Technical University of Denmark

Gas cleaning for staged gasifiers

Hindsgaul, Claus; Gøbel, Benny

Publication date: 2002

Document Version Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA): Hindsgaul, C., & Gøbel, B. (2002). Gas cleaning for staged gasifiers [Sound/Visual production (digital)]. GasNET meeting, Strasbourg, 01/01/2002

DTU Library

Technical Information Center of Denmark

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

- You may not further distribute the material or use it for any profit-making activity or commercial gain
- You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

Gas cleaning for staged gasifiers

GasNET meeting October 2. 2002

Claus Hindsgaul

Biomass Gasification Group Energy Section of Dept. Mechanical Engineering Technical University of Denmark (DTU)

M. Sc. Claus Hindsgaul Biomass Gasification Group, DTU

Outline

- Two stage gasification
- Scrubber performance
- Particle properties
- Relevant particle removal technologies

- Viking gasifier
- Baghouse filter in Viking
 - Performance
 - Waste quality
- Conclusions

M. Sc. Claus Hindsgaul Biomass Gasification Group, DTU

50,000 mg/Nm³ tar

500 mg/Nm² tar

25 mg/Nm³ tar

Two-stage gasification

Cooled exhaust Separated pyrolysis Drying and pyrolysis and gasification 600 C **x** Tar conversion zone Partial oxidation for pyrolysis gases Exhaust Engine \rightarrow No tar in gas nor in waste Gasification 5 mg/Nm² tar 800 C → High efficiency Gas 🖌 υu Water Air preheat

Fuel

M. Sc. Claus Hindsgaul **Biomass Gasification Group, DTU**

http://www.et.dtu.dk/Halmfortet

Particles

Ash

Experience with venturi scrubber system

•Reliable

Particles in waste water

Recycling system

M. Sc. Claus Hindsgaul Biomass Gasification Group, DTU

Experience with venturi scrubber system

Particles in waste water
Recycling system
Particle removal 65-85%
High pressure drop

.Reliable

M. Sc. Claus Hindsgaul

Biomass Gasification Group, DTU

Characterisation of two-stage particles

• 6% volatiles (tar)

• Ash 20-30%

Submicron
 (>85% mass)

M. Sc. Claus Hindsgaul Biomass Gasification Group, DTU

Removing submicron particles

Inertial methods inefficient (e.g. cyclones and scrubbers)

Electrostatic precipitators efficient but expensive.

Scrubber droplets

Venturi scrubber, high gas velocity

M. Sc. Claus Hindsgaul Biomass Gasification Group, DTU

Removing submicron particles

Inertial methods inefficient (e.g. cyclones and scrubbers)

Electrostatic precipitators efficient but expensive.

Fibre filtration efficient due to Brownian motions.

M. Sc. Claus Hindsgaul Biomass Gasification Group, DTU

Baghouse filter system

- Particle removal just above water dew point.
- Filter cleaning by N_2 backflush.
 - → Bulk particles and condensate recovered separately.
 - → Pressure <100 mmWG
 - → Low energy consumption

M. Sc. Claus Hindsgaul Biomass Gasification Group, DTU

Viking gasifier at DTU

Commissioned August 2002

Small scale (80kW_{fuel})

Unattended operation

Engine woodgas operation for 400 hours

Using baghouse filtering (no cyclone)

M. Sc. Claus Hindsgaul Biomass Gasification Group, DTU

Gas cleaning performance

•Reliable for >400 hours with no filter change.

•Dust removal >99.5%

•Tar condenses on particles, removed with these

> → Tar levels in gas drop from 25 to "no tar" (<5 mg/Nm³)

M. Sc. Claus Hindsgaul Biomass Gasification Group, DTU

Police filter after 450 hours http://www.et.dtu.dk/Halmfortet

Viking condensate quality

Amounts:2-6 l/h NH_3 :1 g/lNaphtalene: $<20 \mu g/l$ Other PAH: $<2 \mu g/l$ Smell: NH_3 \Rightarrow OK for standardbiological surridge plant!

M. Sc. Claus Hindsgaul Biomass Gasification Group, DTU

DTU

Viking dust quality

Amounts: 600 mg/Nm^3
= 30 g/hAsh:30-50%Tar:<5% massBulk particles \rightarrow Low temperature reburning
in boiler should be possible.

M. Sc. Claus Hindsgaul Biomass Gasification Group, DTU

Intake Manifold 400 hours Wood Gas

M. Sc. Claus Hindsgaul Biomass Gasification Group, DTU

Conclusions

- Dust removal efficiency >99.5%
- Tar removed with particles <5 mg/Nm³ tar after filter
- Condensate not a waste problem
- Dust can be treated separately
- Absence of tars ⇒ simple, cheap gas cleaning for woodgas.

M. Sc. Claus Hindsgaul Biomass Gasification Group, DTU

Questions?

M. Sc. Claus Hindsgaul Biomass Gasification Group, DTU