1/2 redundant, e.g., the maintenance instructions require stating

ii, Card (1) the second failure mode each time the first failure mode is
observed; the failure mode i1 can systematically be the

for J, we have equivalent definitions and relations for m c
th '.ai etr g, 1r.f,l =(,)aehr o

main cause of the failure I mode i2 ,or conversely.
b) The product p(i,.)G(i,1) is also called contribution of

vectors, i.e., linear mappings. the observation i to the feature 1. This notion is strongly
d) The coordinates of the learning patterns projected related to the correlation coefficient between i andf, as used

into the r-dimensional feature space, are computed as in principal component analysis. This remark may help in
follows: finding the interpretation of fl. All observations i of I

for {I}, the feature 1= (1,r) of learning pattern iI on the mapped in a small neighborhood of the origion of the axes
. . . r- * r 11 1 . ~~~(fiJ8m) on the map, are therefore only slightly correlated

axisf, originated in the center of inertia of all elements in . o
with the features I and m.{ is c) If, on such a map, two observation points iI1,2 are more

G(i,l) fi [Pr{j i}, j = 1, Card(J) vector] (1) or less close, in the sense of the Euclidean d-distance be-
tween them, it means that these observations are more or lessfor {J}, the feature I of learning pattern jeJ on the axis

. is .strongly associated. This association degree is here taken
gl, originated in the center of inertia of all elements in J in the sense of the d or dj similarity measures between

F(J,l) = g1 [Pr{i[j}, i = 1, Card(I) vector] (2) profiles.
Once a close association has been detected, e.g., between a

e) It can be shown that 4J1t) = (1 1= (l,r), and that it.. ' '
sufficient to .uteeither the 's or the 's because pressure measurement i1l and a maintenance operation i2,

then the maintenance department will have to give technical
1 1. . i = column reasons for this, or to demonstrate why it is meaningless.

1= .f Pr{J } crowl (3) Because all elements of I and J can be displayedsimultane
ously on the same maps with the same length units on the

G(i,1) = E FU,) Pr{i)}~/ d'.(f), I =,1r axes [7, 8] one can also detect associations between obser-
G(ijl) =1,CaFd(J) Pr{i~j}JV'.(f,), 1 = 1 vationls J1, J2 in J, or even between an element of I and an

element of J. The interpretation procedure is the same as
Consequently, it is equivalent to display simultaneously for associations between observations in I. If i is d-close to

all elements of I and J in either thef space or the gY space, j, this means that in general the measurement i has a higher
(l,r) conditional probability with respect to j than in the mean

with respect to the other observations in J (and the same for
f) p(i,j) = p(i, . )p(. ,j)(l + £ F(j,l)G(i,i)I.(fXl)) j with respect to i).

A careful and systematic analysis ofthe geometric proxim-
2. DISPLAY OF THE LEARNING DATA, AND ities between elements of I and/or J ought therefore to lead
APPLICATIONS TO DESIGN REVIEW AND to a list of suspected causality relations. This proximity

MAINTENANCE CONTROL analysis can also be done between clusters of points on maps
Iiimplicit of decreasing weights, in order to identify causality relations

In thi section,we are only concernedwithbetween syndromes or observation coinplexes.learning data k(I,J) where {I} and {J} are two different sets
of observations. The main goal of this interpretation, which can be su-

stained with the computation of some confidence levels [5],
is to draw attention to causality relations among failures,

Using correspondence analysis as explained in the pre- maintenance, modifications, operating conditions, and
vious section, we can select r = 2 and thereby find the two times. It has been applied to both electronic and mechanical
best features discriminating the observations J and the airborne equipments in order to detect systematic coding
observations I. According to Section 1.2.d), all observations errors, criticize maintenance operations and scheduling,
can thus be displayed into the (f1 ,f2) plane which contains criticize design parameters, or select sensitive tests during
the largest part of the dependence between I and J, namely accelerated field trials [10-12]. Our view is that the learning
(X(fl) + 2(f2)), 2(f) ) 2(f2). Such a 2-dimensional repre- and interpretation phase must be conducted in parallel with
sentation of all learning data k(I,J) will be called a map, the analysis of experts' special reports, in order to compare
and any pair of vectors f1 ,fw yields such a map of weight them.
(i(f) + 2(fm)). These maps can be used as follows: Another field of active research is the analysis of test data
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for electronic components, in order to relate the failure
25% Axis 2

modes with technological design parameters; the main PPR Axis 1: 44% inertia
application of this is in component selection for specific H4 Axis 2: 25% inertia
environments [10, 13, 14]. H2 -1 PHU

H8

2.2 Example (2-6) P H

As an example, we will interpret some associations be-
tween observations and/or time intervals in Fig. 1 relative I3 H1 I1
to an airborne fuel pump. The compressed learning data (6-9) BAL Axis I

were initially of the implicit type explained in Section 1.1. 14 +1 +2 44%
H H~Analyzing the proximities between TBO- (Time Between 28H4 H2\

Overhauls) intervals jeJ and the failure modes PPR, PHU,
we notice that NOP '9-13)

the wear-out of the electrical brushes is strong between H34
200 and 800 hours, small to medium up to 4500 hours if no -1
failure has occured and exceptionally low after that time. P5

oil leakage failures are explicitely discriminated as being
the most important early failures between 0 and 50 hours; Fig. 1. Symbols.

pressure-drop failures happen essentially between 200 and Hn Sampling interval for the operations time since last overhaul,
800 hours and exceptionally around 100 or 1500 hours in starting at 100 x n hours, and ending at 100 x p hours (p smallest
relation to an important wear-out of the electrical brushes. integer following n in the list: 0, 0.5, 1, 2, 4, 8, 14, 21, 28, 34, 41).

BAL Single measurement of the length of the electrical brushes, in mm,

It can readily be inferred from the above, and a more when grounding the pump.
detailed analysis of the same, that the mean time between NOP Binary information, equal to 1 if no failure.

unchdscould be improved PPR Binary information, equal to 1 if pressure-drop failure.

unwardsctheduled nalrepairseforthese p oups, byeliminatingth
PHU Binary information, equal to I if oil-leakage failure.

towards the nominal value of 1700 hours, by eliminating the Pi Position occupied by the pump on the aircraft before grounding
pressure drop failures PPR through an improved design. i= 1, 2,3,4,5.
These are also most strongly associated with the positions 2-6 Binary information, equal to I if brush length BAL between 2 and
P3 and P4, even P1, on the aircraft. 6 mm.

6-9 idem, 6-9 mm.
9-13 idem, 9-13 mm.

3. REAL TIME DIAGNOSIS
BY PATTERN RECOGNITION analysis of paragraph 1.2 applied to the tableau k(I,J), of

The goal of this section is to present a method which, the explicit type.
given all observations I on a system, produces automatically
a list of the most probable failure modes of this system. The 3.2 Real Time Feature Extractionfor a Failed Equipment
pattern recognition approach used includes first the learning Assume that troubleshooting has just been observed on
stage, next the real time feature extraction, and lastly the
classification procedures wherein the r features character- an equpment j of the type investigatedin Section 3.1 and

. . r *r r 1 1 1 l~~~~~~~~thas be osbet ahrallfraln{(,,iIizing the failed system are compared to the compressed
learning data. about j. We can consider j as a supplementary learning

pattern belonging to an unknown class d(D. But since the
3.1 Learning Stage feature extraction of the learning data k(I,J) is made without

taking care of the knowledge of d(J), we assume that j does
The learning patterns jeJ are defined as being a large num- not perturb the learning features too much, and map the

ber of systems of the same type for which the failure mode equipment j into the feature' space by (2). Thus the coordi-
has been determined by the quality control or maintenance nate of equipment j on the l-th feature axis g1 is
personnel. The learning data k(I,J) are obtained by gather-
ing all information icI (including times between overhauls,

g,
k(i,j) 1

etc.) about these learning patterns. We assume that the total FG,l) = g1 L k = 1, Card (I)j I (l,r). (4)
number of different failure causes deD is small with respect E k(QJ
to the total number of equipments observed. Assume that
the probability distribution {rc(d)|deD, r4d) > 0, E2D idd) = Studying the maps discussed in Section 2, we then look for
1 } of the failure causes has been estimated within the learn- instructing associations of j, either with the learning equip-
ing data or by other means. mentsjeJ for which d(fleD is known, and/or with the obser-
The learning features, which will be used during the vations iel. These associations help substantially in formu-

recognition phase, are the images of the learning patterns in lating some precise experimental hypothesis about the
a reduced feature space having a fixed dimension r. The mechanism of the failure detected in Section 3.3 on the
feature extraction procedure used is the correspondence equipment J.
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3.3 Diagnosis and Classification Procedure learning data and the set D of alternate failures.
In Pau [10], this prcedure is made sequential in order toWe will consider one single classification procedure, find a compromise between a short diagnostic computationplacing each equipment j into the most probable failure I..time, and a high mean true diagnostic probability.mode class d&(jeD. Though, if the corresponding probability

of correct classification is below some given threshold, then used for falure localzatilon purposes in a modularized sys-
the equipment j is rejected and no diagnosis can be formu- . f

tem; meanwhile, an example will be given where the objectlated. The generalized nearest neighbor rule is used as . ' '
indicated (and treated theoretically) in Patrick and Fisher
[15], Pau [101. 3.4 Example of Automated Testing

jhas failure mode d(0eD= pd(J)7Td(J = max{9d7ld}, We have considered a stationary fabrication process of
deD complex electromechanical systems with very stringent

and specifications and small dimensional tolerances. The 82

9d() > 0 observations on each equipment jeJ in the process were themeasurements made by the quality control department at
J cannot be diagnosed= max 9d} < o the input of the process, and the operational characteristics

deD of the machine tools when used on each specific system
where (setting, cumulated time of operations, time since servicing,

type of tool, air flow, temperature, oil flow, rotation speeds,Yx xNx x workers operating the machines, ...). The 21 classes of
d class of failure causes selected in D. failures included the special class do of all equipments for

Nd number of learning patterns jeJ belonging to the class sale fulfilling all quality control requirements. In the fol-
deD. lowing, x = 0.

2d estimated probability of occurence of a random failure a During the learning phase, data were collected on Card
mode d in the set D, as introduced in 3. 1.modedgin theasete, asteintoed in 3.1. (J) 2000 items (20 days of production), among which 800

nd i p d non-acceptable items were identified at the final qualityVd minimal volume of a neighborhood of the newly ob- control and where each received a diagnosis (chosen amongserved equipment j in the r-dimensional feature space, the 20 classes of failures). These learning data were processed
so that (nd - 1) learning patterns of the class deD are on a general purpose IBM 370-65 computer (12 mmn, CPU).interior to this neighborhood, while one single learning The computation of thefil = (l,r) ran into some numerical
pattern is on the boundary thereof.I diagonalization difficulties. Through the review process

a given confidence threshold. described in Section 2.1, it became possible to pinpoint those
This classification can briefly be explained as follows; it systematic aspects of the production process having indi-

can be shown that 9d is an asymptotically unbiased distri- rectly the strongest contributions to the named failures, in
bution-free estimator of the pdf for the class d of patterns in this case the oil flows.
the feature space at the location of j found in Section 3.2. b) During the testing phase, a true recognition rate of
a is then the threshold pdf required to formulate a diagnosis. 92% was achieved for the items classified into the class do by
Maximizing the classification gain by a Bayes decision rule the final quality control, still working. The mean true diag-
iiltrodLiuces the weights 7Td; the equipmentj is then classified, nosis rate for the 20 types of actual failures was 81 % when
it possible, into the class d having the largest 7Td(I)d. r = 10; mean unitary diagnostic computing time: 0.46 sec.
An e-neighborhood off in the set {J} of learning paLterns, c) During the operational phase under final implementa-

is defined as follows in the r-dimensional feature space: tion, all 82 observations will be monitored in real time for
each equipment in the production line; most nondestructive

v(£,jj) ji( FF(J,l) - F(J,l) < tests and the final quality control will be suppressed. A few
1= 1 3,r specialists will play a supervisory role for the automatic

These neighborhoods are related to the L'-metric, instead diagnostic system, including the small online data-logging
of the classiEuclidean *metricthis modifica n re

and computing unit. Considerable economic benefits can be

the classificaton computatLion time modificationreduces obtained, as evaluated on the basis of the resting phase b).
the classification cmThese specialists will perform design reviews and modifyfication rates which are at least as good as for the L2-metric a

[16].
The next best suspected failure mode d' (j) is the one maxi- 4. SEARCHING FOR A FAULTY MODULE

mizing pdmd for de(D -d0); this process can be repeated, IN A MODULAR SYSTEM
and a ranked list established over the most probable alter-
nate failure modes d0(y, d'l01, etc. Though it is clear that this The subject of this section is the localization of a single
procedure would be misleading if the actual failure had not faulty module on the basis of the results of the automated
been included in the catalog D; if the result d(f) happens fre- diagnostic procedure of Section 3.3. The problem is more
quently to be absurd, one has to examine thoroughly the precisely to find a search sequence minimizing the expected
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cost (or time) to complete the fault localization, given a tenance more efficient, and make the designers understand
suspected failure mode d0Z. the complex relationships between the operational environ-

It is assumed that systems of the type previously treated ment, the production control, and other internal or external
are made ofM statistically independent modules, which can factors. They are probably the only approach to diagnosis
be inspected by module-by-module tests. We assume more- in mechanical and non-purely electronic equipments. The
over that given a failure mode d(j), the prior probabilities results are the more realistic and profit-earning if the indi-
Rm(d0}), m = 1,M) of failure of each of the M modules are vidual equipments are numerous and have to be monitored
known; each system can only have one single faulty module during their whole life. Btut the success relies finally upon the
corresponding to the failure mode d(j). Let Tm be the prior quality of the data records, and upon the reliability of the
known cost (or time) required to conduct all tests/observa- monitoring sensors used.
tions on the module number m.

Define the state of the system by one single faulty module REFERENCES
m included in a subset Sm of not yet inspected modules,

[1] P. W. Becker, Recognition of patterns, Copenhagen, Denmark,
which are all assumed failure-free except m; the probability Polytecknisk Forlag, 1968.
of this state of the system is then: [2] E. Cortina, H. L. Engel, W. K. Scott, Pattern recognition techniques

applied to diagnostics, SAE report 7000 407, Society for Automotive
_ Rm(d(j)) R (d(0 Engineers, 1970.

R(df)) * 1 - ( [3] W. J. Hankley, H. M. Merrill, A pattern recognition technique form m(d( qSm q system error analysis, IEEE Trans. Rel., vol. R-20, Aug. 1971.

The search procedure is then the following, starting with [4] J. Page, Recognition of patterns in jet engine vibrations signals, IEEEmh= 1:arch procedure is then the following, starting with

Publ. no. 16 c 51, pp. 102-105.
Ml = 1 . [5] L. F. Pau, Diagnostic statistique, ENS de l'Aeronautique, Toulouse,

Step m: *(m - 1) modules have previously been tested/ob- Ist edition 1969, 3rd edition 1973.
,servedandfoundnot-f .is the subset of all remaining [6] L. F. Pau, Analysis and diagnosis of in-service failures, in G. Weber

(Editor) Einfiirhung in Methoden und Probleme der Zuverlassigkeit,
modules not yet tested. KFK Report 1811, Kernforschungszentrum Karlsruhe, Karlsruhe

*select, according to one ofthe rules 1-3, an element of Sm, 1973.
and perform all tests/observations on this module. [7] J. P. Benzecri, Distance distributionelle et metrique du CHI-2,

*if this module is faulty, then stop the search; if not, then mimeograph, ISUP, Paris University 7. 1970.
go to next step m + 1. [8] L. F. Pau, M&thodes statistiques de reduction et de reconnaissance des

formes, thesis, Paris-Orsay University, p. 101, May 1972.

Rule I max{R*/Tj} Gluss [17] [9] L. Lebart, J. P. Fenelon, Statistique et informatique appliques,
IleSm Dunod, Paris, 1971.

[10] L. F. Pau, Applications of pattern recognition to the diagnosis of
-R* In R* - (1 - R) In (1 - R*) equipment failures, in: T. Einsele, W. Giloi, H. H. Nagel (Editors),

2 eSmmTa Cognitive Verfahren und Systeme, Lecture notes in economic and
Pashkovskiy [18] mathematical systems no. 83, Springer Verlag, Berlin, 1973, pp. 291-

306.

cR1(dU)l) [1 1] L. F. Pau, Diagnostic statistique: svnthese des informations relatives
3 max 3> Pashkovskiy [18] a fiabilite et a la maintenance d'un materiel a&ronautique, L'Aero-

IeS,l TI J nautique et l'Astronautique, no. 34, pp. 69-76, 1972.

The rules 1-3 yield quasi-optimal inspection sequences, the [12] F. N. Pokrowsky, On reliability prediction by pattern classification.
efficiency oProc. 1972 Annual Reliability and Maintenability Symposium, pp.

efficiency of which may be compared using statistical de- 367-375, 1972. (Available from IEEE.)
cision theory [19]. In the actual cases investigated, the best [13] R. Goarin, Application de l'analyse des correspondances a l'tude de
rules appear to be 1 and 2; more generally the idea ofdecom- la fiabilite des composant electroniques, Congr&s national de fiabilite,
posing the diagnostic procedure into first finding the failure edited by Centre National d'etude des Telecommunications, Paris,
mode of highest probability d(), and next the faulty module, p 179497 1972.

[14] P. C. Andersen, Applications of pattern recognition to the diagnosis
proves to be very efficient. In those environments where of failures, IMSOR, Technical University of Denmark, Lyngby, 1973.
automated diagnosis may be required, it is important only [15] E. A. Patrick, F. P. Fischer, A generalized k-nearest neighbor rule,
to activate the diagnosis and shift over to some redundant Information and Control, vol. 16, pp. 128-152, April 1970.
system in parallel, when a functional failure is actually ob- [16] L. F. Pau, Optimisation d'une mtrique en reconnaissance des formes,

served on the initial system. It is not always necessary to Journees d'etude GALF, Universite libre de Bruxelles, Bruxelles,
localize instantly the failure, and the search subprocedure May 23-25, 1973.lalizventualvbeinstantly;on the failue,sanieseches roedur [17] B. Gluss, An optimum policy for detecting a fault in a complex system,
may eventually be postponed; on the basis of the results of Operations Research, vol. 7, no. 4, 1959.
this subprocedure, it will only be necessary to put down and [18] G. S. Pashkovskiy, Optimization of sequential fault detection pro-
repair the faulty module. In those operational applications cedures, Engineering cybernetics, vol. 9, March-April 1971, pp. 259-
where the parameter estimation problems were not domi- 270.

nant, svingso15-20 on thetotal aintenace and [19] E. E. Scheufens, Optimal lokalisering af en enkelt fejl i et system, in
' . . ~~~~~~~~~~~~~~~~L.F. Pau (Editor): Topics in pattern recognition, IMSOR, Technical

diagnosis times were observed. University of Denmark, Lyngby 1973, p. 19.
[20] H. Y. Chang, E. G. Manning, G. Metze, Fault diagnosis of digital

5. CONCLUSION systems, Wiley, N.Y., 1970.
[21] J. Chinal, La logique des pannes, E.N.S. l'Aeronautique, Toulouse,

Our pattern recognition techniques can help make main- 1973.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on October 9, 2009 at 06:53 from IEEE Xplore.  Restrictions apply. 



208 IEEE TRANSACTIONS ON RELIABILITY. VOL. R-23, NO. 3, AuGU-ST 1974

[22] J. De Corlieu, Maintenabilite et vie des systemes, E.N.S. de l'Aero- 'docteur ing&nieur" degree from Paris University in 1972 in the field of
nautique, Toulouse, 1972. statistical pattern recognition.

Dr. Pau is presently Associate Professor of operations research and
Mailing address: mathematical statistics at the Technical University of Denmark. He has
L. F. Pau been a professor of pattern recognition at the Ecole Nationale Superieure
IMSOR, Technical University of Denmark de l'Aeronautique since 1970. From 1969 to 1972 he worked mainly on
Building 349 military research projects, and as a consultarnt for Air France in the field of
Lundtoftevej 100 diagnosis of failures. His fields of interest are diagnosis of failures, speech
DK-2800 Lyngby, Denmark recognition, pattern recognition theory. feature extraction. as well as dif-

ferential games. In 1970. he was called for 3 months by the McDonnell
Douglas corporation, working on the DC-10 program.

Louis-Francois Pau was born in Copenhagen, Denmark, on May 29. 1948. Dr. Pau has published papers in several scientific and technical journals
He received the Master's degree in mathematics from the Paris University in France and Scandinavia: he holds several patents. He is a member of
in 1969, while studying at the Ecole Nationale Superieure de l'Aeronau- the French and Danish operations research societies, and has received two
tique where he obtained the degree of engineer in avionics. He received the scientific prizes in France.

Analyzing the Interface of Reliability and
Economics of Unmanned Satellites

H. W. VON GUERARD

ABSTRACT-This paper deals primarily with the reliability of unmanned I. ON THE SIGNIFICANCE
scientific or commercial satellites. In the course of reliability analysis an OF SATELLITE RELIABILITY ANALYSIS
hierarchy of reliability predictions is generated, reaching from preliminary
apportionment by subsystems: to figures of merit, usually obtained by This paper will focus on the ways the content of a relia-
Boolean algebra; to results based on failure modes, effects and criticality bility program is shaped by economic factors, superimposed
analysis (FMECA); to data from an elaborate, though still static, fault tree; upon technical and operational considerations relating to
and eventually to data depicting the dynamics of mission time line and con- unmanned satellites. The principal attribute of program
tingency analyses.
The outlined routine has been developed, mainly in the US, to quite some utility, i.e., cost effectiveness, is served by selecting for im-

perfection, but it still leaves unanswered the customer's most natural concern: plementation only those elements offering high incremental
how much reliability, within what time, at what price? Therefore, an attempt value return per unit cost.
is made to schedule the above work elements, so that the amount of reliability The topic makes a system analyst's dream come true:
as well as its allocation become subject to the classical criterion of marginal
utility. It is fully realized that there are considerations, such as design freeze here is the opportunity to tackle various clear-cut problems
partly due to long-lead items, that put a limit to this endeavor. which in other work areas are usually only vaguely defined,
The postulated analysis consists, in essence, of two models in sequence: or so ill-structured that no significance can be attached to a

first, the fault tree, which exhibits the technical failure modes, their probabil- quantitative analysis. To be more specific: this refers to the
ity of occurence, and their interdependence. Second, the mission failure
model, referring to total and partial deficiences in performing utility func- not-so-familiar pattern of asking for optimum reliability
tions, and to their interactions as regards the degree of performance. vs. cost vs. weight trade-offs, -a good question which often

Straightforward analysis by the concept of marginal utility has not always suffers from lack of a definite objective function.
proven feasible; there may be prerequisites that are difficult, if not impossible Several different features of unmanned spacecraft projects
to fulfill, such as true cost allocation to interdependent mission components contribute to the more optimistic view of the matter:
(e.g., geographical coverage, timing, bandwidth, amplification); or the need
for game-theoretic evaluation of the economic risk in a competitive environ- The satellite forms a relatively self-contained system with
ment. These arguments may be valid if one were considering satellite utility little interference from inside (e.g., from human operators)
as such; as long, however, as this task is restricted to local allocation of or from outside (e.g from the environment)
incremental reliability, the problem becomes manageable not only in prin- ofm u d g from the e ion
ciple, but with reasonable prospect of fruitful results. Furthermore, human life is not at stake; hence reliability

becomes realistically negotiable.
READER AIDS: The complexity of the system is such as to require a major

Purpose: Widen state of the art analytic effort. The challenge is sufficient to justify the
Special math needed for explanations: Probability, utility theory attention of the serious minded systems analyst.
Special math needed for results: Same Payout of the spacecraft system is a measurable quantity.
Results useful to: Reliability engineers, system analysts Bnft n hrcmnscnb xrse nacm o

scale of monetary units. Thus the overall tradeoff analysis
Manuscript received Novemher 15, 1973; revised January 7, 1974. becomes feasible.
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