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Assessing Reliability by Multidimensional
Convolution with Quantization

PETER W. BECKER, ASSOCIATE MEMBER, IEEE, AND BJORN JARKLER

ABSTRACT-Consider a system with several input parameters; each 2. THREE INHERENT DIFFICULTIES
input is a stochastic variable. The joint probability of all system outputs
simultaneously meeting their specifications is found by a hitherto unpublished To simplify the following discussion we will use normal-
method called "Multi-dimensional Convolution with Quantization." To use ized true values, Di, for the input variables. The n nominal
the method, two assumptions must be satisfied; the assumptions are milder values are constants in the ensuing material and, therefore,
than the two popular assumptions of linearity and statistical independence will be omitted. The true value of yj is a function of the n
There is one example. values ofJi:
READER AIDS: vJ =h-((DI,...,(1)

Purpose: Widen state of the art j

Special math needed for explanations: None The problem we are concerned with is complicated for
Special math needed for results: None three reasons.
Results useful to: Reliability engineers

(1) The 4)i will almost always show some form of statistical
1. INTRODUCTION dependence. This means that the joint pdff = f , ... ,q?n)

is probably not a product ofn pdf`s,Ji(Di). This is an exasper-
In this paper a new and simple method is presented ating fact of life as the designer in general has information

called "Multidimensional Convolution with Quantization" only about the fi((Di).
(MDCQ) by which the following well-known problem can (2) The yj are usually nonlinear functions of the Di.
be solved [1]. Consider a system or circuit with specified (3) The true values of the yj are (almost always) statisti-
topology, where each of the input parameters has a nominal cally dependent for the following two reasons. (a) They are
value and a true value, and where the pdf of the true value all functions (though different functions) of the same set of
of each of the n input parameters is known. The system is (i . (b) Each yj reflects to what degree that particular system
said to meet the output specifications when and only when has a certain property; as these properties often are related
the true value of each output parameter satisfies a specified (e.g. gain and bandwidth) one expects a statistical relation-
constraint; the problem at hand may now be stated: with ship among the yj.
what probability, X9, will the m system outputs simultane-
ously satisfy the m output constraints? The probability W is 3. TWO WAYS TO DETERMINE THE RELIABILITY
the reliability of the system. If we are only concerned with When one attempts to find 9, there are essentially two
the system at production time, the probability is called the different approaches. 1) estimate 4 directly; this is the road
production yield. one follows if one uses Monte Carlo techniques [2]. 2) solve

Notation what appears to be a more difficult problem, namely, deter-
mine g = g(y, ,yn), the joint pdf for the m output vari-

xi true value of input parameter i ables. When g has been established it is a simple matter to
Xi nom nominal value of input parameter i determine S.
fi(Xi) pdf {xi} Yl,max (Ym,max

yj true value of output-parameterj= g dym ... dy1 (2)
zj transformed yj j! i min JYmmin
n number of input-parameters, i = 1,...,n
m number of output-parameters, j = 1, ... ,m A method where one determines 4 by way of g is the so-

min, max subscripts which imply the minimum or maxi- called "Normal approximation method" [3]. With the
mum allowed value of an output parameter MDCQ-method we likewise determine g before W is com-

S system reliability (probability that all m yj puted.
simultaneously satisfy the output constraints

q -Xi/Xi nom 4. TWO ASSUMPTIONS
0, trnfre

. If one knowsfJand all h., one can in principle estimate
f joint pdfofthe x' g by simulating a large number of representative systems
hj yi = hj(F1l ,...... )and then determine (Yio ,.ym) for each system; the m-
g Joint pdf of the yj dimensional histogram would then constitute an estimate

Manuscript received July 25, 1973. of g. In practical cases this approach is out of the question as
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the computational work would be horrendous. The way to remove the bivariate pdff12 we have to regard (1 ,D2, 3)
arrive at an expression for g with less work is to introduce as a new discrete variable (D23 which can take "5 x 5 x 5
some simplifying yet realistic assumptions. We will now in- 125" different values, each of which must be treated sepa-
troduce two such assumptions. When both assumptions rately when we compute the m-variate g. When @123 must
apply the MDCQ-method is applicable. In Section 5 we be used instead of just treating @l, D2 and (F3 separately
will, by example, demonstrate how easily g and; I can be (as done when (3) and (5) are true) the number of y -values
obtained by the MDCQ-method. and associated probabilities which must be computed

separately increases sharply from (5 + 5 + 5) to (5 x 5 x 5).
Assumption 1 Only when the 125 values of yj and the associated proba-

bilities are known, can we convolve the (n - 3) pdf7s in theEach h. is essentially a sum of functions each of which
d on omanner to be described shortly. The assumption of the ndependshv t d p fo fnthe sum. ofo ur= input variables having "essentially statistical independence"

could have ted s 1is not as restrictive as it may sound for the following reason.
argument functions as in (3); this is the most desirable state In practice it rarely is possible to make all the measurementsof affairs. If, however, hi takes the form of two 1-argument necessary to determinef ; so only the n marginals are known.
functions added to one 2-argument function, as illustrated The designer must decide upon anf-function to compute the
in (4), we can also live with that situation. yield; therefore, as long as he has no information to dis-

Yj= hj,I(D$1) + hj,2((D2) + hj,3((3) + hj,4((D4) (3) credit the assumption, he might just as well assume that the

yjhj, 1 ((D 1) + hj23(D2 ,(D3) + hj,4((D4) (4) n input variables are stastistically independent. When the
MDCQ method is used, the n marginal pdf's can have

In practical cases the range of02 and 03 can be represented different and arbitrary forms as long as the range of each
by a few, say five, typical values. If so (@2 ,(3) in (4) can input variable is finite; they are not limited to Normality
be regarded as a new discrete variable q23 with "5 x 5 = as done so often in the literature.
25" values. When (D2 ,03) iS substituted for by D23 in all
equations like (4) we have substituted a 2-argument func- 5. EXAMPLE: THE YIELD OF A RCL-CIRCUIT
tion by a 1-argument function and reduced the number of
input values fromn to (n - 1). At the same time we now must 5.1 Some Features of the RCL-Circuit
compute 25 values of the qF23-functions rather than the 5 We want to illustrate how multidimensional convolution
values of the (F2-functions plus the 5 values of the (3-func- can be used to assess the performance of an ensemble oftions which would have sufficed had the hi,23-function been circuits built to the same set of specifications. Especially we
the sum of a hj 2-function and a hj,3-function in all m equa- . T t
tions. This is the ".4essentially additive" assumption. It selected a simplhecrcuit the seres combnaton of a capac-
much less restrictive than the assumption of linearity which itorcnductance, and resistor with true values C, L and R.
is made so freely in the literature, e.g., in connection with ' . ' . .'

sensitivity and coeffi 4. A s
The resistor can represent the loss in a realizable inductance.sensitivity and coefficient-of-variation-analysis [4]. A suit- Tecruthstecaatrsi qain[]

able transformation sometimes can be used to decompose
2,); the example in Section 5 illustrates Lllhs point. w2 + 2c(oco + _2 0 (7)

0)0 - ILC (8a)
Assumption 2 R (LIC)1/2 (8b)
The n-variate pdff((F,...,(D) is essentially the product here

of the marginals, i.e., the n input variables are statis- w
tically independent. E.g. for n = 4,f could have the decom- m) actual resonant frequency
posed form of (5), which is the most desirable state of affairs; woo undamped resonant frequency
if, however, f takes the form shown in (6) we can also live ; damping factor
with that situation.

Though simple, the circuit gives us an opportunity to face
f((Di I ... 5 4) = f1((D1) *f2((2)-f3( 3) fM4(N4) (5) up to the difficulties which are encountered with practical

circuits and which are often ignored in the literature. We
() )=f12((F1 ,q2) f3((F)3) f4((F4) (6) assume that the circuit has the following three features.

We would like to substitute the bivariate pdff12((b1 d(F) in

(6) with a univariate pdf. Again our procedure will be to usedenet.Tmethescicaostervlus ut
JUSt a few, say five, representative (F1-values and (F2-values. smltnosyfl ihntelmt
We then regard (4' l, 2) in each hj as a new discrete variable
(I12 which can have "5 x 5 = 25" possible values. If it so
happens that @, and (i2 (Ire the arguments for a 2-argument ),i<(0)0m )O,max (9a)
function, like hj 23 in (4). we are in luck; then (F1 and F2 are imin < ; < Smax (9b)
already regarded as a new variable e12 with 25 values. If the
situation is as illustrated by (4) and (6), it means that to (2) The relationship between the three input variables
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TABLEI TABLE2
THE PROBABILITY MASS FUNCTION FOR (DC(OC) THE BIVARIATE PROBABILITY MASS FUNCTION

FOR (D, AND ()R(OL AND OR)

(Dc °c pmf <(DpR (1)1 0.90 1.00 1.10

0.80 -0.0485 0.3 0 0L - 0.0229 0.0000 0.0207
1.0 0.0000 0.4
1.2 0.0396 0.3 0.85 -0.0706 0.20 0.05 0.05

1.00 -0.0000 0.05 0.30 0.05

1.15 0.0607 0.05 0.05 0.20

and the two output variables is nonlinear as evidenced by
(8). The body of the table gives the pmf.

(3) Two of the input variables L and R are statistically
dependent. We shall return to this point later in connection
with Tables 1 and 2. TABLE 3
To simplify the following discussion we normalize all BIVARIATE PROBABILITY MASS FUNCTIONS FOR (Z0 Z)

variables with respect to their nominal values. The nominal
values of R, L, C, w0 and 4 are called Rnom, Lnom, Cnom, 0riom (DC DL (R (104-fc fLR g0. fCLR
and Xnom . 0.80 0.90 0.85 (714, -962) 30 20 6*

The normalized input variables are (DR = R /Rnom DL - 1.00 0.90 0.85 (229, -477) 40 20 8
L/4om,and (Dc = C/Cnom. The normalized output variables 1.20 0.90 0.85 (-167, -81) 30 20 6

are yo = Wo0/o,nomand y: = ,//nom 0.80 1.00 0.85 (485, -1191) 30 5 1.5*

YDCo(PL~V1/2); (10) 1.00 1.00 0.85 (0, -706) 40 5 2
Yo = (OL oC) ; (l0) 1.20 1.00 0.85 (- 396, - 310) 30 5 1.5

17! = sR(@C/@L) /2* ( l l ) 080 1.10 0.85 (278, - 1398) 30 5 1.5*
I(R('DC /'DL) (1) 1100 1.10 0.85 (-207, -913) 40 5 2

In the general case, as here, we have after normalization a 1.20 1.10 0.85 (603, -517) 30 5 1.5*
setofm expressions for the m normalized output variables, 0.80 0.90 1.00 (714, -256) 30 5 1.5*

set of m express1ons for the m normallzed output var1ables 1.00 0.90 1.00 (229, 229) 40 5 2

yj, as functions of the n input variables. The expressions 1.20 0.90 1.00 (-167, 625) 30 5 1.5
will be of the following form: 0.80 1.00 i.00t (485, -485) 30 30 9

1.00 1.00 l.00t (0,0) 40 30 12
yj= hi(1,...,fN), j =i ,...,m. (12) 1.20 1.00 i.00-t (-396,396) 30 30 9

0.80 1.10 1.00 (278, -692) 30 5 1.5

5.2 The "Essentially Additive" Effect 1.00 1.10 1.00 (-207, -207) 40 5 2
1.20 1.10 1.00 (-603, 189) 30 5 1.5*

To use multidimensional convolution it frequently be- 0.80 0.90 1.15 (714, 351) 30 5 1.5*
comes necessary that we change the set of expressions of the 1.00 0.90 1.15 (209,836) 40 5 2
form of(12) because we need expressions where in some form 1.80 10.0 1.15 (48567, 1232) 30 5 1.5
the effects of the input variables upon the output variables 1.00 1.00 1.15 (0, 607) 40 5 2
are additive. Equations (10) and (11) show that the output 1.20 1.00 1.15 (-396, 1003) 30 5 1.5*
variables are determined by multiplication and division of 0.80 1.10 1.15 (278, -85) 30 20 6

the positive-valued input-variables. The obvious choice is 1.00 1.10 1.15 (-207,400) 40 20 8
the logarithmic transformation. It is monotonic, a feature 1.20 1.10 1.15 L 603, 796) 30 20 6*
which is desirable as it insures a one-to-one relationship Alli and g values are listed in percent. The * values fall outside the
between the values of the input-variable before and after limits. The t illustrate the points mentioned in Section 6.1.
transformation.
Use z to denote the transformed output variables and 0 position of having linear relationships between the input

to denote the transformed input variables. Then we have and output variables. The specified output intervals accord-

Z0-lOgy l, z olog Y (13a) ing to (13a); then become
o 109 Yo, ~~~~~~~~~~~~~ZO,min< Z0 K Zo,max (16)

0 1log(D, 0 log (Dc, 0R log(D; (t13b) Z,i ~mx(7OL -2 1g4L, OC 2 ° C OR - ° R: 1b Z; min < ZA < Zi max (17)
all logs are to the base 10.

Equations (10) and (11) become 5.3 Discrete Probability Mass Functions

ZO --O -C (14) Tables 1 and 2 show the probability mass functions (pmf)

ZLOR±OC-OL (5) ~~~f?r the input variables. Discrete variables have pmfbs; con-Z: = OR+°C-OL (15) ~tinuous variables have pdf's. The variables are illustrated as
Equations (14) and (15) show that Assumption 1 is satisfied, being discrete, this quantization is solely to facilitate the
since the change in z0 and z<: due to changes in the values of later illustration in Table 3 and is not be confused with the
)L, (c' and 42R are additive. This puts us in the fortunate quantization of yi-values to be discussed in Section 6. Table
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2 shows the probabilistic relationship between OL and OR; . Y2 B
(Dc and thereby Oc is assumed to be statistically independent ax

of the other two input-variables. (Dc has the pmf illustrated
in Table 2. Assumption 2 is justified because the trivariate
pmffCLR is the product of a bivariate pmffLR and the uni-
variate pmf fc. The total number of combinations of the
input variables is quite small, 3 x 9 = 27. 1mi
5.4 The Transformed-Output-Parameter Plane

Fig. 1. The "line probability density." The boundaries (endpoints) are:

We convolve the univariate pmf in Table 1, with the bi- Bi,min corresponds to 0, = 1m,in; Blimax corresponds to Fl = (D1 max
variate pmf in Table 2, and arrive at the 27 values of (zo,z;)
in Table 3; with each value is associated a probability fo;
which clearly is the same as the probabilityfCLR of the cor- Y2
responding set of input-parameters.

5.5 The Reliability

The nonasterisked points represent sets of input para-
meters which result in acceptable pairs ofoutput-parameters
as defined by (16) and (17) with the following limits: ZO,min=
-0o050o Z0 max =+ 0.0500, Z,min - -0.1000, ZXmax = Fig. 2. The bivariate probability density. The boundaries are: B2,min+0.05000. zo,en =poZintsfall outside Ztheaxrectangle. Thecorresponds to q)2 = (D2,min' B2,max corresponds to D2 = (P2,max; B3min+ 0.1000. Ten points fall outside the rectangle. The proba- corresponds to 3 3,min B3max corresponds to 3 m
bilities of the 10 sets of input parameter values are indicated
in Table 3 by asterisks; their sum asterisked is 24 %. We have
thus arrived at the answer to the question posed at the Table 3; they are shown by the
beginning of Section 5.1: the reliability 9 is 100% -24% W k o t

76°7 ~~~~~~~~~~~~~Weknow fromfi((Di) that some (Di-values are more prob-76%. able than others, i.e., certain sections of the path represent

6. THE IMPORTANCE OF more likely values of (Yl ,y2) than other sections. Symboli-
6.E THEIMPORTANCEOERATION cally, we have "spread one unit of probability mass" over

THE QUANTIZATIONOPERATION the path according to how likely it is to find (Y1 ,Y2) at each
point. The changing likelihood is indicated in Fig. 1 by the
nine short cross-bars on the path. The crossbars are so

At this point the reader may rightly comment that we located that a (yI ,y2)-value with 10% probability may be
made the example simple by located in either of the 10 intervals. In the discrete case the

display is simpler than in the continuous case because one
(i) assuming that the univariate and the bivariate were ..can list the discrete probabilities at each point (as was donediscrete, in Table 2).
(ii) arranging things so that this dandy logarithmic trans-

formation insured the "essentially additive effect" needed trate bye1argumenthfunct of(D) on yj can be illus-
trated by a I-argument function hjJ(Di), the resulting effect

to satisfy Assumption 1. to satisfy Assumption 1. can be depicted as a path in output parameter space. If the
Regarding (ii) we must admit that maybe it was too cute, but effect of, say, (D2 on yj depends on the true value of (D) our
we could not resist the temptation to show by example what situation is more difticult; then the resulting effect is deter-
a timely transformation can do for a designer. Regarding mined by a 2-argument function hi,23(0F2,03), the function
(i) we are faced with a problem which can be alleviated by a is analogous to the one in (4). We will now discuss the case
suitable quantization of each output variable; this matter with the 2-argument function in some detail.
will now be discussed in detail. As before we assume that both 02 and ()3 each have a
We are concerned with the general case where Assump- maximum and a minimum. We now let the point ((P2 4)3)

tions 1 and 2 are satisfied. Each of the n (i has a set of limits scan the allowed values while keeping all other input-vari-
and a pdf. Now keep all input variables at their nominal ables at their nominal values, (Di = 1, i = 1,4,5, ... ,n. While
values except the first one. If we then let (f scan the range doing so we scan a 2-dimensional subspace in the m-dimen-
from Oi,min to 4>i,max each of the yj will trace a path in the sional output-parameter space. In the case m =2 the sub-
rn-dimensional output parameter space. If we restrict our- space becomes the (y1,y2)-plane. The pdf function for the
selves to the case m = 2 our situation is in Fig. 1 where the output variables (y1 ,y2) is found by mapping f23(D2 ,(F)
continuous path illustrates the case with the continuous (Fr. onto output parameter space. In Fig. 2 the varying closeness
If (Fi is discrete we will instead of a continuous path get of the grid illustrates the changing bivariate (y1 ,y2) pdf. The
some discrete points. In the example there are 3 such points lines in the grid are so drawn that a (y1 ,y2)-value can be
illustrating the three possible values of bc when ¢?L = found with 4% probability in either of the "5 x 5 = 25"

=R 1. The three points are readily determined from regions.
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Our goal is to determine the bivariate for (vY1 Y2), g= called "Multi-dimensional Convolution with Quantization"
Y0l 'Y2) If all n input variables are statistically independent by which we can solve the familiar problem [1] stated in
and the effects of their variations upon y 1 and I2 are additive the Introduction: Find the distribution of output para-
(i.e., Assumptions 1 and 2 are satisfied) we can determine g meters, given the distributions of the input parameters and
by convolving the ii "line probability densities" all of which the system topology.
look somewhat like the one in Fig. 1. Clearly the computa- The probability that all output parameters are simul-
tions will be horrendous! If the statistical or functional taneously within their specifications is the reliability of the
relationship between two (or more) input variables must be system.
taken into account their "line-densities" (like the one in Fig. To make the MDCQ-method work, two assumptions
1) are replaced by a multivariate pdf (like the one in Fig. 2); must be justified. They are milder than the assumptions of
this change clearly does not make the convolution any linearity and of statistical independence which are made so
easier. freely in the literature. The method introduces an error due
To overcome the computational difficulties just described to the quantization. The error may be made arbitrarily small

we obviously somehow must change one or more con- by using smaller increments; the penalty is an increase in
straints. computation time. The method compares well to the other

methods for solving the same problem.
6.2 The Quantizatioti
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