

University of Bradford eThesis
This thesis is hosted in Bradford Scholars – The University of Bradford Open Access
repository. Visit the repository for full metadata or to contact the repository team

© University of Bradford. This work is licenced for reuse under a Creative Commons

Licence.

https://bradscholars.brad.ac.uk/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/

MANAGING NEXT GENERATION NETWORKS (NGNS)
BASED ON THE SERVICE-ORIENTED ARCHITECTURE (SOA)

Design, Development and testing of a message-based
Network Management platform for the integration of

heterogeneous management systems

Konstantinos KOTSOPOULOS

BSc, MSc

Submitted for the degree

of Doctor of Philosophy

School of Engineering Design and Technology

University of Bradford

2010

ii

ABSTRACT

Next Generation Networks (NGNs) aim to provide a unified network

infrastructure to offer multimedia data and telecommunication services

through IP convergence. NGNs utilize multiple broadband, QoS-enabled

transport technologies, creating a converged packet-switched network

infrastructure, where service-related functions are separated from the

transport functions. This requires significant changes in the way how

networks are managed to handle the complexity and heterogeneity of

NGNs.

This thesis proposes a Service Oriented Architecture (SOA) based

management framework that integrates heterogeneous management

systems in a loose coupling manner. The key benefit of the proposed

management architecture is the reduction of the complexity through

service and data integration. A network management middleware layer

that merges low level management functionality with higher level

management operations to resolve the problem of heterogeneity was

proposed.

A prototype was implemented using Web Services and a testbed was

developed using trouble ticket systems as the management application to

demonstrate the functionality of the proposed framework. Test results

show the correcting functioning of the system. It also concludes that the

proposed framework fulfils the principles behind the SOA philosophy.

iii

Keywords: Next Generation Networks, Management Framework, Service

Oriented Architecture, Middleware, Web Services.

iv

ACKNOWLEDGEMENTS

This thesis would not have been possible without the guidance, help and

encouragement of several individuals, who in one way or another

contributed and extended their valuable assistance in the preparation and

completion of this study. First and foremost I would like to thank my

supervisors, Professor Yim Fun Hu and Dr Pouwan Lei, for all their

support and advice throughout this research.

I would also like to thank my colleagues and friends at the University of

Bradford (both past and present) for making the group such a stimulating

and enjoyable place in which to research.

I would like to especially thank my partner Ioanna, who has been a great

source of motivation and inspiration and whose constant support and

generous encouragement helped ensure the success of this thesis.

Finally, I would like to express my deep gratitude to my parents for

instilling in me an interest in learning and an appetite for knowledge.

Thanks also to my brother for his encouragement in completing this

research.

v

DEDICATION

This thesis is dedicated to my parents, Stavro and Aleka, the two most

special persons in my life. They, not only gave me life, but also fill it with all

the love and affection one can wish for. Thank you.

vi

Στους γονείς μου!

vii

TABLE OF CONTENTS

CHAPTER 1 : INTRODUCTION... 1
1.1 STATEMENT OF THE PROBLEM... 1
1.2 AIMS AND OBJECTIVES .. 4
1.3 RESEARCH CONTRIBUTIONS .. 5
1.4 STRUCTURE OF THE THESIS ... 7
1.5 PUBLICATIONS FROM THESIS... 9

CHAPTER 2 : THE EVOLUTION OF TELECOMMUNICATION MANAGEMENT
FRAMEWORK... 11

2.1 INTRODUCTION ... 11
2.2 DRIVERS FOR THE TELECOMMUNICATION MANAGEMENT COMMUNITY 12
2.3 AN OVERVIEW OF TELECOMMUNICATION AND NETWORK MANAGEMENT ARCHITECTURES 17

2.3.1 Telecommunication Management Network (TMN)... 18
2.3.1.1 The TMN Reference Architecture ..18
2.3.1.2 TMN Layer Separation...21
2.3.1.3 The FCAPS Model ...22
2.3.1.4 TMN Contributions and Influence..24

2.3.2 The Telecommunication Information Network Architecture (TINA) 25
2.3.2.1 The TINA Development...25
2.3.2.2 The TINA Business Model...25
2.3.2.3 TINA Service Architecture...28
2.3.2.4 TINA Architecture’s Contribution and Influences ...30

2.3.3 The Manager and Agent Model .. 30
2.3.3.1 Network Management Agent..32
2.3.3.2 Structure of Management Information (SMI)...34
2.3.3.3 Management Information Base (MIB)..35

2.3.4 IP-Based Network Management: SNMP .. 40
2.3.4.1 SNMP Protocol Structure and Operations ..41
2.3.4.2 SNMP contribution and influence ..44

2.3.5 CMISE/CMIP ... 45
2.3.5.1 The CMISE...45
2.3.5.2 CMIP-based Communication ...47
2.3.5.3 Comparing SNMP and CMIP...49

2.3.6 Web-Based Enterprise Management (WBEM) ... 51
2.4 ITU NEXT GENERATION NETWORK MANAGEMENT FRAMEWORK .. 53

2.4.1 The NGN Architecture: Service and Transport Strata ... 53
2.4.2 The TMN NGN Management Framework .. 57

2.4.2.1 Business Process View ...57
2.4.2.2 Management Functional View..58
2.4.2.3 Management Informational View...60
2.4.2.4 Management Physical View ...61
2.4.2.5 Security Consideration ...63

2.4.3 The TMF NGN Management Framework... 64
2.4.3.1 The Next Generation Operations Systems and Software (NGOSS)64
2.4.3.2 The Enhanced Telecommunication Operation Map (eTOM) ...66
2.4.3.3 Shared Information Data (SID) Model ...69
2.4.3.4 TMF’s Architecture Contribution and Influence ..71

2.5 CONCLUSION... 72

viii

CHAPTER 3 : NGN MANAGEMENT PLANE TECHNOLOGY ANALYSIS 73
3.1 INTRODUCTION ... 73
3.2 THE NGN MANAGEMENT ARCHITECTURE.. 75

3.2.1 The Evolving Management Architectures... 75
3.2.1.1 First Stage: The Manager-Agent Approach ..76
3.2.1.2 Second Stage: The OSS/BSS Point-to-Point Architecture..77
3.2.1.3 Third Stage: A Distributed Approach with The Enterprise Bus Solution78
3.2.1.4 Fourth Stage: A Distributed Approach with SOA and ESB ...79

3.3 SOA IN TELECOMMUNICATIONS NETWORK MANAGEMENT.. 80
3.3.1 An Overview of Telecommunication Network .. 80
3.3.2 IP Multimedia Subsystem (IMS) and the Service Delivery Platform (SDP)................. 86
3.3.3 Managing NGN with SOA .. 91

3.3.3.1 SOA Principles ...91
3.3.3.2 The SOA-based NGN Network Management Architecture..94
3.3.3.3 Global and Local Network Management Functions ...97
3.3.3.4 Network Management Architectural Layers...99

3.4 CONCLUSION... 103
CHAPTER 4 : NETWORK MANAGEMENT SYSTEMS... 105

4.1 INTRODUCTION ... 105
4.2 LEVELS OF MANAGEMENT COMMUNICATION ... 106
4.3 COMPONENTS OF NETWORK MANAGEMENT SYSTEMS.. 107

4.3.1 Network Access Protocols Layer.. 109
4.3.2 Core Process Logic Layer .. 110
4.3.3 Network Management Applications Layer ... 112

4.4 LOCAL NETWORK MANAGEMENT SYSTEM DESIGN IN AN NGN INFRASTRUCTURE............. 115
4.4.1 Network Management Requirements.. 115
4.4.2 Local Network Management System Design .. 117
4.4.3 Core Process Logic Layer Development .. 119

4.4.3.1 Control Unit..120
4.4.3.2 Manager Poller ...121

4.4.4 Agent Development... 123
4.4.4.1 SNMP Agent ..123
4.4.4.2 Agent Processes..126
4.4.4.3 Initialization Process ..127
4.4.4.4 Main Protocol Process ..128
4.4.4.5 Trap Handler...129

4.4.5 XML-gateway component... 130
4.4.5.1 XML-Gateway Functions ...130
4.4.5.2 Process for Converting SQL data into XML-based message..134

4.4.6 Performance Management ... 143
4.4.6.1 Performance management Parameters..144
4.4.6.1.1 Total IP received packets calculation ..146
4.4.6.1.2 Total IP transmitted packets ..147
4.4.6.1.3 IP Packet Loss Ratio ...147
4.4.6.1.4 Error Rate and Accuracy ...148
4.4.6.1.5 Utilization of an interface..150
4.4.6.1.6 IP output datagrams discard rate ...152
4.4.6.2 Performance function process flows...152
4.4.6.2.1 Initialisation...152

ix

4.4.6.2.2 Process flow for TT_IP, TR_IP, TT_OK, IPLR Measurements................................154
4.4.6.2.3 Process flow for Error Rate and Accuracy Rate Measurement..................................155
4.4.6.2.4 Process flow for Discard Rate Measurement...158
4.4.6.2.5 Process flow for Utilisation Rate Measurement ..159
4.4.6.3 Performance Information Retrieval ..161

4.4.7 Fault and Configuration Management ... 162
4.4.7.1 Fault and Configuration Management Process ...162
4.4.7.2 Status information retrieval ..164

4.5 CONCLUSION... 166
CHAPTER 5 : DESIGN OF THE NETWORK MANAGEMENT MIDDLEWARE LAYER
.. 168

5.1 INTRODUCTION ... 168
5.2 THE NETWORK MANAGEMENT MIDDLEWARE FUNCTIONAL ARCHITECTURE 169

5.2.1 Middleware Requirements.. 170
5.2.2 The Middleware Functional Architecture .. 171
5.2.3 The Message Oriented Middleware (MOM) Concept .. 174

5.2.3.1 Message Producer, Message Consumer and Message Channels ..174
5.2.3.2 Messaging Models..176
5.2.3.2.1 Point-to-Point ..176
5.2.3.2.2 Publish/Subscribe ..177
5.2.3.2.3 Request/Reply ...178
5.2.3.2.4 Pull/Push ...179
5.2.3.3 Message Composition...179

5.2.4 Reliability of Management Messages ... 183
5.3 DESIGN OF MOM SERVICES.. 187

5.3.1 Messaging Service .. 187
5.3.2 Message Validation Service.. 189

5.3.2.1 Validation XML Schema for Management Messages ..190
5.3.2.2 Message Validation Service Architecture...195

5.3.3 Message Transformation Service ... 196
5.3.3.1 Architecture ..196
5.3.3.2 The XSLT Transformation Stylesheet ..199

5.3.4 Message Routing Service.. 201
5.3.4.1 Routing Interfaces ..201
5.3.4.2 Routing Functions and Routing Rules ..204

5.3.5 Persistent Storage Service .. 205
5.3.6 Message Archiving Service... 206

5.4 CONCLUSION... 207
CHAPTER 6 : IMPLEMENTATION, TESTING AND EVALUATION.............................. 212

6.1 INTRODUCTION ... 212
6.2 SERVICE IMPLEMENTATION IN THE CORE NMS SERVICE BUS .. 213

6.2.1 Message Validation Service.. 214
6.2.1.1 Implementation Architecture ..214
6.2.1.2 Algorithmic Process for the Message Validation Service...216

6.2.2 Message Transformation Service ... 219
6.2.2.1 Implementation Architecture ..219
6.2.2.2 Implementation Process..220

6.2.3 Message Routing Service.. 222
6.2.3.1 Implementation Architecture ..222

x

6.2.3.2 Routing and Publishing Management Information ...225
6.2.3.3 Process for Routing Management Message to Topics ..230
6.2.3.4 Process for Management Service Inter-communication ...233

6.3 IMPLEMENTATION OF THE GLOBAL TROUBLE TICKETING SYSTEM (TTS)........................... 238
6.3.1 Implementation Architecture .. 238
6.3.2 Implementation of TTS with J2EE.. 241

6.4 TEST PROCEDURE.. 247
6.4.1 Testing Environment... 247
6.4.2 Software Module Tests ... 248

6.4.2.1 Tests for Message Validation Service...248
6.4.2.1.1 Test Scenario 1: Validation of a Valid Management Message249
6.4.2.1.2 Test Scenario 2: Validation of an Errored Management Message.............................250
6.4.2.2 Tests for Message Transformation Service...251
6.4.2.3 Tests for Message Routing Service ..254

6.4.3 Testbed for the NGN Management Prototype platform.. 256
6.4.3.1 Testbed Set up and Objectives..256
6.4.3.2 Validation of Core NMS Service Bus Functions ..258
6.4.3.3 Performance Behaviour of the Core NMS Service Bus..263
6.4.3.3.1 Message Throughput ...263
6.4.3.3.2 Event Processing Capability..265
6.4.3.4 Number of Subscribers ...267

6.5 CONCLUSION... 270
CHAPTER 7 : CONCLUSIONS AND FUTURE DEVELOPMENTS 271

7.1 SUMMARY... 271
7.2 FULFILLING SOA DESIGN PRINCIPLES .. 273

7.2.1 Service Reusability ... 274
7.2.2 Services Discoverability ... 275
7.2.3 Service Loosely Coupling ... 276
7.2.4 Service Composability .. 277
7.2.5 Service Autonomy ... 278
7.2.6 Service Statefulness .. 278

7.3 ACHIEVEMENTS DERIVED FROM THE THESIS .. 279
7.3.1 Design and Development of an Agent .. 279
7.3.2 Design and Development of an Event-driven Network Management System 280
7.3.3 Design and Development of an XML-based Gateway Component............................. 280
7.3.4 Design and Development of a Network Management Middleware Layer 281
7.3.5 Testbed Development – Applications and Evaluation .. 282

7.4 FUTURE WORK.. 282
7.4.1 Alternative Mechanisms for Message Routing ... 282
7.4.2 Scheduling of Message Queues .. 283
7.4.3 Security, Policy and Co-ordination .. 284
7.4.4 SID Information Model... 285

APPENDIX A : SIMPLE NETWORK MANAGEMENT PROTOCOL LIMITATIONS . 305
A.1 SNMPV1 LIMITATIONS .. 305
A.2 SNMPV2 ... 307
A.3 SNMPV3 ... 309
A.4 SNMP PRIMITIVES (PDU).. 310

APPENDIX B : EVOLUTION OF MIDDLEWARE TECHNOLOGIES............................ 312

xi

B.1 DISTRIBUTED OBJECT TECHNOLOGY (DOT).. 312
B.2 COMMON OBJECT REQUEST BROKER ARCHITECTURE (CORBA)................................ 315
B.3 DISTRIBUTED COMPONENT OBJECT MODEL (DCOM) .. 319
B.4 REMOTE METHOD INVOCATION (RMI) .. 319
B.5 LIMITATIONS OF THE DISTRIBUTED OBJECT TECHNOLOGY (DOT).............................. 320

APPENDIX C : SERVICE ORIENTED ARCHITECTURE .. 323
C.1 FROM DISTRIBUTED APPROACH TO SERVICE ORIENTED APPROACH 323
C.2 SOA UNDERLYING TECHNOLOGIES .. 328

C.2.1.1 WEB SERVICES... 329
C.2.1.2 EXTENSIBLE MARKUP LANGUAGE (XML) ... 331
C.2.1.3 SIMPLE OBJECT ACCESS PROTOCOL (SOAP) .. 334

SOAP over HTTP...338
C.2.1.4 WEB SERVICES DESCRIPTION LANGUAGE (WSDL) ... 341
C.2.1.5 SOA REGISTRY AND REPOSITORY .. 342

Differences between SOA Registry and Repository...342
Universal Description, Discovery and Integration (UDDI) ..343

C.2.1.6 RESTFUL ... 343
C.3 COMPARING SOAP WEB SERVICES WITH RESTFUL WEB SERVICES........................... 345

APPENDIX D : ENTERPRISE SERVICE BUS (ESB).. 348
D.1 THE ESB IN THE SOA CONTEXT ... 348
D.2 COMPARING CORBA WITH ESB .. 351

APPENDIX E : IMPLEMENTATION CODE ... 355
E.1 CORE NMS SERVICE BUS ROUTING RULES .. 355
E.2 FILE ARCHIVE SERVICE ... 360
E.3 CREATING MESSAGE QUEUES AND TOPICS ... 361
E.4 TROUBLE TICKETING WSDL FILE .. 361

xii

LIST OF FIGURES
FIGURE 2.1: MANAGEMENT FRAMEWORKS IN TELCO AND ICT MARKETPLACE 14
FIGURE 2.2: CONVERGENCE OF TELECOMMUNICATION NETWORK AND DATA NETWORK................. 15
FIGURE 2.3: EVOLUTION OF THE MANAGEMENT FRAMEWORKS ... 17
FIGURE 2.4: THE ARCHITECTURE TELECOMMUNICATIONS MANAGEMENT NETWORK 19
FIGURE 2.5: TMN FUNCTION BLOCKS AND REFERENCE POINTS [M.3010]...................................... 19
FIGURE 2.6: TMN LOGICAL LAYER [M.3010] ... 21
FIGURE 2.7: TMN FCAPS MODEL .. 23
FIGURE 2.8: TINA BUSINESS MODEL .. 27
FIGURE 2.9: TINA COMPONENTS .. 28
FIGURE 2.10: MANAGER-AGENT MODEL... 31
FIGURE 2.11: INTERACTION BETWEEN NMS AND NETWORK ENTITY .. 32
FIGURE 2.12: SMI OBJECT-TYPE MACRO... 35
FIGURE 2.13: STRUCTURE OF AN MIB ... 37
FIGURE 2.14: MIB GROUPS.. 39
FIGURE 2.15: SNMP MESSAGE .. 41
FIGURE 2.16: TCP/IP COMMUNICATION MODEL AND SNMP... 43
FIGURE 2.17: MANAGER/AGENT CMIP-BASED COMMUNICATION... 48
FIGURE 2.18: (A) COMMON INFORMATION MODEL, (B) KEY DMTF SPECIFICATION 51
FIGURE 2.19: HETEROGENEOUS ENVIRONMENT OF NGN AND RELATION WITH LEGACY NETWORK. 54
FIGURE 2.20: NGN ARCHITECTURE [M.3060] ... 55
FIGURE 2.21: NGN MANAGEMENT ARCHITECTURE ... 57
FIGURE 2.22: NGN MANAGEMENT BLOCK FUNCTIONS (ITU-T REC M.3060) 58
FIGURE 2.23: NGN MANAGEMENT LOGICAL LAYER ARCHITECTURE ... 59
FIGURE 2.24: NGN MANAGEMENT PHYSICAL VIEW ... 62
FIGURE 2.25: OVERVIEW OF AN NGOSS FRAMEWORK.. 66
FIGURE 2.26: ETOM BUSINESS PROCESS (LEVEL 0) ... 67
FIGURE 2.27: ETOM BUSINESS PROCESS FRAMEWORK .. 69
FIGURE 2.28: SID BUSINESS ENTITY FRAMEWORK [M.3190] ... 70
FIGURE 3.1: THE MANAGEMENT PLANE: OPERATIONS SUPPORT AND BUSINESS SUPPORT 74
FIGURE 3.2: STAGES OF OSS/BSS EVOLUTION .. 76
FIGURE 3.3: INTELLIGENT NETWORKS TOWARDS SOA.. 86
FIGURE 3.4: IP MULTIMEDIA SUBSYSTEM IN NGN INFRASTRUCTURE... 88
FIGURE 3.5: NETWORK AND SERVICE MANAGEMENT IMPLEMENTATION ... 95
FIGURE 3.6: PROPOSED MANAGEMENT MODEL’S FUNCTIONAL ARCHITECTURE 97
FIGURE 3.7: THE ARCHITECTURE OF THE PROPOSED NETWORK MANAGEMENT PLATFORM 99
FIGURE 3.8: LOCAL MANAGEMENT LEVEL, NETWORK MANAGEMENT PROTOCOLS 100
FIGURE 4.1: RELATIONSHIP BETWEEN LEVELS OF MANAGEMENT COMMUNICATION AND THE

MANAGEMENT LAYERS OF THE TMN MODEL ... 107
FIGURE 4.2: NETWORK MANAGEMENT INTERACTIONS .. 108
FIGURE 4.3: NMS FUNCTIONAL ARCHITECTURE .. 109
FIGURE 4.4: NMS RELATIONSHIPS... 113
FIGURE 4.5: LOCAL NMS ARCHITECTURE... 119
FIGURE 4.6: CORE LOGIC FUNCTIONAL ARCHITECTURE... 120
FIGURE 4.7: ARCHITECTURE OF SOFTWARE AGENT FOR NETWORK MANAGEMENT 125
FIGURE 4.8: AGENT FUNCTIONAL ARCHITECTURE .. 127
FIGURE 4.9: INITIALIZATION PROCESS ... 127
FIGURE 4.10: XML-GATEWAY ARCHITECTURE .. 132
FIGURE 4.11: REPRESENTATION OF THE XML-BASED MANAGEMENT INFORMATION CREATED BY THE

XML GATEWAY... 134
FIGURE 4.12: STEP 1 .. 136
FIGURE 4.13: STEP 2 .. 136
FIGURE 4.14: STEP 3 .. 136
FIGURE 4.15: STEP 4 .. 137
FIGURE 4.16: STEP 5 .. 137
FIGURE 4.17: STEP 6 .. 137
FIGURE 4.18: XML MANAGEMENT MESSAGE .. 138
FIGURE 4.19: XML-GATEWAY WSDL FILE ... 140

xiii

FIGURE 4.20: WEB SERVICE APPLICATION REQUESTING LIST OF THE NETWORK DEVICES FROM THE
LNMS.. 141

FIGURE 4.21: WEB SERVICE APPLICATION REQUESTS THE SERVER’S RUNNING PROCESS FROM THE
LNMS.. 142

FIGURE 4.22: XML-GATEWAY OUTPUT MANAGEMENT INFORMATION ACQUIRED FROM NINO LNMS
... 143

FIGURE 4.23: DEFINING THE AGENT’S ADDRESS AND UDP PORT NUMBER 152
FIGURE 4.24: TIMER METHOD .. 153
FIGURE 4.25: OID REQUESTS... 153
FIGURE 4.26: METHOD FOR TIME INTERVAL AND NUMBER OF RETRIES ... 154
FIGURE 4.27: LNMS FLOW DIAGRAM FOR PERFORMING TR_IP, TT_IP, TT_OK AND IPLR......... 155
FIGURE 4.28: PROCESS FLOW FOR PERFORMING ER AND AR FUNCTIONS 158
FIGURE 4.29: PROCESS FLOW FOR PERFORMING DR AND HD OR FD FUNCTIONS 161
FIGURE 4.30: AGENT'S MULTIPLE RESPONSES .. 162
FIGURE 4.31: AGENT’S RESPONSE MESSAGES .. 162
FIGURE 4.32: SERVER’S HARDWARE RESOURCES RETRIEVED BY THE AGENT................................. 165
FIGURE 4.33: SERVER'S SOFTWARE RESOURCES RETRIEVED BY THE AGENT 165
FIGURE 4.34: ROUTER'S NETWORK INTERFACES OBTAINED BY THE AGENT.................................... 166
FIGURE 5.1: FUNCTIONAL ARCHITECTURE OF THE NETWORK MANAGEMENT PLATFORM............. 171
FIGURE 5.2: COMMUNICATION SCENARIO BETWEEN CORE NMS SERVICE BUS AND CONSUMERS 175
FIGURE 5.3: POINT-TO-POINT MANAGEMENT MESSAGING PARADIG... 177
FIGURE 5.4: PUBLISH/SUBSCRIBE MANAGEMENT MESSAGING PARADIGM...................................... 178
FIGURE 5.5: MESSAGE COMPOSITION... 180
FIGURE 5.6: FIFO MESSAGE STORAGE FOR MESSAGING QUEUES ... 184
FIGURE 5.7: RELIABLE PUBLISH/SUBSCRIBE WITH ACKNOWLEDGMENTS, PERSISTENCE AND DURABLE

SUBSCRIPTION .. 186
FIGURE 5.8: MESSAGING SERVICE OBJECTS AND THEIR RELATIONSHIPS.. 188
FIGURE 5.9: MESSAGE VALIDATION.XSD SCHEMA... 192
FIGURE 5.10: MESSAGE VALIDATION SERVICE .. 196
FIGURE 5.11: MESSAGE TRANSFORMATION SERVICE CREATED IN THE NETWORK MANAGEMENT

PLATFORM ... 197
FIGURE 5.12: TRANSFORMATION.XSLT .. 200
FIGURE 5.13: NUMBER OF TIGHTLY-COUPLED INTERFACES BETWEEN NETWORK MANAGEMENT

REMOTE SYSTEMS... 203
FIGURE 5.14: NUMBER OF INTERFACES FOR TIGHTLY-COUPLED AND LOOSELY-COUPLED REMOTE

SERVICES.. 204
FIGURE 5.15: ROUTING SERVICE PERFORMING ROUTING FUNCTIONS IN THE MIDDLEWARE LAYER

... 205
FIGURE 6.1: DEVELOPED CORE NMS SERVICE BUS.. 213
FIGURE 6.2: IMPLEMENTATION OF THE MESSAGE VALIDATION SERVICE 215
FIGURE 6.3: PROCESS FOR VALIDATING MANAGEMENT MESSAGES.. 217
FIGURE 6.4: MESSAGE VALIDATION SERVICE, INITIALIZATION PROCESS....................................... 218
FIGURE 6.5: IMPLEMENTATION OF THE MESSAGE TRANSFORMATION SERVICE............................. 219
FIGURE 6.6: EVENTS OCCURRED IN TWO DIFFERENT NMSS... 221
FIGURE 6.7: COMMON INFORMATION MODEL USED FOR EVENT MAPPING 222
FIGURE 6.8: IMPLEMENTATION OF THE ROUTING SERVICE .. 223
FIGURE 6.9: LNMS1 NAMESPACE.. 226
FIGURE 6.10: ENRICHING ALGORITHM ... 226
FIGURE 6.11: CONTENT-ENRICHING FUNCTION .. 227
FIGURE 6.12: SPLITTING FUNCTION.. 228
FIGURE 6.13: XPATH ROUTING RULE.. 229
FIGURE 6.14: DUPLICATING MESSAGES ... 230
FIGURE 6.15: PROCESS FOR ROUTING MANAGEMENT MESSAGES TO TOPICS 231
FIGURE 6.16: NAMESPACE PREFIXES FOR THE GNMAS... 235
FIGURE 6.17: ROUTING RULES FOR GNMA INTERCOMMUNICATION ... 236
FIGURE 6.18: ARCHIVE MESSAGE DUPLICATION AND DESTINATION OF THE MESSAGE 237
FIGURE 6.19: TROUBLE TICKET SYSTEM INTEGRATED WITH CORE NMS SERVICE BUS 240
FIGURE 6.20: J2EE MULTI-TIER ARCHITECTURE [J2EE] .. 242
FIGURE 6.21: APPLICATION’S CLASSES AND RELATIONSHIPS... 244

xiv

FIGURE 6.22: GLOBAL TTS SUBSCRIBED TO TOPIC 1... 246
FIGURE 6.23: USER INTERFACE OF THE TROUBLE TICKETING SYSTEM... 246
FIGURE 6.24: MESSAGE VALIDATION GUI, VALID MESSAGE CONSOLE.. 249
FIGURE 6.25: VALID MANAGEMENT MESSAGE... 250
FIGURE 6.26: MESSAGE VALIDATION APPLICATION GUI, INVALID MESSAGE CONSOLE 250
FIGURE 6.27: INVALID MANAGEMENT MESSAGE.. 251
FIGURE 6.28: MESSAGE TRANSFORMATION SERVICE, INITIALIZATION PROCESS 252
FIGURE 6.29: MESSAGE TRANSFORMATION GUI, LNMS1 AND LNMS2....................................... 253
FIGURE 6.30: TRANSFORMED MANAGEMENT MESSAGES FROM LNMS1 AND LNMS2 253
FIGURE 6.31: EVENTS CAPTURED BY HERMES SOFTWARE ... 255
FIGURE 6.32: TOPIC DETAILED MEASUREMENTS.. 256
FIGURE 6.33: TESTBED ARCHITECTURE ... 257
FIGURE 6.34: INTERACTIONS BETWEEN REMOTE SERVICES AND THE CORE NMS SERVICE BUS 259
FIGURE 6.35: INPUT MANAGEMENT MESSAGE CONSIST OF 3 EVENTS ... 261
FIGURE 6.36: OUTPUT OF THE MESSAGE VALIDATION SERVICE... 261
FIGURE 6.37: EVENT MESSAGES IN THE 4 TOPICS .. 262
FIGURE 6.38: THROUGHPUT OF THE CORE NMS SERVICE BUS.. 264
FIGURE 6.39: THROUGHPUT OF THE CORE NMS SERVICE BUS IN RELATION TO EVENTS PER

MESSAGE.. 266
FIGURE 6.40: THROUGHPUT OF THE PROCESSED AND DISPATCHED MESSAGES............................... 268
FIGURE 7.1: SOA-BASED NETWORK MANAGEMENT PLATFORM ... 274

FIGURE B.1 THE EVOLUTION OF SYSTEMS ARCHITECTURES... 314
FIGURE B.2: CORBA ARCHITECTURE... 316

FIGURE C.1: APPLICATION DEVELOPMENT SHIFTS ... 324
FIGURE C.2: FIND BIND AND EXECUTE PARADIGM ... 330
FIGURE C. 3: SAMPLE OF A WELL-FORMED XML MESSAGE ... 332
FIGURE C.4: RELATIONSHIP BETWEEN XML SPECIFICATIONS ... 333
FIGURE C.5: SOAP MESSAGE .. 336
FIGURE C.6: RELATIONSHIP BETWEEN XML, SOAP AND TRANSPORT PROTOCOLS 337

FIGURE D.1: COMPARISON OF ESB AND POINT-TO-POINT INTEGRATION 348
FIGURE D.2: ENTERPRISE SERVICE BUS (ESB).. 351

xv

LIST OF TABLES

TABLE 2-1: MAS PRIMITIVES .. 46
TABLE 2-2: MOS PRIMITIVES .. 47
TABLE 2-3: COMPARISON OF SNMP AND CMIP.. 49
TABLE 3-1: DIFFERENCES BETWEEN DISTRIBUTED ARCHITECTURES AND SERVICE ORIENTED

ARCHITECTURES .. 79
TABLE 3-2: TIGHT COUPLING VERSUS LOOSE COUPLING ... 80
TABLE 4-1: FUNCTIONS PERFORMED BY THE XML-GATEWAY... 131
TABLE 4-2: THE ESSENTIAL VARIABLES REQUIRED FOR PERFORMANCE MANAGEMENT 145
TABLE 4-3: DUPLEXSTATUS VARIABLE ... 151
TABLE 4-4: VARIABLES INDICATING FAULTS IN NETWORK ELEMENTS... 163
TABLE 5-1: SERVICES PROVIDED BY THE MIDDLEWARE ... 173
TABLE 5-2: NESTED ELEMENTS IN THE VALIDATION SCHEMA ... 193
TABLE 5-3: XSD ATTRIBUTES ... 194
TABLE 5-4: FOLDERS STORING MESSAGES ... 207
TABLE 6-1: TECHNOLOGIES FOR TROUBLE TICKETING SYSTEM .. 243

TABLE A-1: SNMP PRIMITIVES ... 311
TABLE B-2: CHARACTERISTIC OF THE DISTRIBUTED OBJECT TECHNOLOGIES............................... 321

TABLE C-1: DIFFERENCES BETWEEN DISTRIBUTED ARCHITECTURES AND SOA............................ 325
TABLE C-2: TIGHT COUPLING VERSUS LOOSE COUPLING... 326
TABLE C-3: MODES TRANSPORTING SOAP MESSAGES.. 338
TABLE C.4: REST/WS AND SOAP/WS COMPARISON ... 345

TABLE D-1: ESB AND CORBA CHARACTERISTICS.. 352

xvi

LIST OF ACRONYMS

3GPP 3rd Generation Partnership Project
ACSE Association Control Service Element
API Application Programming Interface
AR Accuracy Rate
ASCII American Standard Code for Information Interchange
ASN.1 Abstract Syntax Notation One
B2B Business to Business
BLA Business Level Agreements
BOA Basic Object Adaptor
BPM Business Process Model
BSS Business Support Systems
C2B Consumer to Business
CAMEL Customized Applications for Mobile Network Enhanced Logic
CLT Command Line Tool
CMIP Common Management Information Protocol
CMIS Common Management Information Service
CMISE Common Management Information Service Element
CMS Core Messaging Services
CN Core Networks
CORBA Common Object Request Broker Architecture
COM Component Object Model
COTS Commercial, off-the-shelf
CPU Central Processing Unit
CRM Relationship Management
CRUD Create Read, Update, Delete
CSLN Client Service Layer Network
DCOM Distributed Component Object Model
DCN Donor Conception Network
DII Dynamic Invocation Interface
DOM Document Object Model
DOT Distributed Object Technology
DPE Distributed Processing Environment
DR Discard Rate

xvii

DSI Dynamic Skeleton Interface
DTD Document Type Definition
EGP Exterior Gateway Protocol
EIS Enterprise Information System-tier
EJB Enterprise Java Beans
EM Event Message
EML Element Management Layer
ER Error Rate
ESB Enterprise Service Bus
ETSI European Telecommunications Standards Institute
eTOM enhanced Telecom Operations Map
FCAPS Fault, Configuration, Accounting, Performance and Security
FDU Full-Duplex Utilization
GDMO Guideline for Definition of Managed Objects
GNMA Global Network Management Application
GNMS Global Network Management System
GPRS General Packet Radio Service
GSM Global System for Mobile Communications
GTTS Global Trouble Ticketing System
GUI Graphical User Interface
HDU Half-Duplex Utilization
HMI Human-Machine Interaction
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
ICMP Internet Control Message Protocol
ICT Information and Communications Technology
IDE Integrated Development Environment
IDL Interface Definition Language
IETF Internet Engineering Task Force
IIOP Internet Inter-ORB Protocol
IMAP Internet Message Access Protocol
IMS IP Multimedia System
IN Intelligent Networks
IP Internet Protocol
IP-CAN IP-Connectivity Access Networks

xviii

IPLR Internet Protocol packet Loss Ratio
ISDN Integrated Service Digital Network
ISO International Standards Organization
ISV Independent Software Vendor
IT Information Technology
ITU-T International Telecommunication Union –

Telecommunication sector
J2EE Java 2 Platform, Enterprise Edition
JAIN Java APIs for Integrated Networks
JAXP Java API for XML Processing
JDK Java Development Kit
JMS Java Messaging Service
JRMP Java Remote Method Protocol
JSON JavaScript Object Notation
JSP JavaServer Pages
JVM Java Virtual Machine
LAN Local Area Network
LLA Logical Layer Architecture
LNFed Layered Network Federation
LNMA Local Network Management Application
LNMS Local Network Management System
MAC Medium Access Control
MAS Management Association Services
MEP Message Exchange Pattern
MIB Management Information Base
MIDL Microsoft Interface Definition Language
MIME Multipurpose Internet Mail Extensions
MM Management Message
MO Managed Object
MOF Model Object Format
MOM Message Oriented Middleware
MOS Management Operation Services
MPLS Multiprotocol Label Switching
MS Management Service
NE Network Element

xix

NEF Network Element Function
NEL Network Element Layer
NGN Next Generation Network
NGOSS New Generation Operations Systems and Software
NML Network Management Layer
NMP Network Management Platform
NMS Network Management System
NOC Network Operation Centre
NRA Network Resource Architecture
OAM&P Operations, Administration, Maintenance and Provisioning
ODP Open Distributed Processing
OID Object Identifier
OMA Open Mobile Alliance
OMG Object Management Group
ORB Object Request Broker
ORPC Object-oriented Remote Procedure Call
OS Operating System
OSA Open Services Architecture
OSI Open System Interconnection
OSS Operational Support Systems
PC Personal Computer
PDU Protocol Data Unit
POP Post Office Protocol
PSTN Public Switched Telephone Network
QoS Quality of Service
RPC Remote Procedure Calls
REST Representational State Transfer
RMI Remote Method Invocation
ROI Return of Investment
RO Reference Point
ROSE Remote Operations Service Elements
RSS Really Simple Syndication
SCM Service Control Manager
SDH Synchronous Digital Hierarchy
SDP Service Delivery Platform

xx

SID Shared Information Data/Model
SIP Session Initiation Protocol
SLA Service Level Agreement
SMI Structure of Management Information
SML Service Management Layer
SNMP Simple Network Management Protocol
SMTP Simple Mail Transfer Protocol
SOA Service Oriented Architecture
SOAP Service Oriented Architecture Protocol
SS7 Signaling System #7
SQL Structured Query Language
TCon Terminal Connection
TCP Transmission Control Protocol
TDM Time-Division Multiplexing
TINA Telecommunication information Networking Architecture
TMF Telemanagement Forum
TMN Telecommunications Management Network
TR_IP Total Receive Internet Protocol
TT_IP Total Transmit Internet Protocol
TT_OK Total Successful Transmit Packets
TTS Trouble Ticketing System
UDDI Universal Description, Discovery and Integration
UDP User Datagram Protocol
UMTS Universal Mobile Telecommunications System
URI Uniform Resource Identifier
VoIP Voice over Internet Protocol
WAN Wide Area Network
WBEM Web Based Enterprise Management
WIMA Web-based Integrated Network Management Architecture
WiMAX Worldwide Interoperabilty for Microwave Access
WLAN Wireless Local Area Network
WS Web Service
WSDL Web Service Definition Language
XML eXtensible Markup Language
XSD eXtensible Schema Definition

xxi

XSLT eXtensible Stylesheet Language Transformation

1

Chapter 1 : INTRODUCTION

1.1 Statement of the problem

Corporations nowadays are increasingly dependent on computers and

networking services to run their business. Keeping these network services

operational is synonymous with keeping the business operational. Network

management is the key to successful network operations and thus has a

direct impact on the day-to-day business operations.

Traditionally, management systems were developed and customized ‘in-

house’ by network and service providers. However, these attempts tended

to result in very complex and high costs management infrastructures. In an

effort to reduce cost and to manage the complexity, networks and service

providers have adopted the strategy to purchase individual management

systems (hardware and software) from different vendors. However, such

individual systems incur significant difficulties in interoperability and

functional reuse.

With the deregulation of the telecommunication industry, cooperation

between service and network providers increases. Such cooperation is

generally aimed at gaining access to global markets. The increased

competition but also cooperation between network providers greatly affect

the way networks and services are managed today and will be managed in

the future. The need for greater interoperability across organizational

boundaries, can also been seen as a consequence of the globalization of

services, where global service delivery usually requires significant

2

management system interactions across different providers. Due to the

increasing business-to-business computing integration on the Internet and

the growth of global markets, the need for inter-communication

cooperation is ever increasing.

Standardization has been a key influence for the design and integration of

management systems. The architectural landscape of management

systems includes the standardization effort of several telecommunication

groups such as Telecommunication Network Management (TMN) [ITU-T]

and the Internet Engineering Technology Taskforce [IETF].

However as telecommunication is increasingly more embedded in modern

organizations, mainstream computer software industries are becoming

more influential in the telecommunication management domain. One

problem with the development of management systems is that they

frequently need to adopt several standards, rather than one single

standard. This multi-standard approach is illustrated in the

TeleManagement Forum’s management process areas (e.g. Fulfilment,

Assurance and Billing) [NGOSS04]. Frequently, several standards with

their associated information models and protocols would be relevant to a

management area. For example, performance management applications

may use the eTOM fulfilment information model [TMF] and its specification

for the representation of the performance information, but may also need

to be consistent with IEFT or TMN standards for network and element

management modelling.

3

The technological advancements in telecommunication is forcing a trend

towards unification of network and services, setting up a stage for the

emergence of Next Generation Network (NGN). NGN is essentially an IP

based network that enables customers to receive a wide range of services

such as voice, data and video over the same network. The services

provided by the NGN are independent of underlying network and access is

enabled across a wide range of broadband technologies, both wireless

such as 3G, Wi-Fi, WiMax and wire line.

NGN operates in a very dynamic environment. Services provided by the

NGN infrastructure need to be updated and improved continuously.

Devices are added, removed and configured/re-configured in the transport

network, making the management of NGN a challenging task. NGN might

be considered as one network, but it is by far the most complex of all. Its

management has to deal with multiple vendors, multiple applications,

multiple physical devices from data and voice networks, multiple

databases, and multiple service layers. Any management solution for NGN

must be architected in a way that it can scale to manage, adapt to and

support current, emerging and future services and technologies without

the need for long term and complex upgrades. In the past, many different

approaches have been proposed in order to solve the problem of

integrating management systems but these approaches did not scale up

and the business model that was used by each connected system was

hard to organize with too much dependencies and centralization

[ADAM98], [VINO97], [TRIM01], [BOHO02] [REDL98].

4

The NGN management plane should be flexible and scalable enough in

order to accommodate heterogeneous legacy management systems as

well as new generation management systems that span across different

layers of the NGN infrastructure and need to be operate as one agile

entity. Moreover, the NGN management architecture should be able to

reduce the complexity of the involved management systems, increase the

potential for reuse of management functionality and increase the speed of

development and deployment of these systems. In addition, the level of

automation of management system needs to be high in order to provide

greater capability and to manage higher levels of complexity in networks

and systems. The management architecture needs to adopt mainstream

information technologies and development techniques rather than

maintaining a reliance on telecommunication specific technologies

[KOTS08].

1.2 Aims and objectives

The aim of this thesis is to design and specify a network management

architecture that focuses on managing large scale heterogeneous

telecommunications environments, such as NGNs. More specifically, the

thesis proposes a management framework that integrates heterogeneous

management systems in a loose coupling way. The key benefit of the

proposed management architecture is the reduction of the complexity that

derives from integrating heterogeneous management systems.

In order to achieve this aim, the following objectives are pursued:

5

• To examine the standardization frameworks related to the

management of telecommunication networks.

• To investigate the technologies used for integrating traditional

management networks as well as NGNs.

• To propose a management framework based on the Service

Oriented Architecture (SOA) philosophy for the integration of

heterogeneous management systems in a loose coupling manner.

• To develop a Network Management System that is based on the

web service technology.

• To design a Network Management Middleware Layer that can

simplify the task of bridging distributed management systems.

• To develop a Network Management Middleware platform that is

based on the Enterprise Service Bus.

• To develop a testbed in order to test the performance of the

Network Management Middleware platform.

1.3 Research contributions

This thesis contributes to defining a management framework, based on

the SOA principle that can be used as the foundation management

infrastructure for NGNs. The following summarizes the original

contributions of this thesis in the design and development of the NGN

management infrastructure:

• The design and development of a Network Management System

(NMS) that follows the principles of SOA and exposes network

management functionalities as Web Services. Moreover, an agent-

6

based model has been developed based on the SNMP framework.

The agents reside in Network Elements to collect performance,

faults, and configuration management information from them.

• The design and development of an XML-based gateway that

exposes the management information in a common XML-based

message format, paving the way for interoperability. This gateway

converts management information into XML-based messages to

enable management information retrieval from any NMSs.

• The design and development of a Network Management

Middleware Layer based on messaging and asynchronous

communication that removes the integration complexity from the

management systems. Moreover, it handles the heterogeneity on

the information expressed by legacy management systems that do

not conform to web service standards. Original contributions include

the design and development of the following service components:

a. Transformation Service that transforms management

information into a common information model. This

transformation contains message decomposition with needed

information (i.e. metadata).

b. Validation Service that validates management information.

c. Content-based Routing Service that determines the destination

of each management message based on the content of the

message to categorise messages into management topic

queues.

7

d. Finally, a Persistent Store and Message Archive Service that

keeps the record of every message sent by management

systems to increase reliability.

• A trouble ticketing system has been developed as a part of the overall

proposed architecture. It has been used as a Management Service in

order to consume management information provided by the Network

Management Middleware Layer.

• A testbed has been developed in order to test the performance and

behavior of the Network Management Middleware Layer. Several

experiments have been conducted in order to evaluate the behavior of

the proposed SOA-based management platform.

1.4 Structure of the thesis

The thesis consists of 7 chapters. The description of each chapter is as

follows:

Chapter 2 identifies the business drivers for the telecommunication

management community. It analyzes the standardization bodies which

define key management functionalities and architectures that have

influenced the design of the telecommunication management systems. In

addition, this chapter pinpoints the architectures’ contributions and

influences in the design of management systems.

Chapter 3 investigates the technologies that have been used by the

telecom operators for integrating their networks. This chapter concluded

that these approaches are not capable of supporting the NGN’s

management plane. It further illustrates that the focal point of the

8

telecommunications networks is now shifting from traditional architectures

to SOA-based architectures. Moreover, this chapter introduces the SOA

concept as well as the technologies that enable it. Finally, the proposed

Network Management Platform that has been designed based on the

architectural principles is presented in this chapter.

Chapter 4 presents the management communication (Low Level

Management Communication) between network devices. In more detail,

the design and the development of an NMS that is based on web service

technology and performs fault, performance and configuration

management functions is presented. Moreover, the design of an XML

Gateway that converts management information into XML and sends the

information to other applications is presented.

Chapter 5 describes the design and develop a Network Management

Middleware Layer that is based on messaging and asynchronous

communication. Several service components have been created in order

to enable the communication and transfer of management information of

heterogeneous NMS systems.

Chapter 6 presents a trouble ticketing system that has been developed as

a Management Service of overall proposed architecture with the aim to

demonstrate how the Network Management Middleware Layer can expose

heterogeneous management information for consumption by a

Management Service. This chapter also includes tests that have been

performed in order to evaluate the performance of the proposed

Middleware Layer. Several test scenarios have been derived and

experiments are conducted to examine the behavior of the proposed

9

Network Management Platform. Furthermore, a theoretical analysis is

presented in this chapter to illustrate the architectural design

considerations that have been used in order to meet the SOA principles.

Chapter 7 draws the overall conclusions and lists a set of possible future

activities from various research directions.

1.5 Publications from Thesis

During the development of the thesis, the research was peer reviewed and

published in international research conferences and journals. The

publications which are based on the research in this thesis are:

• K. Kotsopoulos, P. Lei, Y.F. Hu, “Managing NGNs using the SOA

Philosophy”, IEEE Int. Conf. Innovations in NGN: Future Network and

Services, First ITU-T Kaleidoscope Academic Conference. ISBN: 978

92-61-12441-0, pg. 47-54, Geneva, 12-13 May 2008.

• K. Kotsopoulos, P. Lei, Y.F. Hu, “SOA-based Information Management

Model for Next-Generation Network”, IEEE International Conference

on Computer and Communication Engineering ICCCE08. ISBN: 978-

1-4244-1691-2, pg.1057-1062, Kuala Lumpur, 13-15 May 2008.

• K. Kotsopoulos, P. Lei, Y.F. Hu, Book Chapter: “The adoption of

Service-Oriented Architecture (SOA) in managing Next Generation

Networks (NGNs)”, Handbook of Research on Heterogeneous Next

Generation Networking: Innovations and Platforms, IGI Global, 2008.

• Y.F. Hu, M. Berioli, P. Pillai, H. Cruickshank, G. Giambene, K.

Kotsopoulos, W. Guo, P.M.L. Chan, “Broadband Satellite Multimedia”,

10

IET Communications. ISSN: 1751-8628, Volume 4, Issue 13, pg.1519-

1531, Sep. 2010.

11

Chapter 2 : THE EVOLUTION OF

TELECOMMUNICATION MANAGEMENT FRAMEWORK

2.1 Introduction

The growing demand for customer-controlled management of services

combined with the growing convergence of telecommunications,

computing and entertainment brings new challenges to telecommunication

network operators and service providers. To manage the converged

communication networks, an effective and efficient telecommunication

management infrastructure is fundamental. When developing a

telecommunication management framework, architectures derived from

standardization bodies need to be considered and examined.

Telecommunication management architectures specified by some of the

de-facto standardization bodies such as the International

Telecommunication Union-Telecommunication standardization sector

(ITU-T), Internet Engineering Task Force (IETF), TeleManagement Forum

(TMF), Telecommunications Information Networking Architecture (TINA)

and Distributed Management Task Force (DMTF) are widely accepted by

the telecom industry. This chapter identifies the key actors and their roles

involved in the telecommunication management field. The evolution of the

network and service management as well as the future directions of the

telecommunication management development can be defined by

understanding their architectural fundamentals and their limitations.

12

2.2 Drivers for the Telecommunication

Management Community

The telecommunication industry has been greatly influenced by

standardization bodies. Standardization bodies set out policies and

practices for fair competition to reduce the cost and also avoid the

‘network vendor lock-in’ problem, where telecommunication providers are

forced to use proprietary management systems [TARK09]. Moreover, the

telecommunication marketplace is continuously changing due to the

technological innovations, increasing competition and deregulation

[EURO04]. Deregulation forces traditional telecommunications services

(fixed telephony) to provide less expensive products and services

[EURO04]. Thus, there is a greater need for interoperability between

telecommunication network operators and network management

frameworks in order to overcome these challenging factors [DAVI99].

The vision of NGNs has become a realisation and is expected to run for

the next decades [M.3060]. A challenge that is crucial for the

establishment of NGNs is to build an appropriate architecture for

operation, administration and maintenance across of network elements of

a diverse range of telecommunication networks. Currently, several

initiatives and projects have set up to investigate the management issues

of the NGN infrastructure [EURO06], [M.3060]. Furthermore, the massive

increase in Internet usage result in rapid growth and demand for Internet

protocol (IP)-based services to be supported by the telecommunications

industry. This leads to a more complex and diverse ICT (Information and

13

Communications Technology) marketplace. The convergence of

telecommunication networks and the ICT networks based on IP brings

new challenges to the standardization bodies involved in the network

management activities. Figure 2.1 illustrates the separation of the

telecommunication networks and the Data networks. Each network

provides its own technology and management frameworks. Figure 2.1

shows the management of telecommunication networks based on

frameworks such as the Telecommunication Management Network (TMN),

Common Management Information Protocol (CMIP) and TINA. Data

networks similarly provide their own set of protocols and management

specifications for managing their own networks such as the Web Based

Enterprise Management (WBEM) framework and Simple Network

Management Protocol (SNMP).

Furthermore traditional telecommunication networks operate on self-

contained and highly managed, real time networks in order to provide a

deterministic quality of services to their users. If no enough resources are

available, the service request by users will be rejected. The

telecommunication providers not only deliver sophisticated quality of

services based on the Internet protocols but also support real time

functions such as authentication, location determination, user registration,

real time pricing, bandwidth management etc. that distributed over a

number of servers. On the other hand, the Internet consists of a ‘loose’

federation of network operators that provide ‘best effort’ service over

shared data network infrastructure [JENK06].

14

The TMF’s New Generation Operations Systems and Software (NGOSS)

and TMN’s NGN specifications attempt to bridge the gap of the Telco and

ICT marketplaces [EURO06], [M.3060]. Convergence technologies such

as Distributed Object Technologies (DOT) [HENN06] and Service Oriented

Architecture (SOA)-based frameworks [ERL09] [ERL10] are the

intermediary technologies that can integrate the management frameworks

and remove the boundaries of the two marketplaces. These convergence

technologies will be discussed in the next chapter.

Figure 2.1: Management frameworks in Telco and ICT marketplace

The late 1980s and early 1990s are dominated by two key network

management standards: the Open System Interconnection (OSI) with the

CMIP framework adopted by telecommunication industry, and the IETF

15

with the SNMP framework that is widely used in data network. In the early

2000, ICT enterprise management and telecommunication management

started to converge [MORA02]. This happened due to the globalization of

markets, the deregulation of the telecommunication markets, the

increasing Business-to-Business (B2B) transactions and the increasing

demand to lower operational costs and increase the software reuse.

Moreover, the domination of the IP, as a common communication protocol

for local and wide area networks meant that telecommunication

management standard bodies had to adopt specifications and

implementations derived from computer industries rather than those

specified by telecommunication sectors. Figure 2.2 illustrates an example

of the convergence of telecommunication network and data network. In

this example, a data service and a voice service simultaneously traverse a

data network and a telecommunication network. The data network is

managed by a service provider A and the telecommunications network is

managed by a service provider B.

Figure 2.2: Convergence of telecommunication network and data network

16

The overall Quality of Service (QoS) from one end to the other (j to n) is

difficult to calculate because the QoS of the data network (from j to m) has

a different QoS definition from that defined by the telecommunications

network (from m to n). Moreover, a customer that uses both services does

not have any knowledge about the networks that he uses. The customer is

not aware of the differences in the QoS provided between the two

networks. The cause of poor QoS might lie in one service provider’s

networks but who is responsible for his QoS? As a result, management

information needs to be able to transverse from one service to another.

Management systems need to be integrated for this reason.

With the advent of NGN and the convergence of different transport

technologies, the management plane needs to be able to provide

management functions across heterogeneous and geographical

distributed systems. From the telecommunication provider’s point of view,

the main business drivers for the management functionality are

• to improve the process flow across the organization,

• to increase the management process automation,

• to improve the Quality of Service (QoS) of the service management,

• to reduce the cost of service provisioning

• to have tighter customer management control.

With these business drivers in mind, the telecommunication providers

need to be able to create Operational Support System (OSS) solutions

from reusable management components that are available from different

vendors. These management components (standardized or proprietary)

need to ensure the integrity of the information flows and to satisfy the end-

17

to-end processes in order to meet the business and operational

requirements of the telecommunication provider. Standard bodies such as

the DMTF are now promoting the use of open source APIs when

developing a standard [WEST00]. By adopting open source frameworks

vendors can speed up the development process.

2.3 An Overview of Telecommunication and

Network Management Architectures

This section presents standardization frameworks involved in the design of

telecommunication management systems. Furthermore, this section

identifies the contributions and influences of these architectures. More

specifically, TMN, SNMP, CMIP, NGOSS, TINA and WBEM architectures

that play important role throughout the spectrum of the management plane

starting from the low layer network management to the high layer

service/business management, are examined. Figure 2.3 gives an

overview of the evolution of the management frameworks.

Figure 2.3: Evolution of the management frameworks

18

In figure 2.3, the y axis represents the management focus of the

management framework and the x axis represents the timeline of the

framework’s establishment. There can be seen that some management

frameworks are focused on the Network and Element management such

as SNMP and CMIP, and other management frameworks are more

focused on the Service and Business management.

2.3.1 Telecommunication Management Network (TMN)

2.3.1.1 The TMN Reference Architecture

In 1986, the ITU-T proposed the concept of a TMN model in order to

address the interoperability of multi-vendor equipment used by service

providers and to define standard interfaces between service provider

operations [M.3010]. It defines a generic, management-oriented

architecture that can be applied to all kinds of management services.

Furthermore, the organization extended the concept of management to

include not only networks and network elements, but also service

functions of the service providers [PAV97]. The architecture uses concepts

from the OSI Systems Management architecture and applies them in the

context of telecommunication management [M.3010]. Figure 2.4 depicts

the TMN architecture.

19

Figure 2.4: The architecture Telecommunications Management Network

The TMN provides an organized architecture to achieve the integration

between various types of Operating Systems (OS’s) and/or

telecommunications equipment for the exchange of management

information using an agreed architecture with standardized interfaces

including protocols and message [M.3010] as shown in figure 2.5.

Figure 2.5: TMN function Blocks and Reference Points [M.3010]

20

TMN describes telecom network management from several viewpoints: a

logical or business model, a functional model, and a set of standard

interfaces. The functional architecture breaks down the management

functions into function blocks. The TMN functional architecture describes

the realization of a TMN in terms of different categories of function blocks

and reference points among these blocks [RAMA97]. The TMN physical

architecture corresponds to the physical realisation of the functional

architecture. Each function block becomes a physical block, and reference

points are transformed into interfaces. The Operation system (OS) is an

important physical block for managing the telecommunication activities.

The most important interfaces are: Q3 to link up OS with the managed

resource and X interface to integrate two TMNs of different OSs.

TMN makes use of OSI Systems Management principles that is based on

an object-oriented paradigm [M.3060]. In the TMN information

architecture, resources are modelled using object-oriented concepts at

different levels of abstraction and follow the GDMO (Guidelines for

Definition of Managed Objects) and ASN.1 (Abstract Syntax Notation One)

specifications. The Managed Object (MO) operations are based on the

manager-agent model in which manager issues operation directives and

receives notifications, the agent responds to directives and emits

notifications related to MO’s. The details of the manager-agent model will

be discussed in section 2.3.3. The information model is fully Object-

Oriented framework that can be mapped to Object-Oriented Programming

Languages such as C++ [M.3020].

21

2.3.1.2 TMN Layer Separation

The TMN management architecture proposes the separation of the

management functionality into five hierarchical layers. The ITU-T M.3010

gives a well established categorization of management layers. These

layers range from lower layers that involve managing details of individual

pieces of network equipment, to higher layers that are closer to the

running of the business that the network supports.

Figure 2.6: TMN logical Layer [M.3010]

The main contribution of TMN framework is the definition of a logical

model that specifies the functionality of each management level:

• Business Management Layer (BML) concerns with High-level

planning, budgeting, goal setting, executive decisions, business

level agreements (BLAs), etc.

22

• Service Management Layer (SML) uses information presented

by NML to manage contracted service to existing and potential

customers for service provisioning, accounts, quality of service,

and fault management.

• Network Management Layer (NML) has visibility of the entire

network, based on the Network Elements (NE) information

presented by the EML OSs. The NML manages individual NEs

and all NEs as a group.

• Element Management Layer (EML) manages each network

element and is responsible for the TMN-manageable information

in certain network elements.

• Network Element Layer NEL presents the TMN-manageable

information in an individual NE. Both the Q-Adapter, which

adapts between TMN and non-TMN information, and the NE are

located in the NEL.

This logical layer categorization has influenced other management

standardization organizations such as Tele-Management Forum and has

been adopted by many network management vendors such as Hp

Openview and IBM [OPENVIEW], [IBM].

2.3.1.3 The FCAPS Model

In addition to the layering structure, the general management functionality

in TMN is classified into five functional areas: Fault, Configuration,

Accounting, Performance, and Security (FCAPS) as follows [M.3060]:

23

Fault management monitors any failure events and request tests

to be performed in order to isolate these faults.

Configuration management provides functions to exercise control

over, identify, collect data from and provide data to network

elements.

Accounting management enables the measurement of the use of

network services and the determination of costs to the service

provider and charges to the customer for such use.

Performance management monitors the performance of the entire

network.

Security management should minimize unauthorized or accidental

access to network control functions. Security management

functions deals with ensuring legitimate use, maintaining

confidentialities, and data integrity.

Figure 2.7: TMN FCAPS Model

24

Figure 2.7 illustrates the detailed view of the functions performed by the

FCAPS model. These functions need to be performed at all the TMN’s

logical layers since telecommunication network management is evolved

towards on meeting Service Level Agreements (SLA), which demands

99.99 percent availability on the network [SATM09]. As a result, service

and network functions performed at different layers need to be managed

according to the FCAPS model in order to provide an overall picture of the

network’s health and minimize the risks of failing to meet the SLAs.

2.3.1.4 TMN Contributions and Influence

TMN was envisioned as a solution to the complex problems of operations,

administration, maintenance and provisioning (OAM&P), [FOWL95] and

provided a generic network management framework. EURESCOM in the

Next Millennium report [EURE99] concludes that the TMN concept has not

been widely used by the Telecom industry due to the high resource

requirements, technical complexity and the popularity and simplicity of

other management standards such as SNMP. Moreover, TMN

management framework produces expensive management applications

with complex APIs (Application Program Interface). Its protocol stack is

considered comprehensive but it brings more complexity and is

considered as a heavy weight protocol stack [EURE99]. Furthermore,

legacy equipments have to convert their legacy interfaces to TMN-based

interfaces. This is an expensive process to do because each TMN

interface is related to a specific protocol layer in the OSI reference model,

25

as a result each legacy interface has to make interface conversion to all

TMN-based OSI layers.

2.3.2 The Telecommunication Information Network

Architecture (TINA)

2.3.2.1 The TINA Development

TINA was developed by a consortium made up of over 40 companies,

such as telecom vendors, telecom operators and service provides [TINA].

The aim of the consortium was to define an open architecture for

telecommunication systems for broadband and multimedia

communication. TINA focuses on building a distributed processing

environment, especially for provisioning and deploying global services in

near real time to meet the market demands. The first phase of its

development (1993-1997), was aimed at defining a global architecture for

telecommunication systems with advanced software technology. The

second phase (1998-2000) defined specifications and initiated activities to

coordinate the activities involved in the business model and the service

architecture. A major design principle for TINA was the use of distributed

computing (e.g. Open Distributed Processing (ODP) that adopts the

Common Object Request Broker Architecture, CORBA to avoid the

scalability problem faced by centralised computing [HUBA98]

2.3.2.2 The TINA Business Model

The TINA business model identifies various business stakeholders and

their roles involved when considering a virtual marketplace for services

26

and networks. TINA attempted to standardise the relationships and

interfaces between the different business roles, referred to as TINA

Reference Points (RP). The business model provides mechanisms to

specify, add and modify RPs and roles in the TINA system. These

mechanisms provide one framework of common business that defines a

set of conditions on which the creation of new business roles and RPs can

be made. In addition, this framework provides an initial set of business

roles and relationships to apply the TINA methodology, and requirements

imposed by TINA system to cover a particular set of services.

TINA identifies the following five stakeholders in the business model:

• Consumer

• Broker

• Retailer

• 3rd Party Service Provider

• Connectivity Provider

The consumer establishes contractual relationships with the Retailer

stakeholder, which represents a “one-stop shop” for TINA services for

Consumers.

The Broker’s role is to provide stakeholders with the information that they

need to find other stakeholders and services in a TINA system. It is

considered as a directory service provider that can be accessed globally

by any stakeholder. In addition, the Broker handles subscription,

accounting and security and keeps track of object interfaces.

27

The Retailer can either provide the TINA service autonomously or can

make use of 3rd Party Service Provider to offer a service. For example, a

mobile phone service can provide the information about weather report,

but the content is actually dynamically sourced from a 3rd party content

provider and not from the Telecommunication provider [YATE97].

The Connectivity Provider is responsible for managing the transport

network and for offering a technology independent connectivity service to

the other business roles.

Figure 2.8 shows the relationships between the different stakeholders.

Figure 2.8: TINA Business Model

The Retailer RP (Ret) identifies the relationship between Consumer and

Retailer; the Broker RP (Bkr) identifies the relationship between the Broker

and other stakeholders such as Retailer, Consumer, 3rd Party Service

Provider and Connectivity Provider. 3rd Party Service Provider (3Pty) RP

defines the relationship between Retailer and 3rd Party Service Provider as

28

well as relationships among other 3rd Party Service Providers. The

Connectivity Service (ConS) RP and Terminal Connection (TCon) RP

identify the relationships between Connectivity Providers and Retailer,

Consumer and 3rd Party Service Providers. The Client Service Layer

Network (CSLN) RP and the Layered Network Federation (LNFed) RP

define the relationships among Connectivity Providers in supporting

cooperative connectivity across providers.

2.3.2.3 TINA Service Architecture

TINA’s service architecture defines a platform for developing a wide range

of services in a multi-supplier environment [PAVL98]. This platform

consists of application software components, which are deployed on a

Distributed Processing Environment (DPE) [PAV97]. The DPE provides a

technology independent view of computing resources, allowing technology

dependent aspects in applications software to be minimized. In this way, it

supports the construction of portable, interoperable code and promotes

easier software design and reuse.

Distributed Processing Environment
(DPE)

Service
Components

Resource
Components Elements

Networking
Resources

Distributed Processing Environment
(DPE)

Service
Components

Resource
Components Elements

Networking
Resources

Figure 2.9: TINA Components

The application components in the TINA architecture are divided into three

categories in order to achieve good structure, modularity and software

reusability. These three categories are as shown in figure 2.9,

29

• Service components

• Resource components

• Element components.

Service components address the core functionality of TINA services,

including access and management capabilities. These components are

deployed in the domains related to Consumer, Retailer, Broker and 3rd

Party Service Provider. Service components that require a connectivity

service can use facilities provided by Resource components. Resource

components are deployed within the Connectivity Provider stakeholders’

administrative domains and offer high-level technology-independent

abstractions of the underlying transport network in order to utilise and

manage the network’s resources. Element components are software

representations of physical or logical resources such as switching fabrics

and transmission equipment. The identification and definition of individual

element components is outside of the scope of TINA framework.

TINA defined a Network Resource Architecture (NRA) to provide a set of

generic concepts in order to describe transport networks in a technology-

independent manner. It is concerned with how individual elements are

related, topologically interconnected, and configured in order to provide

and maintain end-to-end connectivity. The NRA is heavily influenced by

the TMN standards [PAVL98].

The major differences between TMN and TINA

• TMN aims at integration, TINA assumes DPE.

• TMN focuses on process interactions and interface agreements,

TINA is more architecture and component driven.

30

2.3.2.4 TINA Architecture’s Contribution and Influences

The TINA framework stopped on 2000 but has subsequently influenced

other standardization organizations as well as the Telecom industry. More

specifically, TINA promoted a number of issues related to

telecommunication management that are progressed by other

organizations. These issues are: a critical analysis of the business

stakeholders and their relationships, its expressed objective towards

component-based architectures; and the use of mainstream distributed

middleware services to support management systems and component

communication. TINA’s adoption of mainstream distributed object

technology has been implemented by many management system

developers and vendors [VALL99]. TINA represents a revolutionary

departure for the telecommunications industry that is characterized by a

shift from protocol-based telecommunication engineering principles to

software engineering techniques such as APIs, and component interface

specifications which are more closely related to the programming

languages used to implement the service logic [PAV97]. Finally, the TINA

business model has influenced the stakeholder representation in the

eTOM specification from the TeleManagement Forum [LEW99].

2.3.3 The Manager and Agent Model

OSI management has introduced the manager-agent model [SART95].

This model is the most common model that is being used for management

purposes [SART95]. SNMP and CMIP are two network management

protocols for managing devices that based on the Manager-Agent model.

31

According to the model, manageable resources are modelled by managed

objects that encapsulate the underlying resource and offer an abstract

access interface. The management aspects of entities such as Network

Elements are modelled through “clusters” of managed objects. A

management interface is defined through a formal specification of relevant

managed object types and the associated access mechanism.

Management interfaces can be thought as “export” by the agents and

“import” by the manager. Manager access managed objects across

interfaces in order to implement management policies. Figure 2.10

illustrates the Manager-Agent model.

Figure 2.10: Manager-Agent Model

The management access service and protocol carries the parameters of

operations to managed objects and returns management results. The

management parameters and management results are a subset of other

available objects residing on the agent’s boundary. The agent offers a

database-like facility (MIB Data Store) which has the effect that one

operation may result in many operations to managed objects inside the

agent, with a combined result passed back to the manager. The managed

objects can use the agent’s notification mechanism in order to send

32

notifications (called traps) to the manager according to criteria that the

manager has preset.

2.3.3.1 Network Management Agent

A network element must have a management interface in order that an

NMS can communicate with it for management purposes. For instance,

the management interface allows the NMS to send requests to the

network element. A request could be a configuration of a sub-interface, to

retrieve statistical data about the utilization of a port, or to obtain

information about the status of a connection. In addition, the network

element can send information to NMS, such as a response to a request,

but also to send a response when an unexpected event (for example, the

failure of a fan or a buffer overflow) has occurred. Management

communication is asymmetrical. This means that a managing application

is the “manager” which is in charge of the management, and the network

element is the “agent” that supports the manager by responding to its

requests and notifying it proactively of unexpected events. Figure 2.11

illustrates the interaction between NMS and network entity node.

Figure 2.11: Interaction between NMS and Network Entity

33

The management agent consists of three main parts: a management

interface, a Management Information Base, and the core agent logic.

• The management interface handles management communication. It

supports a management protocol that defines the “rules of

conversation” for communication between the managed network

element and the NMS. It allows the NMS to open a management

session with the network element. In addition, the management

interface allows the NMS to make requests to the managed device

and receive responses. Through the management interface, the

management agent can send event messages that the NMS can

receive. The Event message enables the manager to be alerted of

certain faults at the network element, such as unexpected

communication loss with another network element.

• The MIB is a data store that contains a management view of the

device that is being managed. The data contained in this data store

form the management information. The MIB is not a database in

which information about the device is stored but is a way to view

the device itself. For instance, when a managing application would

like to modify an entry in the conceptual table, in reality, the actual

configuration of the network element is changed and the

communication behaviour of the network element is changed.

• The core agent logic is the function that translates between the

operation of the management interface, the MIB, and the actual

device. For instance, it translates the request to “retrieve a counter”

34

into an internal operation that reads out a device hardware register

that contains the desired information. Many counters of the same

type could exist inside the network element, for example, one

counter per interface. Therefore, the agent logic must be able to

map the name by which the counter is referred to in the MIB to the

actual register whose contents are being requested. Agent logic

can include added management functions that offload the

processing required by the NMS.

2.3.3.2 Structure of Management Information (SMI)

The formats of the information exchanged between a manager and an

agent needs to be the same for any implementation. In order to achieve a

uniform representation of the information delivered over the network,

management protocols such as SNMP use a subset of the Abstract

Syntax Notation One (ASN.1) for the data presentations and this subset is

known as Structure of Management Information (SMI) [McCL99]. ASN.1

[X.690] provides a standard way of representing data travelling across the

internet. This standardization is necessary because the data can be

represented in incompatible ways within different network computing

devices. ASN.1 is used in order to describe the format of how messages

can be sent between agents and NMSs. The SMI is not only used to

define the formats of the messages exchanged by the management

protocol but also used to define the managed objects. SMI provides a way

to define managed objects and their behavior. The agent has in its

possession a list of the objects that it tracks. One object for example is the

35

operational status of a router interface (for example up, down or testing).

This list defines the information that NMS can use to determine the overall

health of the device on which the agent is located in. Figure 2.12 shows

the OBJECT-TYPE macro that is used to define the elements in the MIB.

OBJECT – TYPE MACRO :: =
BEGIN
 TYPE NOTATION ::= “SYNTAX” type (type ObjectSyntax)

 “ACCESS” Access
 “STATUS” Status

VALUE NOTATION ::= value (VALUE ObjectName)

Access ::= “read‐only”
 | “read‐write”
 | “write‐only”
 | “not‐accessible”

Status ::= “mandatory”
 | “optional”
 | “osolete”

Figure 2.12: SMI OBJECT-TYPE macro

The SMI specification in RFC 1155 [ROSE90], defines the general

framework which a MIB can be defined and constructed. It identifies the

data types that can be used in the MIB and specifies how resources within

the MIB are represented and named. The philosophy of SMI is to provide

simplicity and extensibility within the MIB. As a result the MIB can store

only simple data types: scalars and two-dimensional arrays of scalars.

2.3.3.3 Management Information Base (MIB)

Management protocols provide the ability to query devices on the network.

The communication with the device can be done by retrieving information

from the MIB which is contained in the device. The SMI provides the way

36

to define the managed objects, while the MIB is the definition (using the

SMI syntax) of the objects. The leaf objects of the tree are the actual

managed objects, each of which represents some resources, activities or

relevant information that can be managed. The tree of structure defines a

grouping of objects into logically related sets. MIB is best thought of as a

conceptual data store. The MIB is not the same as a database. The MIB

does not store information about the real world (the actual managed

device) in a file system; instead, it offers an abstraction of the managed

device that is used for management purposes. When the manager

retrieves some information from the MIB, it represents an aspect of the

device. For example, an internal register that keeps track the number of

packets that has been received over a port. When the manager

manipulates the information in the MIB, the actual settings of the device

are modified, as a result, affecting the behavior of the device.

Management information provides the capability that network managers

need to control and manage the device. MIBs are one of the central

concepts in network management [STAL98] [KAVA00].

The following figure (figure 2.13) illustrates the structure of the MIB.

37

Figure 2.13: Structure of an MIB

The current full standard for the MIB is defined in the RFC 1213 [McCL91].

This version is called MIB-II and has been evolved from the previous

specification MIB-I. The MIB-II structure is divided into groups that reside

in four layer OSI protocol suite model. There are ten groups in the MIB-II

definition. Those groups are listed below:

• System group

• Interfaces group

• Address Translation group

• Internet Protocol group

• Internet Control Message Protocol group

• Transmission Control Protocol group

• User Datagram Protocol group

• Exterior Gateway Protocol group

• Transmission group

38

• The Simple Network Management Protocol group

The System group has three objects. These objects contain descriptive

information about the managed Network Elements. It describes the top

level characteristics and general configuration information about the

managed Network Elements. Every object of this group is mandatory. If an

agent is not configured for a value for any of these objects, the objects

must have a default initialization value of 0.

The Interfaces group objects deal with the Network Element’s lowest level

of connection to the network. This group allows the management control of

the lowest layer of the TCP/IP protocol suite. Since NEs could have more

than one network interface, Interfaces group provides a count of the

number of interfaces present in the Network Element and related

information about each interface.

The Address Translation group provides a mapping of a Network

Element’s internetwork layer address e.g. IP address. The Internet

Protocol group contains the managed objects for providing information on

IP operations, such as IP routing tables and address conversion tables.

The Internet Control Message Protocol group contains input and output

statistics. This group has read-only counter objects for maintaining various

statistics and error counts for the ICMP protocol. It provides ICMP

messages such as destination unreachable, time exceeded, parameter

problem, echo request and echo reply.

The Transmission Control Protocol group gathers statistics about the

Network Element’s TCP connection. The User Datagram Protocol group

39

contains statistics and information about the Network Element’s UDP

connection.

The Exterior Gateway Protocol group contains managed objects needed

for the EGP protocol. It collects statistical information about the EGP

protocol.

The Transmission group contains the network access layer interface

types. For instance, it defines the Network Element’s transmission over

Ethernet, Token bus (IEEE 802.4), Token ring (IEEE 802.5), Serial port

(RS-232) connections.

Finally, the Simple Network Management Protocol (SNMP) group contains

the objects that are related to the SNMP protocol. It represents a collection

of meaningful counters, status conditions, and errors detected.

Figure 2.14 illustrates the ten groups in the MIB II definition in relation to

the OSI protocol stack.

Figure 2.14: MIB groups

40

2.3.4 IP-Based Network Management: SNMP

The SNMP is the most popular and dominant application-layer protocol

used for monitoring and managing network devices in IP-based data

communication network [MAUR01]. SNMP was designed in the late 80's to

facilitate the exchange of management information between networked

devices. The SNMP protocol enables network and system administrators

to remotely monitor and configure devices on the network (devices such

as switches and routers) and uses the UDP as the transport protocol for

passing data between managers and agents. The SNMP specification is

contained in RFC 1157, dated May 1990. UDP, defined in RFC 768, was

chosen over the Transmission Control Protocol (TCP) because it is a

connectionless protocol i.e. no end-to-end connection is made between

the agent and the Network Management System (NMS). This aspect of

UDP makes it unreliable, since there is no acknowledgment of lost packets

at the protocol level. It is up to the SNMP application to determine if

packets are lost and need to be retransmitted. However the benefit of

using the UDP protocol is that it requires low overhead i.e. less or no

impact on the network performance [KAST91].

Due to UDP’s reliability issues, further research has been made in order to

overcome UDP’s limitations. RFC 3430 presents an experimental

approach for implementing SNMP over TCP protocol [SCHO02]. It

proposes that the SNMP provides both TCP and UDP connections at the

same time. The selection of transportation protocol can be made

according to the size of the SNMP message through default policies.

When an SNMP message is larger than a predefined size, the SNMP

41

manager selects TCP for transporting the message, otherwise it selects

UDP. SNMP over TCP offers flow control and efficient segmentation,

consequently, management messages over TCP results in a reliable

exchange between managers and agents. SNMP over TCP did not

receive wide support [MAUR01] due to the extra signalling load and delay

incurred in the handshake procedure.

2.3.4.1 SNMP Protocol Structure and Operations

There are three versions of SNMP. These versions are the SNMPv1,

SNMPv2 and SNMPv3 (refer to Appendix A for more details and

comparisons). SNMPv1 is the standard version of SNMP, the SNMPv2

was created as an update of SNMPv1 and SNMPv3 updated the security

issues arise by the previous versions. Figure 2.15 represents the structure

of an SNMP message being sent using TCP/IP. The SNMP message is

encapsulated, first by the UDP header and then by the IP header.

Figure 2.15: SNMP message

42

The SNMP message consists of three components:

• SNMP Version Number: Indicating the version of the SNMP

protocol that is being used (SNMP 1, SNMP 2C, SNMP 3).

• The Community name: If the SNMP version is 1 or 2c then the

community name is a simple string value up to 255 bytes. For the

SNMP version 3 as presented in the RFC 2572, the community

name consists of a number of authorization and authentication

fields.

• Data: A sequence of Protocol Data Units (PDUs) associated with

the request. PDUs define the type of operations performed by the

SNMP manager. For example, GetRequest, SetRequest etc. There

can be multiple PDUs in a single message.

Each PDU defines the following fields (figure 2.15):

• PDU type: Identifies the type of the PDU (Get, GetNext, Trap,

Inform etc).

• Request ID: Associates SNMP requests with responses.

• Error status: Only the SNMP response message sets this field. The

SNMP message request sets this field to zero. This field indicates

the number of errors and the type of the error.

• Error index: Only the SNMP response message sets this field. This

field associates an error with a particular object instance.

• Variable bindings: This field is served as the data field. It associates

a particular object instance with its current value.

43

Figure 2.16: TCP/IP communication model and SNMP

Figure 2.16 depicts the SNMP architecture. The data path between the

manager application process and the agent application process passes

through four layers: UDP, IP, Data Link, and Physical Link on the manager

side, and passes through the same layers in reverse on the agent side.

When either a manager or an agent needs to perform an SNMP function

(e.g. a request or notification), the following events take place in the

protocol stack:

Application: First, the actual SNMP application (manager or agent)

decides what it is going to do. For instance, it can send an SNMP request

to an agent, send a response to an SNMP request (this would be sent

from the agent), or send a notification to the manager. The application

layer provides services to an end user, such as an operator requesting

status information for a port on an Ethernet switch.

UDP: The next layer, UDP, allows two hosts to communicate with one

another. The UDP header contains the destination port of the device to

44

which it is sending the request or a notification. The destination port will

either be 161 (query) or 162 (notification).

IP: The IP layer attempts to deliver the SNMP packet to the intended

destination, as specified by the IP address.

 Medium Access Control (MAC): The final event that takes place for an

SNMP packet to reach its destination is for it to be handed off to the

physical network, where it can be routed to its final destination. The MAC

layer is comprised of the actual hardware and device drivers that put the

data onto a physical piece of wire, such as an Ethernet card. In addition,

the MAC layer is responsible for receiving packets from the physical

network and sending them back to the protocol stack so they can be

processed by the application layer.

2.3.4.2 SNMP contribution and influence

The SNMP model and protocol were developed with the design philosophy

that the agents are simple and the cost to support network management

must be low [AMIR95], [LOPE00] Due to that philosophy, SNMP gained a

wide acceptance and is the most widely implemented management

framework in the Telecom industry today [LOPE00], [JING09]. With the

emergence of NGNs, the networks are expanding fast and the amount of

data is increased, resulting in complex heterogeneous networks. In such

scenarios, SNMP protocol stack that is simple and has few operational

commands, is insufficient and could not provide scalability and efficiency.

Scalability refers to the number of agents that can be managed by a single

manager system and the efficiency is how quickly and effectively the

45

network management system will be able to cope when the management

data increases. The simplicity of SNMP is not able to cope with the large

amount of management information. Management data increases due to

the fact that the entire managed system increases with the growth of the

network and the quantity of the management data in each agent

[KOTS08].

2.3.5 CMISE/CMIP

CMIP is an OSI protocol used with the Common Management Information

Services (CMIS) to support information exchange between network

management applications and management agents. CMIS defines a

system of network management information services. CMIP supplies an

interface that provides functions, which can be used to support both ISO

(International Standards Organization) and user-defined management

protocols.

CMIP used in the in the TMN framework and is mostly implemented for the

telecommunication sector by companies such as Ericsson, Nortel and

Motorola. It follows the Manager/agent model similar to that of SNMP

[WARR89].

2.3.5.1 The CMISE

The Common Management Information Service Element (CMISE)

[WARR90]. defines services for accessing management information

concerning the network, controlling the network and receiving status

reports from the network. Furthermore, it provides commands for

46

accessing the agent in the network device. These commands have three

categories:

• Management Association Services provided by Association Control

Service Element (ACSE)

• Management Notification Services

• Management Operation Services.

The Management Association Services (MAS) provides primitives that

control the connection establishment with other CMISE managers. These

primitives are involved with manager to manager communication. The

following table (table 2-1) contains these primitives.

Table 2-1: MAS primitives

MAS Primitives Description

M-INITIALIZE Generates connection establishment to peer CMISE users for
transferring management information.

M-TERMINATE Terminates an established connection between peer CMISE
service users.

M-ABORT Terminates the connection between CMISE peers in the case of
an abnormal connection termination.

The MAS commands as can been seen from the table above, provides

manager to manager communication only to other CMISE enabled

managers. CMISE has not been designed to operate with managers that

use different communication protocols such as SNMP managers. This

limitation can be solved with translation techniques proposed by [NAKA95]

where SNMP can be translated into CMIP and vice versa by using a rule

description. This technique proposes a protocol conversion and

management information translation by using a description rule for

47

translating the management information and storing the content of the

management information into a virtual MIB. The proposed technique could

be applied in a network that is managed by only these two management

protocols (SNMP and CMIP), but in an environment such as NGN, where

the transport stratum is not homogeneous and different management

protocols are required to manage the network, this technique is not

sufficient.

The Management Notification Services (MNS) are used by the CMIP

management agents to inform the managers that some event has

occurred or to set events. The M-EVENT-REPORT primitive is used in

order to report an event about a managed object to a CMISE manager.

The Management Operation Services (MOS) are operations performed by

the CMIP. These operations are listed in the following table (table 2-2).

Table 2-2: MOS primitives

MOS Primitives Description
M-CREATE Creates an instance of a managed object in the agent’s MIB.
M-DELETE Deletes an instance of a managed object in the agent’s MIB.

M-GET Requests managed object attributes. The request can handle
one object or a set of objects.

M-CANCEL-GET Cancel previously requested and currently outstanding
invocations.

M-SET Set managed object attributes.
M-ACTION Request an action to be performed on a managed object

2.3.5.2 CMIP-based Communication

The CMIP is based on Remote Operations Service Elements (ROSE) and

Association Control Service Element (ACSE) services. ROSE provides

remote interaction using request/response primitives [WARR90]. There are

48

four ROSE primitives: RO-INVOKE, RO-RESULT, RO-ERROR and RO-

REJECT [WARR90]. ROSE enables initiation or execution of operations

on remote systems.

ACSE is a sub-layer of the application layer which allows CMISE to set up

and terminate connections. In other words, is responsible for establishing

and releasing application associations [WARR90]. Figure 2.17 illustrates

the Manager/Agent CMIP-based communication.

Figure 2.17: Manager/Agent CMIP-based communication

According to figure 2.17, the management function interacts with the

CMISE. The management information is exchanged through protocol

stacks supported by both manager and agent. The management protocol

that provides communication between manager and agent is the CMIP.

CMISE uses the ACSE primitives to initiate and establish a connection

with the remote agent. When the connection is established, CMISE

initializes a MOS primitive to perform a specific function. This primitive is

not transmitted directly over the CMIP protocol but it is sent to ROSE

49

element. ROSE encapsulates the CMISE primitive into a request and

sends the message to the ROSE element on the agent. The ROSE

element on the agent has to perform the opposite procedure in order to

pass the message to the CMISE. Next, the agent’s CMISE process the

manager’s request by accessing the MIB and acquiring the value of the

requested management object. The same process is performed by the

agent’s CMISE in order to send the management information to the

manager.

2.3.5.3 Comparing SNMP and CMIP

Table 2-3 illustrates the differences between SNMP and CMIP.

Table 2-3: Comparison of SNMP and CMIP

Feature SNMP CMIP
PDU length limitations 484 octets Unlimited
Interconnection model Connectionless Connection-oriented
Interaction method Polling based Event based
Information Model Variable-oriented (attribute) Object-oriented
MIB language SNMP SMI GDMO
ASN.1 Full support subset
Events/traps unconfirmed Confirmed & unconfirmed
Complexity Agent is simple Agent is complex
Implementation and
maintenance Simple Complex and difficult

Management Entity
Interactions

Manager/Agent,
Manager to Manager

Manager/Agent, Manager
to Manager

Robustness Low due to UDP High due to TCP

Performance
High for LAN and MAN.

Acceptable for networks with
limited bandwidth

Low for LAN and MAN.
High for networks with

limited bandwidth
Scalability High Low
Industry acceptance High Very Low

SNMP and CMIP are both based on the manager-agent model and both

provide manager to manager communication. SNMP has a message

length up to 484 octets because it is limited by the connectionless UDP

50

transportation protocol. The CMIP does not have any message limit due to

the use of TCP protocol. This means that CMIP can request more

management information per message whereas SNMP has a predefined

limit. Therefore, more functions can be accomplished with a single

request. On the other hand SNMP does not have to send

acknowledgements for every message exchange due to the use of UDP

protocol compared to the CMIP. As a result, the SNMP with smaller

messages and with a connectionless communication pattern can produce

less network overhead compare to CMIP. With SNMP’s datagram

transmission method, messages can be lost without the SNMP manager

receiving notification. CMIP agents are more sophisticated than SNMP in

that CMIP provides more powerful primitives that allow management

applications to accomplish relatively sophisticated management tasks with

a single request. As a result, the CMIP has more comprehensive

automatic event notification functions compared to SNMP that uses mostly

the polling method due to the simplicity of the agent. The CMIP

information model is object-oriented compared to the variable-oriented

model that SNMP uses. CMIP uses the Guideline for Definition of

Managed Objects (GDMO) for defining managed objects within TMN-

based systems. GDMO is a specification that defines a structure

description language for specifying objects classes and object behaviours.

SNMP uses the SMI for defining the MIB structures of the managed

objects. Both GDMO and SMI are based on ASN.1. CMISE/CMIP was

designed to be much more powerful and therefore is more complex and

resource intensive to implement. Only large systems would be able to

51

handle a full implementation of CMIP [NAKA95]. SNMP was designed to

be more simple and lightweight. CMIP agent increases the overhead on

the network elements compare to SNMP agent. Network elements with

low memory cannot cope with the resources that CMIP occupies.

Therefore, CMIP is a protocol that has not been widely adopted and few

vendors support it [INTGR], [OPENVIEW], [SUN96].

2.3.6 Web-Based Enterprise Management (WBEM)

Web-Based Enterprise Management is a set of management and internet

standard technologies developed to unify the management of distributed

computing environments [CARE02b]. DMTF is the industry organization

that leads the development of the WBEM standard. WBEM consists of

three standards: the Common Information Model (CIM), Web Based

Enterprise Management and an XML binding for the CIM. The relationship

between the three standards is illustrated in figure 2.18b.

Figure 2.18: (a) Common Information Model, (b) Key DMTF specification

a b

52

CIM is an information model, a conceptual view of the managed

environment. It is specified on Model Object Format (MOF), but is

increasingly being represented in UML. CIM attempts to unify and extend

the existing instrumentation and management standards such as SNMP

and CMIP by using object-oriented constructs and design [WEST00]. The

CIM model consists of a specification and a schema. The specification

defines the details for integration with other management models. The

CIM schema provides the actual model descriptions and captures notions

that are applicable to all common areas of management, independent of

implementations. The CIM schema is a combination of the core and

common models as illustrated in figure 2.18a.

The CIM Core schema is a set of classes, associations and properties that

provide a vocabulary in order to describe managed systems. The core

schema is a starting point for determining how to extend the common

schema. The latter represents information models for particular

management areas, but it is independent from any particular technology or

implementation i.e. it can be represented in JAVA or C++ or in any other

object oriented programming language. Examples of common models

include system, networks, applications and devices.

In order to manipulate the management information, WBEM needs an

access protocol. Thus, WBEM defines the XML for CIM (xmlCIM)

specification, so that messages with content based on the CIM model can

be passed in XML documents. The xmlCIM Encoding specification defines

XML elements, written in Document Type Definition (DTD), which

represent CIM classes and instances. The transport of the management

53

information is passed over the HTTP protocol. HTTP provides a highly

flexible management protocol for exchanging CIM based, XML encoded

management information.

DMTF has been accepted by many key industry actors such as Cisco and

Microsoft especially due to the CIM model. XML over HTTP, which is

offered by WBEM for transportation of management information, has been

the key factor for the development of inexpensive management

infrastructure. On the other hand, WBEM provides rich but complex set of

information models, which lack of explanation of how they can be used, in

what types of application and in what way. As a result, management

system developers struggle to identify the appropriate information objects

for their applications. WBEM does not provide methodological guidance

for designing management applications by using CIM as it is considered

out of the scope of the standard.

2.4 ITU Next Generation Network Management

Framework

2.4.1 The NGN Architecture: Service and Transport Strata

These days, modern telecommunication involving satellites, mobile phone

networks such as GSM/GPRS, wireless LAN, WiMax and Bluetooth

provide new services like Video on Demand, telephony Voice over IP,

Games on Demand and Content Cashing or Video on Demand (VoD)

casting etc. [EURO04]. Next Generation Networks will accommodate

heterogeneous networks with high level of distribution and complexity.

54

Figure 2.19 illustrates the NGN environment consisting of multiple

technologies.

Figure 2.19: Heterogeneous environment of NGN and relation with legacy network

ITU defines the term Next-Generation Network (NGN) in Recommendation

Y.2011 [Y.2011] as a packet-based network able to provide

telecommunication services and able to make use of multiple broadband,

QoS-enabled transport technologies and in which service-related functions

are independent from underlying transport-related technologies. It offers

unrestricted access for users to different service providers. It supports

generalized mobility, which will allow consistent and ubiquitous provision

of services to users.

55

The NGN architecture, as it is recommended by the ITU, is divided into

two independent functional stratums, the Service stratum and the

Transport stratum (figure 2.20) [M.3060].

Figure 2.20: NGN architecture [M.3060]

By separating the transport from the service stratum the system provides

flexibility in several aspects. One of the benefits is the installation

independency. This means that the equipment used on stratum is

independent of the equipment that is used on other stratum allowing

flexible deployment scenarios to meet the capacity requirements of each

component. New services can be deployed to the service stratum (i.e.

session-based services and non-session services) while the transport

equipment remains unchanged. Another benefit of that separation is the

56

migration independency. The transport elements can be upgraded or

replaced with new technologies without changing service provisioning

facilities. A common Transport stratum could be used by different retail

sections of the same provider group. This modularity is a unique feature of

the NGN architecture [M.3050.1].

The NGN Service stratum provides the functions that control and manage

the network services in order to enable end-users services and

applications. The services can be voice, data or video applications. In

more detail, these functions provide session-based services such as IP

telephony, video chatting and videoconferencing and non session-based

services such as video streaming and broadcasting. In addition, the

service stratum functions provide all of the network functionality

associated with existing Public Switched Telephone Network/Integrated

Services Digital Network (PSTN/ISDN) services. The Transport stratum

provides functions that transfer data between peer entities and functions

that control and manage transport resources in order to carry these data

among terminating entities. The data could be user, control and/or

management information data. In addition, the Transport stratum is

responsible to provide end-to-end QoS, which is a desirable feature of the

NGN. IP is recognized as the most promising transport technology for

NGN. Thus, the IP provides IP connectivity for end-user equipment

outside NGN, as well as controllers and enablers that reside on servers

inside NGN.

57

2.4.2 The TMN NGN Management Framework

TMN has been extended to include the management of the architectural

evolution of Next Generation Networks. The ITU-T M.3060

recommendation [M.3060] defines the framework for NGN management in

terms of four basic architectural views: Business process view,

Management functional view, Management Informational view and

Management physical view. Each of these views gives a different

perspective into the management plane. This management framework

consists of functions that give the ability to manage the NGN in order to

provide services with expected quality, security and reliability. Figure 2.21

illustrates the four architectural views of the NGN management

architecture as well as the security considerations.

Figure 2.21: NGN management architecture

2.4.2.1 Business Process View

The business process view of the NGN is based on the enhanced

Telecom Operations Map (eTOM) model which is specified in the ITU-T

58

recommendation M.3050 series [M.3050.1]. eTOM is examined in detail

later in this thesis in section 2.4.3.2.

2.4.2.2 Management Functional View

The functional view of the NGN management is a structural and generic

framework of the management functionality. A management function is the

smallest part of a business process or management service [M.3060].

Figure 2.22 illustrates the different types of management function blocks.

Refer to ITU-T Rec M3060 for a complete description of NGN

Management function blocks.

OSF

MPCMF

EpMF

TEFSEF

SPRMF

TRMF
NMFSRMF

SMF

EMF

NEF

SNMF

TEMF

TNMF

SEMF

NGN Service
stratum

management

NGN Transport
stratum

management

Figure 2.22: NGN Management Block Functions (ITU-T Rec M.3060)

59

The management of the NGNs is very complex [NARA00] [PANT08]. It is

easier to deal with this complexity by dividing the management

functionality into layers. The Logical Layer Architecture (LLA) organizes

the functions into groups or logical layers. Each logical layer deals with

particular aspects of management functions. Figure 2.23 illustrates the

Logical Layer Architecture.

Figure 2.23: NGN management logical layer architecture

The management functionality is categorised into the following groups:

• Enterprise Management: Enterprise Management group is

responsible for the basic processes and functions that are required

for managing any large business.

• Market, Product and Customer Management: The main purpose of

this group is to provide a common functionality for order

management of Service Provider’s products and to administer and

60

manage functionality that uses information from the Service

Management Layer. In addition, it manages the instances of

Product Objects during their whole lifecycle and handles the dialog

with customers through a well-defined business interface.

• NGN Service Management: This group is responsible for managing

the delivery and assurance of services to end-users according to

the customers’ expectation.

• Resource Management: This functional group deals with the

management of the logical service and transport infrastructures.

The Resource Management is divided into Service Resource

Management: and Transport Resource Management.

• Service and Transport Element Management: A specialization of

Network Element Function representing the telecommunication

service and transport functions.

• Supplier and Partner Relationship Management: Deals with the

supplier’s and partner’s communication for importing external

transport or service resources that the enterprise will use.

2.4.2.3 Management Informational View

The management of a telecommunications environment is an information

processing application. In order to effectively manage complex networks

and to support network operator/service provider business processes, it is

necessary to exchange management information between management

applications which are implemented in multiple managing, and managed

systems. Thus, telecommunication management is a distributed

61

application. The Management Informational view is an object-oriented or

service-oriented approach which allows the Open Systems

Interconnection management principles to be applied in the NGN context.

A network information model is a uniform, consistent and rigorous method

for describing the resources in a network, including their attribute types,

events, actions and behaviors. The network information model is generic

to ensure that a wide range of network resources can be modeled. ITU-T

Recommendation M.3100 [M3100] defines a generic network information

model for TMN that is based on the OSI management information model

[ISO93]. In the OSI information model, the management view of a

managed object is described in terms of attributes, operations, behavior

and notifications. Attributes are the properties or characteristics of an

object, operations are performed upon the object, behavior is exhibited in

response to operations and finally, notifications are emitted by the object

[ISO93]. The TMN uses the same concepts in describing its information

model. The physical resources in the TMN are represented by managed

objects, registered on appropriate branches of the object identifier tree.

Definitions are inherited from the OSI management information definitions

[ISO93].

2.4.2.4 Management Physical View

The management physical view, as defined by the ITU-T M.3060 [M3060],

consists of physical blocks and communication interfaces. A physical block

is an architectural concept representing a realization of one or more

function blocks. Actually, a physical block can be a hardware system, a

62

software application, or a combination of the two. A communication

interface is an architectural concept enabling interoperable interconnection

at reference points between physical blocks by realizing the reference

points.

Figure 2.24: NGN management physical view

Figure 2.24 above illustrates a simplified management physical view

proposed by the TNM specification [M.3060]. The physical blocks in the

management physical view contain the Operations Systems (OS), the

Network Elements (NE) and the Data Communication Network (DCN). The

OS is a system that performs OSFs. The NE consists of

telecommunication equipment and support equipment or any item or

groups of items considered to belong to the telecommunications

environment that performs NEFs. The DCN is a support service that

provides the capability to establish paths for information flow among

physical blocks in a management environment.

63

The DCN may consist of a number of individual sub-networks of different

types, connected together. The communication interfaces are: Q

interfaces, B2B/C2B interfaces and the Human Machine Interface (HMI)

interfaces. The Q interface is characterized by that portion of the

information model shared between the OS and those management

elements to which it directly interfaces. The B2B/C2B interface is used to

interconnect two administrative domains or to interconnect a compliant

environment with other networks or systems. Finally, the HMI is an

interface applied at HMI reference point, which is exposed for

consumption by the users [M3060]. TMN proposes the use of an adaptor

to act as a gateway among legacy network equipment and TMN-based

Operations Systems. Most of legacy network equipments understand

ASCII-based information that is not TMN-conformant operation. The Q

adaptor proposed by TMN provides programmatic interface to a legacy

equipment to adapt the legacy information to TMN compatible information.

2.4.2.5 Security Consideration

Security has the mission to protect important business assets against

different types of threats. Assets can be of different types such as

buildings, employees, machines, information, etc. NGN Management is

specifically concerned with the management of security aspects of the

NGN and with the security of the NGN Management infrastructure. ITU-T

Recommendations X.805 and M.3016.x series are considered for securing

the NGN management infrastructure. ITU-T X.805 recommendation

[X.805] defines concepts and components intended to provide reusable

64

countermeasures across multiple layers of the infrastructure, including

transport and service stratum. The M.3016.x series [M.3016] focuses on

end-to-end security, both when management traffic is separate from user

traffic and when they are mixed together. To overcome the complexity of

securing the NGN infrastructure, including its management plane, there is

a need to automate the application of various security services,

mechanisms, and tools by using operation systems to automate the

process.

2.4.3 The TMF NGN Management Framework

2.4.3.1 The Next Generation Operations Systems and Software (NGOSS)

The TeleManagement Forum (TMF) is a non-profit global consortium that

provides strategic guidance and practical solutions for the

telecommunication management and the development of management

systems and standards. It was established in 1988 as the OSI/Network

Management Forum under the sponsorship of the ITU [TMF]. Later the

name was changed to TeleManagement Forum. The strategic goal of the

TMF is to identify and create standard interfaces that allow a network to be

managed consistently across various network element suppliers. In the

TMF, a next-generation solutions framework, the NGOSS has been

developed to enable general use reuse of carrier and vendor expertise on

processing, information models, systems integration methods, application

components in constructing operations and business support systems

(OSS/BSS) [SASA09].

65

NGOSS aims to deliver a framework that will help produce New

Generation OSS/BSS solutions. The goal of NGOSS is to provide a rapid

development of flexible, low cost ownership of OSS/BSS solutions in order

to meet the business needs of the Telecom industry [EURO06]. NGOSS

promotes the use of open-standard commercial off-the-shelf information

technologies, instead of proprietary telecommunication technologies. The

use of this approach reduces significantly the cost and improves software

reuse and operational flexibility. More specifically, NGOSS provides

specifications that expose the functionality contained in a NGOSS

component. A component is a software entity that is independently

deployable and uses contracts in order to expose its functionality. The

contracts are structured into four parts. The first part is the functional part

that describes the capabilities provided by the component. The second

part is the management part, which describes the management

requirements needed to operate the functional capabilities. Next, is the

non-functional part that defines aspects needed to provide proper

operation of the capabilities (e.g. costs, security etc). The last part of the

contract structure is the model part that contains various types of Unified

Modelling Language (UML) models which describe the functional and non-

functional aspects of the contract. NGOSS comprises a number of

technological elements as shown in Figure 2.25. Among them, SID and

eTOM are the most influential one.

66

Figure 2.25: overview of an NGOSS Framework

2.4.3.2 The Enhanced Telecommunication Operation Map (eTOM)

eTOM is a reference framework that categorizes the business processes

that a service provider will use. More specifically, it is a Business Process

Model (BPM) that attempts to map out the high-level telecom business

processes. This framework is presented as a hierarchical (top-down)

approach to modelling business processes. The business processes are

organized as multi-level matrix with horizontal (functional) and vertical (flat-

through) process groupings. Figure 2.26 illustrates this matrix with the

horizontal and vertical process areas. At the top level (Level 0 Processes),

eTOM identifies three vertical processes: (i) Strategy, Infrastructure and

Product, (ii) Operations, and (iii) Enterprise Management. Furthermore, in

this framework four horizontal process areas are identified: (i) Marketing,

Product and Customer Processes; (ii) Service Processes involved in

developing and managing services; (iii) Resource Processes for managing

67

network and IT resources; and (iv) Supplier/Partner Processes for

managing the interaction with the suppliers and partners.

Figure 2.26: eTOM business process (level 0)

eTOM further divides the processes in each of these areas as shown in

figure 2.27. The Strategy, Infrastructure and Product Process is separated

into vertical processes such as Strategy and Commit, Infrastructure

Lifecycle Management and Product Lifecycle Management. These vertical

processes are further divided into horizontal processes that are related to

Marketing and offer Management, Service Development and

Management, Resource Development and Management, and Supply

Chain Development and Management.

Most of the TMF work is focused on the Operations Processes. Operations

include processes that support customers, network operations, and

management. The Operations Processes are divided into three vertical

processes: Fulfilment, Assurance and Billing. Fulfilment is responsible for

68

delivering products and services to the customer. This includes service

configuration and activation, order handling and resource provisioning.

Assurance consists of proactive and reactive maintenance activities,

service monitoring, resource status, performance monitoring and

troubleshooting. It includes activities in order to proactively detect possible

failures, and to collect performance data in order to identify and resolve

potential problems. Billing processes are responsible for collecting usage

data records (accounting), various rating functions and billing operations.

This includes production of timely and accurate bills, providing pre-bill use

information and billing to customers, processing their payments and

performing payment collections.

The Enterprise Management level is composed by processes related to

Strategic and Enterprise Planning, Enterprise Risk Management,

Enterprise Effectiveness Management, Knowledge and Research

Management, Financial and Asset Management, Stakeholder and External

Relations Management and Human Resource Management.

69

Figure 2.27: eTOM business process framework

The eTOM framework provides many benefits to the service providers.

One major advantage is that it can provide better integrated business

interactions between service provider and their customers, as well as

other service providers and network operators. eTOM is used as a guiding

reference for the service providers in designing and dividing business

processes and does not intend to be prescriptive as how a service

provider is organized or how tasks are carried out.

2.4.3.3 Shared Information Data (SID) Model

The SID model is the NGOSS information model that represents business

concepts as well as their characteristics and relationships. Figure 2.28

illustrates these relationships. The description of this concept is described

in an implementation independent manner. SID defines semantics and

behaviour of the managed entities as well as the interactions among them.

70

Furthermore, it provides a standard representation by using standard

types that describe domain information (e.g. customers, network service,

orders and configuration definitions) in an NGOSS system. SID and eTOM

collaborate to illustrate how the business process works to contribute to

the enterprises as a commonly accepted standard.

Figure 2.28: SID business entity framework [M.3190]

The SID acts as a repository for all the business and technical information

used by a Telecom service provider. Examples might include sales and

marketing information, contractual information involving SLAs and their

performance histories, customer contract details, customer billing data and

payments details, and network and computer equipment inventories

[TMF]. The SID business model is not intended to act as a centralized

repository. Instead, it is a distributed entity, with component portions

71

residing in a wide range of repositories, which could be spread all over a

wide geographic area. Many of these repositories could include industry

standardized databases and legacy applications. These repositories can

be sourced from different suppliers and use different data access

methods. In order to deal with the compatibility issue, the SID model

ensures that all of this information is made available to other applications

in a consistent manner, irrespective where or how the original data is

stored [EURO06].

2.4.3.4 TMF’s Architecture Contribution and Influence

TMF is well accepted by the Telecom industry as a starting point for the

development of management systems. eTOM reflects the importance of

Internet-style service delivery and Business-to-Business co-operation. The

NGOSS provides designs and models that are implementation technology

neutral. These models use UML approach for the implementation. SID

offers the information language which can be used within the system level

views of the NGOSS as well as within the eTOM processes. eTOM

especially has influenced the development of telecommunication

applications in the area of Fulfilment, Assurance and Billing. However, due

to the level of abstraction of the eTOM processes is very high, further

decomposition of those processes create very complex process

descriptions. As a result, commercial design and implementation

restrictions could be applied. eTOM provides a starting point for

management development and does not provide a set of processes ready

for implementation. Another limitation of the eTOM framework is that it

72

does not provide a methodology for how to develop and further refine the

process models. Finally, the TMF models are difficult to use within

heterogeneous environments; for example, environments where other

standards are not conformed to TMF standards.

2.5 Conclusion

The management plane is one of the most vital parts of the

telecommunication infrastructure as it provides the necessary functions to

monitor control and configure different services. This chapter identified

the business drivers for the telecommunication management community.

Furthermore, this chapter presented an analysis of the standardization

bodies which define key management functionalities and architectures that

have influenced the design of the telecommunication management

systems. More specifically, it has examined the TMN, TINA, CMIP, TMN’s

NGN Management, TM Forum’s NGOSS, and IP-based network

management protocols: SNMP and WBEM. All of them play important role

throughout the spectrum of the management plane. In addition, this

chapter pinpointed those architecture’s contributions and influences in the

design of management systems. As telecommunication management is

being shifted towards software engineering to integrate distributed real-

time functions such as authentication, bandwidth management, the

software architecture and technologies in the management plane have

great influence in defining the management architecture. These will be

studied in the next chapter.

73

Chapter 3 : NGN MANAGEMENT PLANE

TECHNOLOGY ANALYSIS

3.1 Introduction

The emerging need for converged services and the rapid expansion of the

multimedia and digital traffic are driving the need for networks that are

packet-based and able to provide all kind of services in any place, at any

time, and on any device. NGNs will consist of heterogeneous networks

having high level distribution and complexity. As a result, the management

plane needs to be able to deal with this complexity and to successfully

manage the network operation as well as the digital data services. The

management plane is involved not only with the operations of facilities and

services, and business relationships with customers, partners and

suppliers but also captures the behind-the-scenes operations that are

required to enable services to be delivered.

The NGN management plane handles both OSS and BSS functions. The

OSS provides a set of processes that a network operator requires for

monitoring, controlling and analyzing the network. Moreover, the OSS

includes processes that are required to manage and control faults, and

perform functions that enable interactions with customers. Operations

Support includes the term network management which means to control

and manage the network elements.

BSS provides processes that a service provider requires to conduct

relationships with external stakeholders including customers, partners and

74

suppliers with SLA that is a part of a service contract where the level of

service is formally defined. The boundary between Operations Support

and Business Support is indistinct as shown in figure 3.1. Business

Support functions are the customer-oriented subset of Operations

Support. Business Support processes takes an order from a customer for

a new service and then this order must flow into the Operations Support

processes in order to configure the resources necessary to deliver the

service [EURO04]. In other words, the management plane of NGN has to

manage all network equipments as well as customer services.

Figure 3.1: The Management plane: Operations Support and Business Support

While Chapter 2 examined the evolution of telecommunication

management frameworks, the current chapter is focused on distributed

technologies that have been adopted by the telecom operators and

75

network/service providers in order to provide integration solutions for the

telecommunication management architecture. More specifically, this

chapter examines the current technologies that are deployed in the

transformation of traditional management networks to all IP-based NGNs.

First it discusses the limitations of these distributed technologies that will

not fully meet NGN’s requirements. Second, it introduces the concept of

SOA with the main focus on the features that allow telecommunication

networks to ‘open up’ for collaboration. Third, it illustrates the change of

architectural styles of telecom industries towards the adoption of SOA that

supports business agility and adaptability. Then, this chapter examines the

technologies that will enable the SOA design and development. The

chapter concludes by proposing a design of SOA-based Network

Management architecture for managing NGN.

3.2 The NGN Management Architecture

3.2.1 The Evolving Management Architectures

Network management has evolved from a simple manager-agent model to

complex OSS and BSS systems. The objectives and nature of

management systems have changed during this evolution. Figure 3.2

illustrates the four stages in the evolution of the management plane,

OSS/BSS [IEC02].

76

Figure 3.2: Stages of OSS/BSS evolution

3.2.1.1 First Stage: The Manager-Agent Approach

At the first stage of the OSS/BSS evolution, the OSI and IETF network

management models utilize a simple manager-agent model, together with

protocol-based communication between manager and managing entity

(agent). The SNMP [STAL98] is certainly the most widespread use of

network management solution that is used by the most of the industry

since 1990 and is the first stage of the OSS/BSS evolution. The manager

manipulates the management information through the MIB which exists in

the network entity. The manager-agent model has a tightly coupled

architecture where the manager is dependent on the agents as explained

in Chapter 2. The disadvantages are as follows [ZHAN06], [KREG05]:

• Due to the lack of cooperation between NMSs it is hard to implement

advanced management functions.

• Multiple management interfaces bring heavy burden and apply more

complexity to different network management systems.

• The integration of the NMSs that fulfil the constantly evolving business

requirements is difficult to implement.

77

3.2.1.2 Second Stage: The OSS/BSS Point-to-Point Architecture

At the second stage, operators are required to manage sub-systems within

their networks such as the SDH transmission systems, a set of TDM

switches or a SS7 network. The management systems are focused on

elements and how they function as a system. For example, the SDH

standards developed an architecture and information models that can

represent end-to-end connections and their components [G.774.05]. With

a network-wide management view, the services offered on the network

require management. Hence, managing systems require extra layers.

Different levels of OSS are introduced in order to provide extra

functionalities into the management domain. This implementation added

more complexity into the management architecture. Due to the fact that

OSSs were tight-coupled with each other any change to the network

architecture could result in configuration problems. This architecture

follows a point-to-point integration model. Point-to-point integration uses

proprietary messages and custom APIs in order to connect software

components and the operational policies are embedded in the application.

This architectural style does not provide flexibility and scalability that is

required in large scale distributed environments such as

telecommunications and often lacks of agility which results in an

expensive implementation [BEHA10].

78

3.2.1.3 Third Stage: A Distributed Approach with The Enterprise Bus

Solution

The OSS/BSS architecture adopted today by most operators is the data

bus OSS/BSS, which is the third stage of the management evolution. This

architecture differs from the previous in the sense that it includes a

middleware between the layers of the OSS levels and between the OSS

and BSS. By adopting middleware technology such as the Distributed

Object Technology (DOT) including CORBA, DCOM, RMI, the

communication between OSS layer and BSS as well as among OSS is

provided through messages. Appendix B provides a comprehensive

description and comparisons on these technologies.

The middleware concept involves the passing of data between

applications using a communication channel that carries self-contained

units of information. Thus, the architecture becomes more loosely-coupled

and support integrated management capabilities [EMME00]. The

functionality is modular and higher level processes orchestrate its use.

The system has become large and inherently distributed and proper

distribution exists. This implementation usually uses workflow engines in

order to orchestrate the different components and make them work as one

large scale application. The limitation of this approach is that this

architecture does not provide interoperability between heterogeneous

platforms. Large scale architectures that accommodate different systems

usually require different platforms. In order to integrate different platforms

adaptation is required, which makes the architecture more complex and

79

less loosely-coupled. The functionality of this architecture cannot be

reused to a high degree due to the adaptations.

3.2.1.4 Fourth Stage: A Distributed Approach with SOA and ESB

In the previous architectures that are based on DOT, every OSS

component follows a different design pattern that requires integration and

mapping of functionality between components. The time to integrate any

solution increases exponentially with the number of systems because

each component’s interfaces have to be considered separately and not as

a part of a pre-integrated framework.

This thesis proposes the adoption of a service-oriented approach based

on the SOA philosophy, where services are independent resources and

their implementation details are hidden behind the service interface, as the

fourth evolution stage and using the Enterprise Service Bus (ESB) as the

enabling middleware technology for implementing SOA.

Table 3-1 presents the differences between the DOT approach and the

service oriented approach.

Table 3-1: Differences between Distributed Architectures and Service oriented Architectures

DOT-based Approach SOA-based Approach

Function Oriented Business Process Oriented
Designed to Last Designed to Change
Cost Centered Business Centered
Application Block Service Orientations
Tight Coupling Loose Coupling
Homogeneous Technology Heterogeneous Technology
Object Oriented Message Oriented

The architecture in this stage of the management evolution consists of well

defined loosely-coupled services that use standardized interfaces in order

80

to provide flexibility and scalability. Loosely-coupled services allow the

architecture to achieve faster integration cycle and by making use of

standardized interfaces, the management architecture can be more

scalable due to the “plug-in” connection approach [ERL05]. Services are

connected to the Enterprise Service Bus in a loosely coupled fashion

[CHAP04]. This architecture is more agile and can provide more

automation functions.

In Table 3-2 the comparison of the tightly coupled systems with loosely

coupled systems is shown.

Table 3-2: Tight coupling versus Loose coupling

 Tight coupling Loose coupling
Physical connections Point-to-point Via a mediator
Communication style Synchronous Asynchronous
Data model Common complex types Simple common types only
Interaction pattern Navigate through complex

object trees
Data-centric, self contained
messages

Control of process
logic

Central control Distributed control

Binding Statically Dynamically
Platform Strong platform

dependencies
Platform independent

3.3 SOA in Telecommunications Network

Management

3.3.1 An Overview of Telecommunication Network

The efforts to realize the idea of a service-based Telecommunication

network can be dated back as early as 1980’s with the standardization of

Intelligent Networks (IN) [SIDH00]. IN is an architectural approach that

81

custom service logic can be created by service provider for enhanced

features on calls in the PSTN networks. IN development had made the

telecom network a programmable environment to deliver new value-added

services to generate revenue. IN introduced a set of functional entities

consisting of distributed functions that are required to interact during call

originations and call terminations in the provision of IN call related

services. These functions decouple the service development from the

network infrastructure. From that onwards, the IN infrastructure has

evolved to support some new features and requirements of the evolving

networks. One example of this new feature introduced in the

Telecommunication networks is the use of CAMEL technology that has

been used in the GSM networks to enable services such as roaming and

international pre-paid calls. The CAMEL technology is based on the IN

[ETSI]. The IN has defined an overlay service architecture on top of a

physical network and extract the service intelligence from the legacy

network switches into dedicated central control points.

However, IN is not able to fulfil some of the requirements that new

converged networks impose such as shorter time to market new services

and network independent services. IN and CAMEL services have become

popular over the last two decades, but they did not develop into the open

market services originally envisioned. The IN program-base was too

limited, since it was too program-specific and did not follow mainstream

programming paradigms (such as C++ and Java). Furthermore, the

telecom world was still a closed and monopolistic environment with no

major competition. Nevertheless, global deregulation and the acceptance

82

of mobile communication and internet have forced the market to become a

competitive environment, leading to the need for more innovative

architectural paradigms and frameworks for service platforms. RPC and

functional programming enabled the IN vision to move towards to object

orientation. Programming languages such as C++ and Java enabled the

creation of middleware concepts that allowed the implementation of

distributed and scalable service delivery platforms and provided

abstraction from the details of the underlying network signalling and

transport protocols [VENI00].

Initiatives such as the Open Services Architecture (OSA)/Parlay, Open

Mobile Alliance (OMA) or Java APIs for Integrated Networks (JAIN) aimed

to make telecom service implementations easier than with traditional IN.

These architectures were based on object-oriented and distributed

middleware technologies such as CORBA and RMI which in combination

with C++ and Java provided the basis for flexible service implementations.

They achieved flexibility by abstracting from the signaling protocol details

of the underlying telecom networks, such as ISDN User Protocol or

Session Initiation Protocol (SIP). These protocols with specific APIs

featured telecom-related capabilities such as call control, messaging,

conferencing, location, and charging [MAGE03].

JAIN [ORACLE] defines a component model for structuring application

logic of communications applications as a collection of reusable object-

oriented components. These components form a ‘pool’ of reusable

functions that is composed of other higher-level components. The higher-

level components are able to create new services that are richer in

83

functional capabilities and need shorter time to market. The JAIN

specification also defines the contract between these components and the

container that will host these components at runtime. Furthermore, JAIN

execution environment provides support for asynchronous applications

supported by event models. Application components receive events from

event channels that established at runtime. Network resource adapters

create representations of calls and pass events generated by the calls to

the JAIN execution environment. Application components are in turn

invoked by the JAIN execution environment to process these events in a

transactional context [JCP].

OSA/Parlay is a joint effort between 3GPP, ETSI and Parlay Group

[OSA/PARLAY]. Parlay is an open API for application access to telecom

network resources. This technology integrates telecom network

capabilities with IT applications via secure, measured and billable

interfaces. The Parlay APIs are network independent, and applications

can be hosted within the telecom network operator’s environment.

Although Parlay and JAIN were promising frameworks, market acceptance

was slow, since most network operators did not ‘open up’ their networks to

third parties. Moreover, these frameworks produced complex APIs for non

telecom experts, and object-orientation was not fully accepted by the

telecom engineers [MAGE07], [KNUT05].

The Parlay Group in 2000 developed a simplified version of the

OSA/Parlay APIs called Parlay X [PARLAY4]. Parlay X is based on the

emergence of Web Services technology centred on XML. The Parlay X

APIs can be used in conjunction with the OSA/Parlay APIs via gateways

84

or can be used as an independent API. Parlay recognized that IT was

creating its own open services market, resulting development of many

innovative services due to the use of mainstream internet programming

technologies such as Web Services that form the basis of Service-

orientation. Thus, the concept behind Parlay X emerged from the use of

the internet programming paradigms that they were successfully creating

new market shares. Network operators are providing Web Services to let

customers make and receive telephone calls, send and receive instant

messages, multimedia, charge specific transactions onto telecom bill, etc.

Within the mobile domain, OMA is a standardization body that develops

open standards for the mobile phone industry [OMA]. OMA is not focusing

on delivering platform implementations, but it provides specifications of

service enabling functionalities such as instant messaging, location,

presence information, transactions etc. It is left to vendors to implement

the platforms and functionalities that OMA describes. OMA provides

specifications that are also based on the Web Service technologies

[OMA]. Recently OMA focused on initiating actions for standardizing IP

Multimedia Subsystems applications. Inspired by the Parlay Group, OMA

developed the OMA Service Environment, which allows the creation of

applications that are aligned to the SOA principles.

Recently, OASIS Telecom [OASIS08b] was created in order to bring the

full advantages of SOA to Telecommunication industry. The OASIS

consortium drives the development and adoption of e-business and Web

Service standards boosting the convergence of Telecommunications

networks and SOA.

85

Today, with the Internet’s success at providing multimedia communication

services such as e-mail, VoIP, instant messaging and videoconferencing,

the telecom industry is pressurised to implement an open service market

based on an open set of enabling services and service components. Web

2.0 and mashup applications are the latest success of internet’s service

platforms. Web 2.0 and mashup concepts are based on the user-centric

platforms [CAET07]. User-centricity refers to the approach that is built

around the needs and requirements of the end-user. User-centric

platforms extend this approach to allow end users to create their own

User-Generated Contents [OECD07]. In other words, Web 2.0 and

mashup innovative idea is built around the concept that a client can

become a service provider.

Figure 3.3 illustrates the approaches of SOA within the telecommunication

industry. This figure shows how the telecom industry evolved from

Intelligent Networks to Service-based frameworks

86

Figure 3.3: Intelligent Networks towards SOA

3.3.2 IP Multimedia Subsystem (IMS) and the Service

Delivery Platform (SDP)

Combining Intelligent Network (IN) concepts and exploiting Internet

Protocols for session control has led to definition of the IMS architecture.

IMS architecture introduced by 3GPP, defines a service provision

architecture that can be seen as the Service Delivery Platform for NGN

[CHAE05]. IMS is now considered as the global standard for a unified

service control platform for converging fixed, mobile and cable IP

networks. IMS provides access to IP-based services independent of the

underlying connectivity networks. Thus, it has been incorporated by ITU-T

into its NGN architecture. IMS is a collection of functions linked by

standardized interfaces that provides an abstraction layer above the

underlying transport network technologies. It specifies that user equipment

87

could access IMS if the network access is provided via suitable IP-based

network.

The IMS does not focus on standardizing implementation of services. It

acts as a platform for converging application servers as long as they

provide standardized SIP control interface. This means that existing

telecom service platforms based on IN architecture such as CAMEL

platform, OSA/Parlay gateways, and SIP servers can be reused and

potentially combined as long as they provide an IMS/SIP adapter

interface. IMS differs from other standard VoIP architectures in the context

that it can provide secure combinational services [MAGE06]. Service

operators acquiring functionality from IMS such as presence information,

group management, session control and messaging can develop other

services such as chat rooms, videoconferencing and other services.

Service broker has emerged in the IMS as a component that links together

different service components from different server types in a flexible

manner at service creation and execution time. The service broker

mechanisms have not been standardized by the IMS and today are

considered to be a part of a Service Delivery Platform infrastructure on top

of an IMS. IMS is just a specific network abstraction for IP-based networks

below the Service Delivery Platform. Figure 3.4 illustrates the platform of

convergence within the NGN environment.

88

Figure 3.4: IP Multimedia Subsystem in NGN infrastructure

As seen in figure 3.4, different networks form the basis of the NGN

infrastructure. NGN converges and shares the network resources of the

transport networks facilitating interoperability between networks through

the IMS. Within IMS, the transport layer could split into IP-Connectivity

Access Networks (IP-CAN) and Core Networks (CN). An IP-CAN is a

collection of network entities and interfaces that provides the underlying IP

transport connectivity between user equipments and IMS entities, e.g.

GPRS. A CN is a collection of entities providing IP transport connectivity

between an IP-CAN and another CN, between two IP-CANs, or between

two other CNs. In addition, CN provides connectivity to service layer

entities, such as IMS. Over the NGN, a new application-enabling layer

exists (service enablers), which is supported by the IMS, SOA and

standardized service enabling frameworks. This layer is responsible for

89

abstracting the different access networks and decoupling the business and

service logic from the underlying network implementation. In this context,

several tools and development environments have been created to allow

fast and cost effective service creation and delivery. These development

environments form the Service Delivery Platform (SDP).

There is no a single agreed definition of the term SDP, it usually refers to a

system architecture that enables the efficient creation, management,

execution and operation of one or more classes of services [HP07]. SDP

has emerged as a consequence of telecom network evolution towards to

IP-based solution, aiming at substituting network specific ‘stove-pipes’ with

common and horizontal service architecture. The benefit of having

horizontal (layered) service architecture instead of vertical (stove-pipe)

architecture is that the services need less time to market, are less

expensive and services are independent of the transport technologies. As

networks evolved from circuit-centric to packet-based networks, SDP

functionality has been extended beyond communication services, to

include content services, streaming services, and broadcasting services.

The Moriana Group [MORI08] describes the features of an SDP as a

complete ecosystem for the rapid deployment, provisioning, execution,

management and billing of value added services. SDP supports the

delivery of voice and data services and delivers the content in a way that

is both network and device independent. Moreover, SDP aggregates

different network capabilities and services as well as different sources of

content and allow application developers to access them in a uniform and

standardized way.

90

There are a number of standardization consortia working on the SDP

framework including Parlay, OMA, and TMF. SOA is a fundamental

concept in the design and development of the SDP in terms of building

products and delivering complex customized SDP solutions. SOA

guarantees flexibility for making SDP subsystems to interwork. Moreover,

SDP uses SOA to create a common set of services and a common

conception of business process and business object life cycles, for

example, customers, service, products, and resources. SOA principles are

also used for integrating external systems with the SDP. Consequently,

Web Services, orchestration and service bus concepts have become

technical ingredients of complex SDP solutions. SDPs that use SOA

compliant subsystems can evolve gradually, therefore maximizing the

possibility of Return of Investment (ROI) [CARL08].

There are several initiatives that have tried to provide the SOA into the

telecom industry as seen in this section. The use of a set of ubiquitous and

open standard technologies gives SOA the capabilities to be able to

function over heterogeneous networks, hardware and software

technologies. SOA enables faster and cheaper service creation to the

telecommunication domain. Web Service technology allows network

resources to be exposed as independent building blocks that can be

combined with external resources provided by third parties. Such that

Telco can provide all IP-based services based on SDP framework in which

service can be activated and deactivated dynamically in the service

stratum of the Next Generation Network. On the other hand, devices will

be added, removed and change configuration in the Transport stratum at

91

the same time. Therefore we do need a SOA framework in next generation

network management too.

3.3.3 Managing NGN with SOA

3.3.3.1 SOA Principles

SOA has gained popularity due to the wide use of Web Services [ERL05].

Web Service technology enables service-orientation that makes use of

autonomous, self-described services which are loosely-coupled by using

technologies such as Simple Object Access Protocol (SOAP) [W3C07a]

used as a communication protocol, Web Service Description Language

(WSDL) [W3C01] used for service description and Universal Description,

Discovery and Integration (UDDI) [OASIS08] used as a service registry.

Beyond the basic framework of Web Services, SOA defines the service

composition which is the next step in developing and extending Web

Services. Through service composition, it is possible to build new services

composed by other simple services. Two main models are performing the

Web Service composition. The first model is the orchestration model and

the second is the choreography model, [ERL10], [PEL03]. For more details

about Web Services, readers can refer to Appendix C.

A middleware called Enterprise Service Bus provides technological

solutions to intercept messages between services. ESB incorporates the

concept of mediation and allows the interoperability between clients and

data sources in Information Systems. An ESB is actually a middleware that

provides integration and service composition by building services upon

industrial standards such as XML, SOAP, WSDL, WS-Addressing, and

92

WS-Security [W3C06b], [W3C07a], [W3C01]. [W3C06a], [OASIS07a].

Moreover, ESB provides a communication channel that is mostly

asynchronous by applying Message-Oriented Middleware and

Publish/Subscribe methods.

The technology that enables service-oriented implementations is the Web

Services technology. Web Services are interfaces describing a collection

of operations that can access the network through standardized XML

messages. Web Services use a standard, formal XML notion (its service

description) which covers all the details needed to interact with the

service, including transport protocols, message formats and location.

Services can be independent from the software or hardware platform on

which they are implemented and they are independent from the

programming language in which they are written. This happens due to the

fact that the interface hides the implementation details of the service.

Hiding the implementation details allow Web Services to be loosely

coupled, with cross-technology implementations. Web Services perform a

specific task or a set of tasks/operations. They can be used independently

or with other Web Services to complete a business transaction or a

complex aggregation [KREG01]. Web Services provide a way of

communication among applications running on different operating

systems, written in different programming languages and using different

technologies whilst using the internet as their transport. Appendix D

provides a detailed examination of the ESB as well as comparisons with

DOT technologies.

93

There are no official sets of service-orientation principles, but there are

common principles mostly related to service-orientation [ERL05]. These

common principles are briefly described as follows:

• Services are autonomous: The logic governed by a service

resides within an explicit boundary. The service has control within

this boundary, and is not dependent on other services for it to

execute its governance.

• Services share a formal contract: In order for services to interact,

they need not share anything but a collection of published metadata

that describes each service and defines the terms of information

exchange.

• Services are loosely coupled: Dependencies between the

underlying logic of a service and its consumers are limited to

conformance of the service contract.

• Services abstract underlying logic: Underlying logic, beyond

what is expressed in the service contract metadata, is invisible to

the outside world.

• Services are composable: Services may compose others,

allowing logic to be represented at different levels of granularity.

This promotes reusability and the creation of service abstraction

layers.

• Services are reusable: Regardless of whether immediate reuse

opportunities exist, services are designed to support potential

reuse.

94

• Services are stateless: Services should be designed to maximize

statelessness even if that means deferring state management

elsewhere.

• Services are discoverable: Services should allow their

descriptions to be discovered and understood by humans and

service requestors that may be able to make use of their logic.

3.3.3.2 The SOA-based NGN Network Management Architecture

NGN management has to deal with multiple vendors, multiple applications,

multiple physical devices from data and voice networks, multiple

databases, and multiple service layers (infrastructure plane, control plane,

service plane). Any management solution for NGN must be architected in

a way that it can scale to manage the current and future NGNs. This

scalability challenge is a requirement for flexibility so that the solution can

be rapidly adapted to support new services and technologies in the future

without the need for long term and complex upgrades. By adopting the

SOA philosophy, the vital management operations can be applied as

services (i.e. retrieving the status of a device, controlling it, changing its

configuration settings and provisioning). Services are software

components with formally defined, message-based, request-response

interfaces and the logic behind those interfaces is hidden from the users.

Figure 3.5 shows an example of using the SOA to converge the

heterogeneity of the different entities in a management system. All the

FCAPS functionalities as well as the different OSSs could be integrated

and operate as one OSS providing an agile management control.

95

Figure 3.5: Network and Service management implementation

With reference to eTOM framework and TMN framework, a network

management framework based on SOA to enable service operations and

business operations is required. Enabling service operations would require

the network management framework to incorporate FCAPS functions. A

well-run service operations would in turn enable fulfilment, assurance and

billing (FAB) functions in the business operations as defined by eTOM.

The eTOM FAB functions are summarised below:

• Fulfilment: operations for providing customers with their requested

products and services in a timely and correct manner. It translates

the customer's business or personal need into a solution, which can

be delivered using the specific products in the enterprise's portfolio.

This process informs the customers of the status of their purchase

96

order, ensures completion on time, as well as ensuring a delighted

customer.

• Assurance: includes all activities for the execution of proactive and

reactive maintenance activities to ensure that services provided to

customers are continuously available and performing to SLA or

QoS performance levels. It performs continuous resource status

and performance monitoring to proactively detect possible failures.

It collects performance data and analyses them to identify potential

problems and resolve them without impact to the customer. This

process manages the SLAs and reports service performance to the

customer. It receives trouble reports from the customer, informs the

customer of the trouble status, and ensures restoration and repair,

as well as ensuring a delighted customer.

• Billing: involves everything necessary for the collection of

appropriate usage records, production of timely and accurate bills,

for providing prebill use information and billing to customers, for

processing their payments, and performing payment collections. In

addition, it handles customer inquiries about bills, provides billing

inquiry status and is responsible for resolving billing problems to the

customer's satisfaction in a timely manner. This process grouping

also supports prepayment for services.

The proposed framework consists of two levels of management operations

have been identified in the network management framework: the local

management level and the global management level. Figure 3.6 illustrates

the functions identified in the proposed model.

97

Figure 3.6: Proposed management model’s functional architecture

3.3.3.3 Global and Local Network Management Functions

At local management level, individual NMSs that perform management

operations within the Network provider’s boundaries and are referred to as

Local Network Management Systems (LNMSs). Within the NGN context,

network providers operate in the transport stratum. A network provider

needs to ensure that its network meets the requirements in the QoS SLAs

specified by the service providers. As a result, in the proposed framework,

the management functions that the network provider needs to perform are

confined in the Element Management Layer and Network Management

Layer of the TMN model.

98

At the global management level, management operations that are

performed by service providers at the service stratum of the NGN

architecture. Service providers use the NGN network infrastructure

operated by network provides in order to provide services to their users.

Hence, service providers will require to have a global view (a combination

of heterogeneous management information) provided by the network

operators. As such, the management functions at the global management

level are performed by a Global Network Management System (GNMS)

located in the Service Management Layer and Business Management

Layer of the TMN model.

More specifically, LNMSs perform FCAPS management functions

specified by the TMN at the local management level and the GNMS

performs global management level functions include FAB operational and

management functions defined by eTOM.

The proposed NGN network management framework focuses on bridging

the heterogeneous management information that exists between LNMSs

at the local management level and GNMSs at the global management

level. Thus, functions that handle the heterogeneity in the management

information need to be considered. For that reason, the framework

introduces a middleware layer referred to as Network Management

Middleware Layer that bridges the two management levels.

The middleware layer will primarily perform a dedicated function defined

by eTOM resource data collection and distribution [TMF]. This function is

responsible for performing the following operations:

• Collect management information and data

99

• Process management information and data

• Distribute management information and data

• Audit data collection and distribution

Figure 3.7 shows the architecture of the proposed Network Management

Platform that uses the SOA to converge the heterogeneity of the different

entities in a management system.

All the LNMSs as well as the GNMS collaborate as one OSS/BSS

providing a fully integrated customer-oriented service control.

Figure 3.7: The architecture of the Proposed Network Management Platform

3.3.3.4 Network Management Architectural Layers

As illustrated in figure 3.8, the NGN Infrastructure Layer contains the

managed devices or resources that form the NGN infrastructure such as

Softswitch, Media Gateways, IP Multimedia Subsystems, etc. These

devices use different management protocols for carrying out management

100

information. The resources containing agents are processing entities that

receive management requests and send management responses to the

Network Management Layer.

The next layer in the NGN management infrastructure is the Local Network

Management Layer. This layer contains LNMSs that perform FCAPS

functions. It makes use of NMSs which are controlling entities that collect

management information from the agents residing in the managed

resources. Figure 3.8, shows an example in which different management

applications are used for managing different resources with various

network management protocols as discussed in the previous Chapter 2.

The network devices, routers, application systems, etc. are part of the

resources to be managed.

Figure 3.8: Local Management Level, network management protocols

The management information collected from different managed resources

is stored in LNMSs databases. The management information needs to be

distributed to other external management systems such as trouble

101

ticketing system, at the global network management level and other OSSs,

etc. For this purpose, an XML gateway designed in order to extract

management information from the database and send it to the Network

Management Middleware Layer. The XML gateway is defined for the

purpose of mapping the management information into XML-based

messages. After mapping, the gateway transmits the XML messages via

SOAP protocol to the Network Management Middleware Layer. The XML

gateway is a software component that can reside in LNMS or can be

allocated at the Network Management Middleware Layer to cater for

legacy network management systems that do not have the XML gateway

installed.

The Network Management Middleware Layer is designed with open

standards and developed by using open source software. Since the

commercial network management systems such as HP OpenView are

proprietary, it is expensive to run and hard to maintain. The benefits of

open standards were mentioned in chapter 2. In addition, open standards

ensure compatibility and choice. The main advantage of open source

software is that it is free but the disadvantage is to find support if the user

has any problem [GALL05].

The Network Management Middleware Layer consists of the Core NMS

Service Bus that utilizes the Resource data collection and distribution

function standardized by the eTOM. The Core NMS Service Bus performs

adaptation functions for translating different management messages into a

unified format. Moreover, this layer performs dynamic routing and dispatch

of management requests to multiple receivers at the global management

102

level such as GNMSs from different service providers. In addition, this

layer is also responsible for deriving information models to map different

types of data formats, using XML as the means of exchanging

management data between heterogeneous management systems. This

concept involves the passing of management data asynchronously among

heterogeneous management systems using a communication channel that

carries self-contained units of information. XML is used for this purpose as

a document exchange by exchanging structured data among management

systems. The management data received from the different network

elements on the infrastructure layer are mapped into XML-based

messages and transmitted over SOAP protocol through the XML-

gateway’s northbound interfaces. XML is suitable for coping with multiple

information models due to the fact that the management data encoded in

XML documents are self-describing. Using message-based

communication, the physical resources such as signalling gateways and

routers are abstractly decoupled from the higher level management

applications. As a result, senders (i.e. IMS, Signalling G/W etc.) and

receivers (i.e. trouble ticketing systems) are never aware of each other.

The middleware layer is responsible for getting the management

messages to their intended destination. The Core NMS Service Bus

manages the connection points among multiple management end points,

as well as the multiple channels of communication among the connection

points.

103

On top of the Network Management Middleware Layer reside the GNMSs

where high/peer managers communicate with the Network Management

Middleware Layer via northbound interfaces exchanging messages based

on XML format. This high level layer consists of multiple services that are

responsible for performing management functions and taking decisions

accordingly. For instance, trouble ticketing systems, which are

responsible for notifying the service operator of faults that have occurred

in the managed network. Furthermore, other management systems can be

connected in this layer such as BSS that are performing business

management functions such as customer care and customer billing

according to the management information received by the Network

Management Middleware layer.

3.4 Conclusion

Next Generation Networks will accommodate heterogeneous networks

with high level of distribution and complexity. Thus, it will issue new

challenges to the OSS architectures. The traditional OSS architectures will

no longer be able to support the complexity of the NGNs as a result, the

redesign of the management architecture is necessary.

This chapter examined the Distributed Object Technologies that have

been used by the telecom operators for integrating their networks. This

chapter concluded that these approaches are not capable of supporting

the Next Generation Network’s management plane. It further illustrated

that the focal point of the telecommunications networks is now shifting

from traditional architectures to SOA-based architectures. Moreover, in

104

this chapter, the SOA concept has been introduced as well as the Web

Service paradigm, in order to illustrate the benefits of that technology,

which is the enabler of the SOA philosophy. Architectures using the

Service-Orientation principles could deliver agility, scalability, reusability,

and flexibility in distributed heterogeneous environments such as NGN.

Finally, the proposed Network Management Platform that has been

designed based on the architectural principles has been presented in the

chapter.

105

Chapter 4 : Network Management Systems

4.1 Introduction

Networks and distributed processing systems are growing rapidly and

have become critical in today’s businesses. Network management will

help to ensure high network availability, secure communication, effectively

manage network devices, easy use of the network and related

technologies. Many network management architectures and models have

been proposed by various standard organizations and vendors [STAL99].

Some of them are widely implemented in the real world while others are

concepts at the development stage.

In this chapter, the design of a Local Network Management System based

on the SNMP framework with performance, fault and configuration

management functions is presented. This chapter focuses on two major

distinctive management components: an NMS and the agents in the

managed devices.

First, the chapter presents the design and the development of an LNMS

that consumes management information obtained from agents. The NMS

performs performance, fault and configuration management functions and

has been developed as a web service. Lastly the design of an XML-

gateway that converts stored management information into XML data

format in order to connect to the middleware that integrates

heterogeneous network management systems together, is presented.

106

4.2 Levels of Management Communication

In the Network Management Platform (NMP), there are two levels of

management communication: the Low Level and the High Level

Management Communication. The Low Level Management

Communication refers to the communication among Network Elements

and their associated LNMSs and the High Level Management

Communication involves the interactions between LNMSs and GNMSs at

the global management level. From the TMN architecture point of view,

the Low Level Management Communication involves management

interactions between the managed objects at the physical devices and the

FCAPS functions at the LNMSs by using management protocols such as

SNMP, CMIP etc. The High Level Management Communication involves

management interactions between the FCAPS functions and the FAB

functions at the GNMAs by using XML. The classification into the two

levels of management communication enables different protocols and

architectural patterns in the management architecture to perform

management functions in every layer of the NGN framework. Figure 4.1

illustrates the relationship between the levels of management

communication and the management layers of the TMN model. This

chapter focuses on the Low Level Management Communication between

NEs and NMSs.

107

Figure 4.1: Relationship between levels of management communication and the

management layers of the TMN model

4.3 Components of Network Management Systems

An NMS framework consists of the following components:

- Managed devices or NEs, each with an agent, which provides

remote access to management information.

- A manager (management system) that runs management

applications to monitor and control managed elements.

- A management protocol, SNMP, CMIP, etc. that is used to convey

management information between the management systems and

agents. Management information is a collection of managed objects

in MIB format.

Figure 4.2 illustrates the interaction between NMS and NEs (NE). Network

A and Network B are two different networks that are managed by different

network operators. NMS is the managing system that is responsible for

collecting management information from the NEs to perform the FCAPS

108

functions. The communication link provides the path for exchanging

information between the NMS and the NEs.

Figure 4.2: Network Management interactions

For the Telco network operator, NMS provides the appropriate tools for

them to manage their networks [AMIR95]. These tools are applications to

monitor the network, service provisioning systems, trouble ticketing,

network planning etc. Unlike the NE, a management system exists only for

network management. If a management system fails to function, the

network itself should not be affected. This is a fundamental requirement

for the operation of the NMS. However, without a management system,

network monitoring and maintenance will become much more difficult. If

an element in the network fails, the failure will go undetected and

consequently, the quality of the services (QoS) provided by the network

will be degraded. The communication among NMSs is performed via

proprietary APIs. These APIs are implemented by the NMS software

providers for external communication. Each NMS has its own API for

external communication but these APIs are usually providing limited or

109

restricted access to other applications (i.e. other NMSs). Furthermore, it

forces other applications to support the proprietary API in order to extract

management information.

Figure 4.3 depicts a typical NMS architecture that consists of three layers

[STAL99], [CLEM07].

Figure 4.3: NMS functional architecture

4.3.1 Network Access Protocols Layer

The Network Access Protocols Layer is concerned with transport

functions. It contains mechanisms for establishing socket connections with

the underlying network. For instance, this layer establishes SNMP, CMIP,

etc. connections when requested by the NMS. For example, when an

SNMP request is specified by the NMS, the Network Access Protocol layer

establishes a UDP connection at 161 port number.

110

4.3.2 Core Process Logic Layer

The Core Process Logic Layer, is responsible for performing core

management functions. It contains the necessary functions in order to

acquire management information from the network, process the

management information and finally store it to the management database

[CLEM07].

All the NMS’s logic is contained in this layer including the Manager Poller,

the Control Unit, and the Management Database, which are described

below:

• Management Database: The management database stores all the

necessary information that is concerned with the management

information retrieved by the agents as well as operational

information that is required by the NMS. Current NMSs use

relational databases (i.e. PostgerSQL) as an NMS database. A

Relational database support dynamic views; hence, changing the

data in a table will alter the data depicted by the view. It also hides

the complexity in the data and reduces the data storage

requirements. Moreover, it contains user access credentials,

authentication information, etc. to allow the database administrator

to implement authentication and authorisation mechanisms in order

to control access to the data in database tables. Thus, using

relational database will increase the performance of the NMS

compared to using standard databases with no inter-relationship

between different tables and they can meet all types of data needs

[DATE06]. The database access is performed via a Java Database

111

Connectivity (JDBC) API that provides methods for querying and

updating data in the database. JDBC uses common and standard

method calls to allow the NMS to use different databases for storing

the management information.

• Manager Poller: This includes a Management Protocol Handler and

a master MIB data store, described below:

o Management Process Handler: This provides mechanisms to

create management requests for the collection of

management information from agents residing in every

device of the network. It processes each management

protocol (SNMP, CMIP, TL1, etc.), encodes and decodes

messages received by the agents and creates requests by

making use of different primitives.

o MIB data store: contains a pool of Management Information

Bases (MIBs) related to the network’s information structures

and data attributes that the agents in the managed network

use to enable the NMS understand the information that it

retrieves from the agents.

• Control Unit: This performs functions related to the processing of

the management information through different functional

components in order to process the management information

including the following:

o Scheduler: The scheduler is a function that instructs the

Manager Poller to collect management information from

agents at specific time intervals.

112

o Data Analyser and Correlator: This functional entity provides

context to the data being collected. This function maps the

agent’s information to an understandable format. For

instance, the agent sends the status of a router (i.e. UP(1))

and after the data analysis function the status will be stored

in the database as “the router is working”.

o Performance processor: Collects and processes

performance statistics based on the information that is

retrieved from agents.

o Monitoring Logic and Notification Logic: Apply rules for

specifying parameters related to charts creation,

notifications/events creation and storage.

o Event Handler: Provides the communication channel

between the NMS and the agents. This function

encapsulates various parameters such as community strings,

protocol version, variables etc.

o Policy Logic: Provide domain specific assets of the NMS

such as different access levels and user customization

features. Furthermore, it provides automated management

and execution of both short-duration and long-duration

management tasks.

4.3.3 Network Management Applications Layer

This layer consists of front-end user applications that contain application

logic as well as GUIs in order to interact with the network administrator.

113

Most modern applications are presented on web pages so that they can

be accessed remotely [SUBR00]. These applications can vary from one

NMS to another depending on how complex and how complete a software

solution the network operator requires. These applications are tightly

coupled with the NMS’s Core Logic and cannot be modified, integrated or

used on other NMS’s Core Logic. The Network Management Applications

do not have direct interaction with the Core Logic of the NMS. All

interactions are performed through the NMS database as can be seen in

the figure below (figure 4.4). The User administrator application is the only

application that controls the Core Logic of the NMS. This application is

responsible for configuring the NMS, such as initializing the NMS,

specifying time intervals within which the agents should be invoked,

indicating specific parameters that the agent requires, etc.

Figure 4.4: NMS relationships

114

Commercial NMSs cannot be easily customized in order to meet the

network provider’s requirements and they are difficult to integrate with

other NMSs. The reason behind this problem is that NMSs are proprietary

products developed by NMS software vendors, which in most cases are

not tailored to meet individual network operations’ needs [YOON06]. Any

modifications to the network management infrastructure imply

modifications to the network management software by the software vendor.

This adds a substantial extra cost to the implementation and maintenance

of network management infrastructure. In comparison to commercial

NMSs, open-source NMS can be easily modified and customised to meet

the requirements of a network operator but the NMS applications are

usually not very comprehensive and complete as the commercial solutions

[MAUR01].

Most existing NMSs are monolithic OSS systems with legacy management

applications and are usually heterogeneous in nature operating in

isolation. The management information extracted from the network

infrastructure is stored in a management database and remains isolated

without being used by higher layers of the management framework, for

example, Service and Business Management Layers.

The emergence of the NGN will require the collaboration and the

convergence of those individual heterogeneous management systems to

create an agile management framework that can meet the business needs

of the different service and network providers.

115

4.4 Local Network Management System design in

an NGN Infrastructure

4.4.1 Network Management Requirements

ITU-T has specified requirements for managing the NGNs [M.3060]. This

thesis categorizes those requirements into two distinctive parts: the local

management requirements and the global management requirements.

Local management requirements are requirements that can be applied

within the boundaries of the network/service provider. Global management

requirements are specific to a global management framework that requires

management information exchange among different organizations.

The local requirements require that .the management infrastructure should

have the ability to [M.3060]:

• proactively monitor trends;

• manage customer network;

• integrate end-to-end services provisioning;

• deliver management information to the management information user

and to present it in a consistent and appropriate manner;

• automatically and dynamically allocate network resources;

• support service quality-based network operations;

• provide survivable networks in the event of impairment;

• ensure secure access to management information by authorized

management information users, including customer and end-user

information;

116

• support the availability of management services any place any time

to any authorized organization or individual (e.g., access to billing

records shall be available 24/7);

• support the collection of charging data for the network operator

regarding the utilization of resources in the network either for later

use by billing processes (offline charging) or for near-real time

interactions with rating applications (online charging).

The global requirements focus on the ability of the NGN management

infrastructure to operate as one integrated management framework

consisting of multiple management systems. These global requirements

cannot be met by using NMSs that operate in isolation. Instead

management systems need to interoperate. A proposed Network

Management Middleware Layer will handle the intercommunication among

different management systems that will allow the NGN management

architecture to meet the global requirements.

The global requirements require the NGN management system to

[M.3060]:

• provide the management capabilities that will enable organizations

offering NGN services to enable end-user service improvements

including customer self-service (e.g., provision of service, reporting

faults, online billing reports);

• provide management functionalities that are independent of company

organizations, which are subject to change, while maintaining the

concept of organizational boundaries;

• exchange management information across network boundaries;

117

• provide an abstracted view on resources (network, computing and

application) that hide complexity and multiplicity of technologies and

domains in the resource layer;

• provide consistent cross-technology management interfaces on NEs

(service and transport elements) allowing an integrated view of

resources and include available management technology

implementations, as appropriate;

• set business processes and management services that will enable

service providers to reduce the time-frame for the design, creation,

delivery, and operation of new services;

• manipulate, analyze and react to management information in a

consistent and appropriate manner;

• allow an enterprise and/or an individual to adopt multiple roles in

different value networks and also multiple roles within a specific

value network;

• support B2B processes between organizations providing NGN

services and capabilities.

4.4.2 Local Network Management System Design

The local requirements should be fulfilled by the NMSs of individual

underlying transport networks (e.g. WLAN, UMTS, WiMAX, etc.).

However, satisfying the local requirements alone will not enable inter-

communication among different management systems, as can be seen

from the NMS architecture shown in Figure 4.3. Such NMS architecture

118

represents a self-contained, standalone, isolated architecture where

communications with other NMS is virtually impossible.

As the ITU has emphasised the need for global collaboration among

service/network providers and the need for collaboration among different

management systems, the development of individual NMSs should take

into account the global requirements.

For an individual NMS, hereafter referred to as the local NMS (LNMS), to

become a part of a global network management architecture, its

management information should be exposed to other systems via

standardized interfaces that are technology neutral. Moreover, LNMSs

should be loosely coupled in order to be repurposed and reused without

being dependent on other management systems. To integrate different

LNMSs together and to be able to fulfil the NGN global management

requirements, there is a need to share and exchange data with a common

message format.

To realise this vision, an LNMS architecture for individual underlying

transport networks of the NGN based on the Web Service concept is

proposed. Web Service technology enables SOA, which can be applied in

order to solve the integration aspects of the management architecture.

Figure 4.5 illustrates a LNMS architecture that extends the architecture of

Figure 4.3 by building on top of the architecture a Web Service Layer that

provides XML-gateway functions in order to expose the management

information in a common format.

119

Figure 4.5: Local NMS Architecture

4.4.3 Core Process Logic Layer Development

The development of the Core Process Logic Layer is based on the SNMP

framework [BLUM99]. Such development exploits and extends open-

source software currently available. The major effort in developing the

Core Process Logic Layer is to expose the LNMS management

information, which can be used by other LNMSs and GNMS that reside on

higher layers of the management architecture.

The following figure (figure 4.6) depicts the developed Core Logic.

120

Figure 4.6: Core Logic functional architecture

4.4.3.1 Control Unit

The Control Unit is the core management component that provides event-

handling, event correlation, and event schedule and archive. It consists of

the following components:

a. The Event-Handler component listens for messages that the agents

in the NEs send. It is also responsible for sending management

requests to the appropriate agents, and the management

information that it receives is stored into a database.

b. The Event Correlator component is used to match an incoming

event to a specific notification or an action list and provides context

to the data being collected.

c. The Event Scheduler component is responsible for scheduling and

archiving events. Due to the large amount of information a relational

database management system is deployed for storage.

121

The Control Unit is developed by using the open-source OpenNMS

management tool [OPENNMS]. OpenNMS is a popular enterprise-grade

network management tool that performs a number of functions including

device discovery, service and performance monitoring and event

management [OPENNMS]. The following packages of OpenNMS’s back-

end event management are used:

• opennms-correlator: is used for as the Event Correlator and Event

Handler. Furthermore the performance functions are implemented

in this component.

• opennms-reporting: Is used for implementing the event schedule

and achieve functions.

For the management database, PostgreSQL has been used. PostgreSQL

is an open source relational database that is used for storing management

information captured by the LNMS. This relational database forms a

persistence tier in the LNMS architecture [POSTGRE].

4.4.3.2 Manager Poller

The Manager Poller is an SNMP enabled component that is based on the

concept of the SNMP session. A session is a communication channel

between the LNMS and the remote agents. A session encapsulates

various parameters, such as community strings, protocol version, and

packet encoding. Once a session has been established, the LNMS can

communicate with the remote agents by sending requests and waiting for

responses through the Event Handler component. The Manager Poller

processes the SNMP protocol. It encodes and decodes messages from

122

ASN.1 to usable internal formats. It creates requests by making

GetRequest-PDU and SetRequest-PDU. Furthermore, this component

processes the GetResponse-PDU, handles errors, receives and takes

actions from traps (trap-PDU) that have been sent from the remote agents.

Each network management application requires an object that implements

the interface for the Management Protocol Handler. Since SNMP is used

as the management protocol, the Management Protocol Handler is now

referred to the SNMP-handler for simplicity. The SNMP-handler interface

is responsible for processing received SNMP-PDU on behalf of the

network management application. If an error occurs with the session, the

handler is informed of the error. The Manager Poller interrogates its MIB to

obtain information about the proper set of managed objects that can be

monitored and controlled. The Poller must interface to the UDP layer

through the event-handling component in order to send and receive the

SNMP messages. The MIB of the LNMS contains a master list of the MIBs

from all of the agents in its community. If an LNMS is to control each

agent’s MIB variables, it must know those variables.

The development of the Manager Poller is based on the open-source API

SNMP4J [SNMP4J]. The Manager Poller uses the Event-Handler

component in order to open the SNMP ports. SNMP protocol occupies two

UDP network ports: the 161 port, which sends and gets SNMP messages

from the agents, and the 162 port, which only receives notifications from

the agents.

123

The processes and the functions performed by the Core Logic layer are

described in detail in Section 4.5.

4.4.4 Agent Development

4.4.4.1 SNMP Agent

The management information exchange pattern used for the Low Level

Management Communication is based on the manager-agent model of the

SNMP framework [HARR02]. As mentioned in chapter 2, SNMP faces

limitations such as scalability and efficiency that will not be able to meet

the demands of the NGNs. On the other hand, SNMP is already a well

established management protocol that most of the network and service

providers are using today for managing their infrastructure due to its

simplicity [MAUR01]. For instance, MPLS network switches, which are

used in NGN for creating virtual links between NEs, have defined MIB

structures and use SNMP as a management protocol [CISC07].

One reason that SNMP is used for the implementation is to minimize the

complexity of management functions performed by the agents [SUBR00].

This means that the agents can be simple and lightweight and as a result

agents with small footprint can be embedded in virtually any NE with low

processing power [STAL99].

SNMP4J API [SNMP4J] has been used for the development of the agent.

SNMP4J API is an open source API based on object-orientation used for

developing Java-based managers and agents. Java has the advantage of

platform independence with built in support for network sockets and

threading [MAUR01]. Another advantage to Java is that creating

124

multithreaded applications is very easy. SNMP4J API provides all PDU

types (supports all SNMP versions V1, V2 and V3), transport mapping with

UDP, synchronous and asynchronous communication (traps), row-based

efficient asynchronous table retrieval with GETBULK and multithreading

support. SNMP4J has a built-in thread pool model so that we can specify

the number of threads that respond to and process incoming request,

making SNMP applications highly efficient.

The SNMP4J Command Line Tool (CLT) has been used for sending

SNMP requests to the agent. Agents have been installed on a server and

Linksys WRT54G wireless router installed with open source firmware, DD-

WRT, a Linux-based open source firmware [DDWRT]. DD-WRT is

designed to replace the firmware that ships pre-installed on many low cost

commercial routers as it provides many features that are not supported by

those commercial routers, e.g. the IPv6, Wireless Distribution System,

RADIUS, and advanced quality of service, The server and the wireless

routers have been used as an example to illustrate the information that is

required for performing FCAPS functions. The same management

information could be extracted from other NEs such as IMS, network

bridges, etc. because the variable names are standardized by the MIB

RFCs [KAVA00].

The SNMP agent that resides in each NE, must be able to read and write

the management information, receive and transmit messages through the

UDP transport interface, and should be able to generate trap messages.

Figure 4.7 depicts the architecture of the agent showing the interactions

with external entities. There are two external components (UDP,

125

Instrumentation Routines) and two data stores (Configuration Data Store,

MIB Data Store).

Central
Agent

Process

UDP

Instrumentation
Routines

MIB Data
Store

Agent
Configuration

Data Store

Figure 4.7: Architecture of Software Agent for Network Management

As it is specified by the SNMP specification [HARR02], the Central Agent

uses the UDP as the transport protocol. The agent uses UDP protocol

instead of TCP protocol due to the fact that each UDP packet does not

need to be acknowledged and as a result, it adds less overhead to the

network. When the agent has been successfully initialized, it listens and

receives requests from the LNMS at port no. 161. When the agent

receives a request, it processes it, and sends the response to the LNMS.

Moreover, the agent can send asynchronous trap events to the LNMS

informing it of some predefined condition that has occurred.

The Instrumentation Routines reside on the agent’s network device. These

routines determine if a requested object is in the agent’s MIB, verify the

access mode (read-only mode or read-write mode), know the location of

the object, and determine if the agent can retrieve or set the value.

126

The Agent Configuration Data Store holds information such as the agent’s

community name, the collection of managed objects, IP addresses of the

LNMS for sending the traps (or notification), and the agent’s system

variables (description, location, community name). The agent retrieves this

information during the initialization in order to start up operations and enter

the listening stage to read and write messages. The MIB Data Store

contains all the objects that can be managed by the agent. MIB is a

collection of information that is organized hierarchically and contains

information about the system, such as temperature, location, interface

status and interface queue utilization. Any sort of status or statistical

information that can be accessed by the LNMS is defined in the MIB Data

Store.

4.4.4.2 Agent Processes

Figure 4.8 illustrates the agent processes. These are: Initialization

Process, Main Protocol Process and Trap Handler Process.

127

Figure 4.8: Agent Functional Architecture

4.4.4.3 Initialization Process

During the initialization process, the agent gets parameters from the

Configuration Data store and MIB data store. In order to connect the UDP

interface, the agent makes a socket call to get the socket descriptor and

then binds to the socket ports and is ready to receive data. Figure 4.9

shows the implementation code of the agent’s initialisation process.

protected void initTransportMappings() throws IOException {
 transportMappings = new TransportMapping[1];
 transportMappings[0] =
 new DefaultUdpTransportMapping(new UdpAddress("127.0.0.1/161"));//indicates
the localhost
}

Figure 4.9: Initialization Process

128

4.4.4.4 Main Protocol Process

The Main Protocol Process performs the following functions:

• Receives incoming requests.

• Performs requested Get/Set operation.

• Sends response to requesting client.

The Main Protocol Process is in charge of receiving the incoming

message requests from the NEs. The LNMS sends a request to the agent

that resides in the NE. The incoming request is read from the transport

interface. It is then validated by the Agent Main Protocol Process. For

instance, the protocol process checks if the type of the request is an

integer, an octet string, or a counter type with length of 1, 128 or 256 bits.

Furthermore, this process validates the version of the incoming message

request and the community name. The validation of the version process

compares the received version number value with the agent’s configured

version value to be sure that they are the same. The mismatch of the

version numbers can cause the received message to be discarded. The

validation of the community name process compares the received

community name with the community name for which the agent is

configured. If the community names do not match the message is

discarded.

The Main Protocol Process handles the Protocol Data Unit (PDU)

requests. For example, it determines the PDU type of the message

request and calls the appropriate function to process that particular PDU

type. The PDU type denotes the operations that are embedded in the

message request (GetRequest, GetNextRequest, GetResponse,

129

SetRequest, and Trap). The requested MIB variables that are carried in

the message request are mapped into an internal, local format. If the MIB

objects are present in the MIB Data Store, the Main Protocol Process

verifies the access mode (read-only or read-write mode) via the

Instrumentation Routines process and performs the requested Get,

GetNext or Set PDU operation on all of the objects in the message’s

request. When the command has been carried out, the message is

transmitted to the LNMS. The main protocol process sends the created

packet to the UDP layer for transmission back to the LNMS.

4.4.4.5 Trap Handler

The Trap Handler is responsible for sending traps, i.e. notifying events to

the LNMS. It contains two processes, each of which is responsible for a

specific function. These processes are:

• Process Trap request called by the agent when a trap needs to be

sent to the LNMS.

• Send response to the requesting client.

The Process Trap request sends linkUp and linkDown traps, if this

condition is detected. The agent needs to be configured in order to send

these traps. The configuration profiles are stored into the Configuration

Data Store. When a trap has been initiated, the message is passed to the

Send Response process to the requesting client. This process sends the

trap message to the UDP layer for transmission back to the LNMS. The

agent must always know the IP address of the LNMSs to which this trap

will be sent.

130

4.4.5 XML-gateway component

4.4.5.1 XML-Gateway Functions

The XML-gateway maps the management information into XML-based

messages and through the SOAP protocol it transmits the information to

other Web Service applications. It implements the following functionalities:

• Standardized communication protocol (SOAP) for information

exchange.

• A service contract based on WSDL that can be used by other Web

Service applications in order to bind to the XML-gateway.

• Exposure of the management information over the internet.

• Management information expressed in XML.

The XML-gateway provides network management information to the

Network Management Middleware Layer above. Through information

obtained from the XML-gateway, the Network Management Middleware

Layer enables communications and co-ordination between different LNMS

to provide global network management functions. This layer will be studied

thoroughly in the next chapter.

XML is used for many reasons. First, XML technology is standardized,

endorsed by software industry market leaders. It is simple, easy to be read

and understood. XML syntax consists of text-based mark-up that

describes the data being tagged; it is both application-independent and

human readable. This simplicity and interoperability features have helped

XML achieve widespread acceptance and adoption as a standard for

exchanging information between heterogeneous systems in a wide variety

131

of applications, including Web Services. XML is currently the most

sophisticated format for distributed data that can cover all existing data

structures [HARO04], [CARE02a].

In the proposed LNMS architecture, the Network Management

Applications are also expressed as Web Services. These Web Service

applications are decoupled from the LNMS and use the WSDL interface

definition contract in order to bind to the LNMS. The Web Service

applications call the LNMS by using SQL calls encapsulated in SOAP

requests. As a result, in the LNMS, Web Service applications such as

archive, network planning, inventory etc. can be distributed (reside in

different hosts) and implemented on different software platforms. This

allows applications to be loosely coupled with the LNMS and could be a

collection of different softwares provided by different vendors. These

applications are used as local network management services operating

under the network provider’s own boundaries.

The XML-gateway performs SQL requests required in order to retrieve,

update, and delete information from the management database. These

functions are presented in the table below:

Table 4-1: functions performed by the XML-gateway

Function Functional description
SELECT Selects data to be presented from one or more table in the management

database
UPDATE Updates data in the management database
DELETE Deletes data from the management database table

132

Figure 4.10 presents the XML-gateway component that has been created

for converting and representing management data derived from LNMSs

into XML-based format.

Figure 4.10: XML-Gateway Architecture

The database driver in the XML-gateway is a standard SQL-level API

intermediary for accessing the LNMS database. It allows the construction

of SQL statements and embedding them into API calls in order to query

the LNMS database. The commands that the database driver uses in

order to query data from the LNMS database are standardized SQL

commands. This gives the ability to the XML-gateway to use different

LNMS databases without changing anything to its logic.

133

Document Object Model (DOM) is an API that provides an object

representation of an XML document. It provides a programmatic paradigm

for giving access to objects represented by the document [W3C98]. DOM

is a standardized technology supported W3C [W3C98]. It can be used in

order to create, read, update, and delete elements. The XML-gateway

uses DOM technology in order to create a new XML document, and then

add elements to this document from the LNMS database table (Event

table). The XML DOM component provides data structure for data

conversion. The DOM generator function creates a DOM tree using

management information stored in the LNMS database table. It generates

an XML document on the basis of the DOM tree and delivers it to the

Network Management Middleware Layer.

The XML message created by the XML-gateway component has one

entity called root entity. All other entities must belong to that root entity.

Entities are defined with a start tag and an end tag. For example, a start

tag in the message that the XML-gateway component produces is

<eventid>, and the end tag is </eventid>.

When one entity is embedded in another entity, the start and end tags of

the embedded entity must both reside within the start and end tags of the

embedding entity. The most fundamental concept of XML is that the tag

set is not fixed but rather extensible [CARE02a]. This means that different

LNMSs can define their own tag set and in effect create a new language

for describing elements in a certain domain. This is a very powerful

concept, because instead of having every type of information using the

same set of descriptive rules, the information existing in each LNMS can

134

have their own type of expressing the information according to their own

particular descriptive rules. Figure 4.11 illustrates the XML-based

management information that is extracted by the XML-gateway

component. This management information is extracted from agents by the

LNMS and resides in the LNMS database.

Figure 4.11: Representation of the XML-based management information created by the XML

Gateway

4.4.5.2 Process for Converting SQL data into XML-based message

Several models have been proposed over the last few years related to the

conversion of management information into XML. [YOON06] proposed a

gateway that translates standard DOM interfaces to SNMP operations,

which provides a method for XML-based manager to directly access

management information through the DOM interfaces. In a message level

translation, it translates HTTP messages through URI extension with

XPath and XQuery, which provide methods to define detailed request

message for XML/HTTP communication. The gateway uses the SOAP

protocol, which is accepted as a standard protocol for XML.

135

[MART00] and [MART02] presented an idea to use XML for integrated

management on Web-based Integrated Network Management

Architecture (WIMA). The advantages of HTTP/XML-based

communication are described, and the basic idea concerning SNMP MIB

to XML conversion is also presented.

[STRA99] presented a library to access SMI MIB information, “libsmi”,

which translates SNMP MIB to other languages, such as JAVA, CORBA,

C, XML etc. This library provides a tool for MIB dump into an XML

document based on metamodel-level schema mapping.

The above mentioned models focus on converting SNMP information to

XML. These approaches can be used within a homogeneous network

management environment, where the only protocol that can be used is the

SNMP. Within the scope of the NGN management, the networks are

heterogeneous and a variety of different management protocols will be

used. As a result, these approaches cannot fulfil the NGN requirements.

The approach proposed in this thesis allows each LNMS to use its own

methods and management protocols for collecting management

information and uses the management information stored into the

management database to express it in XML, providing the required

interoperability functions between heterogeneous LNMSs.

The XML-gateway is implemented as a Java project that performs the

following process in order to convert SQL data into an XML message. The

process involves the following steps, as illustrated in figures 4.12, 4.13,

4.14, 4.15, 4.16 and 4.17:

136

1. Create a new document by using the standard Java API for XML

Processing (JAXP) [JAXP], which provides the parsing and

transformation of documents (figure 4.12).

DocumentBuilderFactory factory =
DocumentBuilderFactory.newInstance();
DocumentBuilder builder = factory.newDocumentBuilder();
Document xml = builder.newDocument();

Figure 4.12: Step 1

2. Retrieve the data from event_table of the management database

(figure 4.13).

Statement st = conn.createStatement();
Set st = st.executeQuery("SELECT * from event_table");

Figure 4.13: Step 2

3. Store data in a document object. Once the data is successfully

extracted from the LNMS database, it is stored in a temporary

document. A method creates a row element (<row>…</row>) for

each row of data, with each column represented as an element

named after that column, and with the data itself as the content of

the element (figure 4.14).

while (st.next()) {
 Element rw = xml.createElement("Row");
 results.appendChild(rw);
 for (int i = 1; i <= colCount; i++) {
 String columnName = rmd.getColumnName(i);
 Object value = st.getObject(i);

Figure 4.14: Step 3

4. Perform data mapping. Once the data is stored in the temporary

document, DOM generator works on mapping the temporary

document to a new XML structure. First, it retrieves the information

on the root and row elements, and then retrieves the element

137

mappings. Each row of the data is analyzed and re-mapped to the

new structure (figure 4.15).

public static String serialize(Document xml) throws
IOException {
 StringWriter writer = new StringWriter();
 OutputFormat format = new OutputFormat();
 format.setIndenting(true);
 XMLSerializer serializer = new XMLSerializer(writer,
format);
 serializer.serialize(xml);
 return writer.getBuffer().toString();

Figure 4.15: Step 4

5. Perform element mappings. This step determines what data is

pulled from the temporary document and in what order (figure 4.16).

node.appendChild(xml.createTextNode(value.toString()));
row.appendChild(node);

Figure 4.16: Step 5

6. Add elements and data to the new XML document. The column

count from the meta-data gives the quantity of the columns in each

row element. The rmd.getColumnName() method gives the name of

a given column. The value of the column object is accessed via the

ResultSet.Metadata() method. An element is added for each

column and is placed under its row (figure 4.17).

Element node = xml.createElement(element);
ResultSetMetaData rmd = st.getMetaData();
return xml;

Figure 4.17: Step 6

138

A short version of an XML message that has been created by the XML-

gateway is illustrated in figure 4.18 below:

<?xml version="1.0" encoding="UTF-8"?>

<Results xmlns=" http://esb.nms1">
<Row>
 <eventid>1</eventid>
 <eventuei> uei.opennms.org/reporting </eventuei>
 <eventtime>2010-03-16 12:10:50.0</eventtime>
 <eventhost>143.53.36.72</eventhost>
 <eventsource>ProCurve J8697A Switch </eventsource>
 <eventdpname>undefined</eventdpname>
 <eventcreatetime>2010-03-16 12:10:51.421</eventcreatetime>
 <eventdescr> High alert for interface 143.53.36.72 ;</eventdescr>
 <eventlogmsg>The Accuracy level is : 99%</eventlogmsg>
 <eventseverity>3</eventseverity>
 <eventlog>Y</eventlog>
 <eventdisplay>N</eventdisplay>
 </Row>
<Row>
 <eventid>2</eventid>
 <eventuei> uei.opennms.org/reporting </eventuei>
 <eventtime>2010-03-16 12:10:51.0</eventtime>
 <eventhost>127.0.0.1</eventhost>
 <eventsource>Host </eventsource>
 <eventdpname>Lab-PC</eventdpname>
 <eventcreatetime>2010-03-16 12:10:51.463</eventcreatetime>
 <eventdescr> IP packet loss 0</eventdescr>
 <eventlogmsg>The Total IP packet loss is 0</eventlogmsg>
 <eventseverity>1</eventseverity>
 <eventlog>Y</eventlog>
 <eventdisplay>N</eventdisplay>
 </Row>
<Row>
 <eventid>7</eventid>
 <eventuei> uei.opennms.org/reporting </eventuei>
 <eventtime>2010-03-16 15:09:23.53</eventtime>
 <eventhost>127.0.0.1</eventhost>
 <eventsource>Host </eventsource>
 <eventdpname>Lab-PC</eventdpname>
 <eventcreatetime>2010-03-16 15:09:23.124</eventcreatetime>
 <eventdescr> hrSWRStatus.200 = INTEGER: running(1)</eventdescr>
 <eventlogmsg>Application 200 is running</eventlogmsg>
 <eventseverity>1</eventseverity>
 <eventlog>Y</eventlog>
 <eventdisplay>N</eventdisplay>
 </Row>
<Row>
</Row>
</Results>

Figure 4.18: xml management message

139

The output of the XML-gateway is XML document-based, which in turn

can be processed by the Network Management Middleware. The XML-

based message contains information related to faults and performance

measurements from multiple components residing on the network

infrastructure. The interaction between LNMS and Middleware Layer is

kept to the minimum by exchanging large amount of management

information per message exchange. As explained in earlier chapters,

multiple invocations results in overhead to the network. In other

architectures such as CORBA-based architectures, the applications are

required to exchange small amount of functionality due to the use of

objects. For example, each interaction between LNMS and another

application would contain one fault or one event per interaction. In

contrast, in the XML-gateway, a single XML message contains information

from multiple devices. In the short version of the XML management

message depicted in figure 4.18, three events are illustrated.

The XML-gateway is implemented as a Web Service. A WSDL service

contract has been created in order to define the description of its

interfaces. Apache Axis [AXIS] has been used as the SOAP server. Axis

provides the SOAP communication protocol and supports WSDL service

contracts. Axis uses Tomcat application server [TOMCAT] as a container

in order to expose Web Services over the internet and supports SOAP

version 1.1 as a lightweight protocol for communication and WSDL 1.1 for

the description of the Web Services Interfaces [AXIS]. The following figure

(figure 4.19) illustrates the WSDL service contract of the XML-gateway.

The WSDL describes the parameters of the XML-gateway such as the

140

operations names and types (in, out), the message names, binding name

and address and the SOAP address.

wsdl:types>
 <xsd:schema targetNamespace="http://www.management.org/XML-gateway/">
 <xsd:element name="Get or Set">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="in" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="Response">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="out" type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name="OperationRequest">
 <wsdl:part element="tns:Operation" name="parameters"/>
 </wsdl:message>
 <wsdl:message name="OperationResponse">
 <wsdl:part element="tns:OperationResponse" name="parameters"/>
 </wsdl:message>
 <wsdl:portType name="XML-gateway">
 <wsdl:operation name="Operation">
 <wsdl:input message="tns:OperationRequest"/>
 <wsdl:output message="tns:OperationResponse"/>
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="XML-gatewaySOAP" type="tns:XML-gateway">
 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>
 <wsdl:operation name="Operation">
 <soap:operation soapAction="http://www.management.org/XML-gateway/Operation"/>
 <wsdl:input>
 <soap:body use="literal"/>
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal"/>
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="XML-gateway">
 <wsdl:port binding="tns:XML-gatewaySOAP" name="XML-gatewaySOAP">
 <soap:address location="http://www.management.org/"/>
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

Figure 4.19: XML-gateway WSDL file

141

Web Service Network Management Applications can acquire management

information from the LNMS. A test case has been created in the eclipse

IDE [ECLIPSE] in order to act as Web Service Network Management

Application. Figures 4.20 and 4.21 illustrate the input statements that are

used and the results of each statement. In figure 4.20, the Web Service

application that acts as a client requests information concerning the

network nodes of the managed network. In figure 4.21, the Web Service

application requests the services that are running on a server. This test

case shows that the management information can be retrieved over the

internet and the applications that consume this management information

can be located on different hosts. As a result, the management

architecture can be loosely coupled and distributed.

Figure 4.20: Web Service application requesting list of the network devices from the LNMS

142

Figure 4.21: Web Service application requests the server’s running process from the LNMS

The XML-gateway can be embedded in the Network Management

Middleware layer instead of the LNMS. This ability is beneficial for legacy

LNMSs that are not open source software or do not have integration

capabilities. In this case, the XML-gateway will perform remote SQL-based

calls instead of SOAP calls. SOAP calls provide more advanced security

mechanisms (i.e. WS-Security) compared to remote SQL-based calls.

Even though the remote SQL-based calls are Remote Procedure Calls,

the security is an additional mechanism that has to be implemented for

authentication and authorization.

The XML-gateway has been embedded in another open-source NMS that

will be used later in chapters 5 and 6 as a second LNMS. NINO network

management system [NINO] has been used for sending management

information to the Network Management Middleware Layer. NINO is using

different data representations compared to the LNMS presented in this

143

chapter. The two LNMSs are considered heterogeneous since their Core

Process Logic as well as their management databases are different.

NINO’s representation of management information is being transformed

into XML by the XML-gateway as depicted in figure 4.22. The

representation of the management information is different compared to the

management information in figure 4.18.

<?xml version="1.0" encoding="UTF-8"?>

<Results xmlns=" http://esb.nms2">
<Row>
 <id>2</id>
 <host>143.53.36.43 </host>
 <name>Intel<R> Gigabit Network connection</name>
 <location>Lab_Horton</location>
 <devicetype>Server </devicetype>
 <statuscheck>yes</statuscheck>
 <collect>16-03-2010 10:10:50</collect>
 <severityid>21</severityid>
 <severity>High</severity>
 <operatingsystem>x86 Family 6 Windows version 5.1</operatingsystem>
 <description>Interface: 143.53.36.43 is down</description>
</Row>
<Row>
<id>2</id>
 <host>143.53.36.43 </host>
 <name>Intel<R> Microsoft Service</name>
 <location>Lab_Horton</location>
 <devicetype>Server </devicetype>
 <statuscheck>yes</statuscheck>
 <collect>16-03-2010 10:10:52</collect>
 <severityid>13</severityid>
 <severity>Notification</severity>
 <operatingsystem>x86 Family 6 Windows version 5.1 </operatingsystem>
 <description>Interface: MySQL activated</description>
 </Row>
<Row>
</Row>
</Results>

Figure 4.22: XML-gateway output management information acquired from NINO LNMS

4.4.6 Performance Management

The performance of a network domain can be assessed by interrogating

all the NEs in that domain. The implemented Event Control Unit performs

144

calculations regarding performance management. Polling is a frequent

operation in the LNMS as there are several object values that require

constant monitoring. MIB variables are not a representative indicator of the

network’s state, thus, an aggregation of multiple variables is required

[GOLD93]. The following section presents the calculations that have been

performed by the Control Unit. These performance functions are

recommended by the ITU-T as well as by other RFCs [KAVA00],

[WALD95], [M.2301].

4.4.6.1 Performance management Parameters

The following table (table 4-3) lists the messages that are required for

monitoring performance functions. The messages as well as the values

have been defined and stored in the agent’s MIB data store. Each

message has its own Object Identifier (OID) value in the MIB tree. This

means that whenever a message request is received by the agent, the

message name is mapped into the OID equivalent and the agent reads the

stored value from the MIB. There are different fixed numbers of datatypes

which are used by the values of OIDs [McCL99]. These value types have

been defined by the SMI and the ones that have been used for the

performance variables are TimeTick, Counter32 and Gauge32. TimeTick

represents an unsigned integer that represents the time. The range of the

TimeTick is 0 to 322 in hundredths of a second (centisecond). Counter32

represents a non-negative integer, which monotonically increases until it

reaches a maximum value of 4294967295. When the counter reaches the

maximum value, then it starts increasing again from zero. Gauge32

145

represents an unsigned integer, which may increase or decrease, but

cannot exceed a maximum number.

Table 4-2: The essential Variables required for performance management

Variable name Object Identifier Description Value Type

SysUpTime 1.3.6.1.2.1.1.3

The time since the managed
node was last re-initialized
(measured in hundred of a
second)

TimeTicks

ifInErrors 1.3.6.1.2.1.2.2.1.14 the no. of inbound packets
with an error Counter32

ifOutErrors 1.3.6.1.2.1.2.2.1.20 the no. of outbound packets
with an error Counter32

ifInUcastPkts 1.3.6.1.2.1.2.2.1.12 the count of inbound unicast
packets Counter32

ifOutUcastPkts 1.3.6.1.2.1.2.2.1.17 the count of outbound
unicast packets Counter32

ifInNUcastPkts 1.3.6.1.2.1.2.2.1.11
the count of inbound non-
unicast packets (multicast
and broadcast)

Counter32

ifOutNUcastPkts 1.3.6.1.2.1.2.2.1.18
the total outbound number of
non-unicast packets
(multicast and broadcast)

Counter32

IfInOctets 1.3.6.1.2.1.2.2.1.10
Total number of octets
received on an interface,
including framing characters

Counter32

ifOutOctets 1.3.6.1.2.1.2.2.1.16

Total number of octets
transmitted out of an
interface, including framing
characters

Counter32

ifSpeed 1.3.6.1.2.1.2.2.1.5
Interface’s current
bandwidth in bits per
second.

Gauge32

ifInDiscards 1.3.6.1.2.1.2.2.1.13
Number of inbound bytes
that have been discarded to
free up the buffer space.

Counter32

ifOutDiscards 1.3.6.1.2.1.2.2.1.19
Number of outbound bytes
that have been discarded to
free up the buffer space.

Counter32

ifInUnknownProtos 1.3.6.1.2.1.2.2.1.15

For Packet-oriented
interface, the number of
packets received via an
interface which were
discarded because of an
unknown or unsupported
protocol.

Counter32

ipOutDiscards 1.3.6.1.2.1.4.11 The number of output IP Counter32

146

packets for which no
problem was encountered to
prevent their transmission to
their destination, but which
discarded (i.e. lack of buffer
space)

ipOutNoRoutes 1.3.6.1.2.1.4.11

The number of IP packets
discarded because no route
could be found to transmit
them to their destination

Counter32

ipFragFails 1.3.6.1.2.1.4.18

The number of IP packets
that have been discarded
because they needed to be
fragmented at this node but
could not be (e.g. their Don't
Fragment flag was set)

Counter32

ipOutRequests 1.3.6.1.2.1.4.10

Total number of IP packets
which local IP user-protocols
supplied to IP in requests for
transmission

Counter32

ipForwDatagrams 1.3.6.1.2.1.4.6

The number of input packets
that request to find a route to
forward them to their final
destination.

Counter32

4.4.6.1.1 Total IP received packets calculation

Total IP packets received (TR_IP) is a count of the number of packets

received at a NE’s interface. The total number of packets received across

an interface is given by the sum of all inbound packets. In more detail, the

inbound packets consist of the following packets: unicast packets, non-

unicast packets, discarded packets, packets with errors and packets that

have been discarded for unknown reasons.

The above mentioned packets can be acquired by the following SNMP

OID variables:

• ifInUcastPkts;

• ifInNUcastPkts;

147

• ifInDiscards;

• ifInErrors;

• ifInUnknownProtos.

The equation for calculating the total IP packets received by a NE’s

interface is depicted in equation (4.1):

npotosifInUnknowifInErrorsdsifInDiscarPktsifInNUcastktsifInUcastPIPTR ++++=_ (4.1)

4.4.6.1.2 Total IP transmitted packets

The total IP packets transmitted (TT_IP) through an interface in a NE is

given by the sum of (formula 4.2):

• ifOutUcastPkts;

• ifOutNUcastPkts.

tPktsifOutNUcasPktsifOutUcastIPTT +=_ (4.2)

The number of successfully transmitted packets (TT_OK) over the link is

given by the following equation (formula 4.3):

)(__ sifOutErrorrdsifOutDiscaIPTTOKTT +−= (4.3)

4.4.6.1.3 IP Packet Loss Ratio

The IP packet Loss Ratio (IPLR) is the ratio of total lost IP packet

outcomes to total transmitted IP packets. The variables that are required

to be aggregated in order to calculate the IPLR are:

• ifInUcastPkts,

• ifInNUcastPkts,

• ifOutUcastPkts and

148

• ifOutNUcastPkts.

The following formula (formula 4.4) calculates the IP Packet Loss Ratio:

IPTT
PktsifInNUcastktsifInUcastPIPLR

_
)(+

= (4.4)

4.4.6.1.4 Error Rate and Accuracy

Accuracy determines the traffic of an interface that does not result in error

and is expressed in terms of percentage, comparing the success rate to

total packet rate over a period of time. First, the Error Rate (ER) needs to

be calculated and then the accuracy can be determined. For instance, if

three of every 100 packets result in error, the ER would be 3% and the

accuracy would be 97%. In order to calculate the ER and the accuracy

formulas, the delta (Δ) function is used. This means that instead of one

two poll cycles are required and the difference between the two cycles is

calculated. In formulas 4.6, 4.9 and 4.10, the variable t indicates the

polling cycle and the variable x indicates the previous polling time at

polling cycle.

With earlier network technologies, a certain level of errors was acceptable.

However, today’s high-speed networks are considerably more accurate

and the ERs are close to zero, unless there is an actual problem. The

most common causes of interface errors are [CISC07]:

• Electrical interference.

• Out-of-specification wiring.

149

• Faulty hardware or software.

• Incorrect configuration.

The ER is expressed as a percentage. The formula for determining the ER

of an interface is given by formula (4.5 or 4.6):

%
)(

100*
PktsifInNUcastktsifInUcastP

ifInErrorsER
Δ+Δ

Δ
= (4.5)

or

))()(())()((
100*)()((

xPktsifInNUcasttxPktsifInNUcastxktsifInUcastPtxktsifInUcastP
xifInErrorstxifInErrors

ER
−++−+

−+= (4.6)

The outbound errors are not considered in the ER formula. The reason is

that the NE should never place packets with errors on the network, and

the outbound interface ERs should never increase. Thus, inbound traffic

and errors are the only measures of interest for interface errors.

The Accuracy Rate (AR) is expressed as a percentage. The formula for

accuracy calculates the ER of the interface and subtracts it from 100. The

formula for determining the accuracy of an interface is given by the

following formula (formula 4.7 or 4.8):

)(
100*100

PktsifInNUcastktsifInUcastP
ifInErrorsAR

Δ+Δ
Δ

−= (4.7)

or

ERAR −=100 (4.8)

150

4.4.6.1.5 Utilization of an interface

Utilization measures the use of a particular resource over a time period. It

is expressed in the form of a percentage in which the usage of a resource

is compared to its maximum operational capacity. Utilization is the

principle for determining how full the network pipes (links) are. Through

utilization measurement, the congestion throughout the network can be

identified.

For serial link utilization rate, there are two possible transmission modes:

The half-duplex mode and the full-duplex mode. Shared LAN connections

are usually based on half-duplex mode, mainly because connection

detection requires that a network interface listens before it transmits. WAN

connections are typically full-duplex mode allowing the communication in

both directions simultaneously. Land-line telephone networks are full-

duplex, since they allow both callers to speak and be heard at the same

time. If the utilization rate is over 90%, the network is regarded as

overloaded. It is not serious for the utilization rate to exceed 90%

temporarily, but if the average utilization rate is over 90%, the entire

network is overloaded and usually needs to be reconstructed or equipment

need to be upgraded. To calculate the utilization rate, a single poll will not

give any useful information. Sampling the interface over a time interval can

show the traffic in and out of the interface over a period of time. In this

case, the sampling will require two polling cycles. Furthermore, the values

acquired from the agent are octets meaning that the each octet is one

byte. So the formulas need to be multiplied by 8, eight times to get the

rates in bit per second. Each interface contains a variable value that

151

indicates the mode of operation. This variable cannot be modified due to

the fact that the access status is read-only. The following table (table 4-4)

describes the DuplexStatus variable that is an essential parameter for

indicating the interface’s mode in order to be able to calculate the

utilization rate according to the specified formula.

Table 4-3: DuplexStatus variable

Variable
name Object Identifier Description and value

DuplexStatus 1.3.6.1.2.1.10.7.2.1.19

The value of the OID indicates the status of
the interface’s mode.
halfduplex(1) indicates the Half-duplex
mode and
The fullduplex(2) indicates the full-duplex
mode.

The Half-Duplex Utilization (HDU) is expressed as a percentage. The

formula for the HDU of an interface is calculated by adding the total sent

bits and the total received bits divided by the bandwidth. The following

formula depicts the utilization of a half-duplex interface (formula 4.9):

ifSpeedsysUpTimesysUpTime
sifOutOctetsifOutOctetifInOctetsifInOctets

HD
xtx

xtxxtx

*)(
100*8*)]()[(

)()(

)()()()(

−

−+−
=

+

++ (4.9)

For a Full-Duplex Utilization (FDU) media, the utilization formula calculates

the larger value of the input and output octets (bytes) and generates the

utilization percentage. An example for full-duplex connection is the T-1

serial connection. In this case, the line speed is 1.544 Mbps. This means

that a T-1 interface can both receive and transmit 1.544 Mbps for a

combined bandwidth of 3.088Mbps. The utilization of a full-duplex

interface can be calculated using equation (4.10):

152

ifSpeedsysUpTimesysUpTime
sifOutOctetsifOutOctetifInOctetsifInOctetsMax

FD
xtx

xtxxtx
*)(

100*8*)](),[(

)()(

)()()()(
−

−−
=

+

++
 (4.10)

4.4.6.1.6 IP output datagrams discard rate

The Discard Rate (DR) defines the IP output datagrams discarded over

the total number of datagrams sent during a specific time interval. DR is

expressed as a percentage by combining five MIB variable objects.

Formula 4.11 identifies the IP output datagrams DR:

gramsipForwDataquestsipOut
sipFragFailtesipOutNoRourdsipOutDiscaDR

Δ+Δ
Δ+Δ+Δ

=
Re

100*)((4.11)

4.4.6.2 Performance function process flows

4.4.6.2.1 Initialisation

The Event Correlator component of the Control Unit is responsible for

calculating the aforementioned formulas. Through the event handling, the

Event Correlation component initializes the Manager Poller and requests

specific OID variables to be acquired by a specific IP address when

carrying some performance functions. Figure 4.23 shows the software

code for implementing the agent’s target address (143.53.36.23) and the

socket number (161) are specified.

Address targetAddress =
GenericAddress.parse("udp:143.53.36.23/161");
 TransportMapping transport = new DefaultUdpTransportMapping();
 snmp = new Snmp(transport);
transport.listen();

Figure 4.23: defining the agent’s address and UDP port number

153

The Manager Poller implements a time function specifying how often the

agents should be polled, as shown in Figure 4.24 below.

private Timer timer = new Timer(true);
 public void schedule(TimerTask task, int milsec) {
 timer.schedule(task, 10000);
 }

Figure 4.24: Timer method

The Poller sends an SNMP BULK request including the required variables

for calculating each formula. The BULK request is used to acquire multiple

variables with just one request. If the connection fails for a reason, then

the poller initiates a new request. Once the connection between the LNMS

and the agent is established, the Event-Handler sends the SNMP

message to the agent. The following code in figure 4.25 illustrates the

SNMP GetBulk operation requesting: ifInUcastPkts ifInNUcastPkts,

ifInDiscards, ifInErrors, and ifInUnknownProtos from the agent. The target

address has been specified in the targetAddress variable.

PDU request = new PDU();
request.setType(PDU.GETBULK);
request.add(new VariableBinding(new OID("1.3.6.1.2.1.2.2.1.11")));
request.add(new VariableBinding(new OID("1.3.6.1.2.1.2.2.1.12")));
request.add(new VariableBinding(new OID("1.3.6.1.2.1.2.2.1.13")));
request.add(new VariableBinding(new OID("1.3.6.1.2.1.2.2.1.14")));
request.add(new VariableBinding(new OID("1.3.6.1.2.1.2.2.1.15")));
ResponseEvent responseEvent = snmp.send(pdu, target);

Figure 4.25: OID requests

The Event-Handler waits for the agents to respond within a predefined

time interval. If the agent cannot respond for a reason (i.e. the agent is

deactivated), within 20 sec, the session fails and an error message is

created and sent to the event schedule and archive component (figure

4.26).

154

target.setTimeout(20000);//20*1000ms
target.setRetries(5);
public long getRetryTimeout(int Retries, long targetTimeout); {
 return targetTimeout;
 }

Figure 4.26: Method for Time interval and number of retries

If the Control Unit receives the SNMP response from the agent within 20

seconds, the respond values are consumed by the Event Correlation

component.

4.4.6.2.2 Process flow for TT_IP, TR_IP, TT_OK, IPLR Measurements

Four different options can be chosen, as shown in figure 4.27. The first

option shows the process flow of the total received packets in the agent’s

interface (TR_IP). The second option illustrates the process of the number

of packets transmitted from the agent’s interface (TT_IP). The third option

shows the packets that have been successfully transmitted over the

agent’s interface (TT_OK) and the fourth option shows the packet loss of

the agent’s interface (IPLR).

When the Event Correlator component receives the agent’s values, it

calculates them based on equations (4.1) to(4.4). A process of storing the

calculated information takes place after the calculation process, where the

result of each calculation is stored in a database table (Event_table). Each

result is accompanied by the IP address of the interface, the specific

number of the interface (in case of multiple interfaces) and a timestamp of

every insertion.

155

Figure 4.27: LNMS flow diagram for performing TR_IP, TT_IP, TT_OK and IPLR

4.4.6.2.3 Process flow for Error Rate and Accuracy Rate

Measurement

Figure 4.28 also includes the process flow for measuring the ER and the

AR of the NE’s interface.

The calculation of the ER in the NE’s interface takes place when the Event

Correlator component reads the agent’s values. Due to the delta function

calculation, the ER function requires two poll cycles to be sampled. The

first cycle (Cycle 1) involves storing the agent’s values to the database

table (Error Rate_table). The timer in the Network Manager Poller has

been set to initiate another poll after one minute, which is when the poller

sends again a BULK request to the agent following the same process as

156

before, but this time the Event Correlation component executes the

second cycle of the ER process flow (Cycle 2).

At this point, the Event Correlation component reads the new values

acquired by the agent to perform the ER function, as well as the previous

stored values from the Error Rate_table. The next process is the

calculation of the ER. In this step, the agent’s values ifInUcastPkts,

ifInNUcastPkts and inInErrors are calculated according to equation (4.6).

An ‘if’ function has been created in order to initiate an alert for ER values

that are higher than 2 (2%). In this decision point, if the ER value exceeds

2%, an alert is created with a printed value “High alert for Interface” +IP

““the error rate is” +ER “Severity level” +severity “on date and time”

+timestamp. This information is stored in the event table in the LNMS’s

database. If not, the ER is stored in the event table with the calculated

value, the IP address of the interface and a timestamp. A process of

deleting the temporary values stored in the Error Rate_table takes place in

both cases before the application exits. This process has been

implemented due to the fact that the ER function will be executed

continuously, thus the variables and the values of the first poll stored in the

Error Rate_table need to be constantly updated. Hence, the temporary

management information gathered and stored in the Error Rate_table

needs to be deleted after every process execution.

In the accuracy process flow, the Event Correlation component reads the

agent’s values. Similar to the ER process, the Event Correlation

component samples twice the agent. In Cycle 1, the values are stored in

the Accuracy_table, and the algorithm exits. In Cycle 2, the Event

157

Correlation component first reads the agent’s values, next, reads the

values stored in the Accuracy_table and uses these values to feed the

next process, which performs the accuracy calculation (function (6)). If the

accuracy has value less than 98 (98%), an alert is created with a printed

value “High alert for Interface” +IP “the Accuracy is” +AR “Severity level”

+severity “on date and time” +timestamp. If the value is higher than 98

(98%), then it is stored in the database’s event table accompanied with the

IP address of the NE’s interface and a timestamp. The temporary stored

data is deleted from the Accuracy_table before the processes can exit.

The ER and accuracy functions are performed separately, because it

allows the user to decide if both functions are going to be performed.

158

Figure 4.28: Process flow for performing ER and AR functions

4.4.6.2.4 Process flow for Discard Rate Measurement

Figure 4.29 demonstrates the process for measuring the DR and the

utilization of the NE’s interface. In the DR process, the Event Correlation

component reads the agent’s values and stores the values in the DR_table

(Step 1). Next, the Manager Poller, after a predetermined time period,

initiates a second SNMP BULK request for requesting management

information from the agent. The Event Correlation component (Step 2)

159

reads the agent’s values and feed the values to the next process that

performs the DR function (formula 4.11). The output of the process is

stored in the database table ‘event table’ including the IP address of the

NE’s interface and a timestamp. Before the application can stop, it deletes

the data stored in the specific rows of the DR_table.

4.4.6.2.5 Process flow for Utilisation Rate Measurement

As mentioned above, the utilization rate of an interface has two options

that are calculated according to two equations: the half-duplex and the full-

duplex equations. The Event Correlation component reads the agent’s

values and stores the values in the Utilization_table (Step 1). Next, the

Manager Poller, after a predetermined time period, polls again the agent

requesting the same variables (Step 2). The most important value of

agent’s retrieval is the DuplexStatus. The Event Correlation component

reads the agent’s values. If the value of the DuplexStatus is fullDuplex(2),

meaning that the interface works as full-duplex interface, then the event

correlation component performs the FD function (formula 4.10).

If not, it performs the HD function (formula 4.9). In the full-duplex process,

if the calculated value exceeds 0.9 (90%), then an alert is created with a

printed value “High alert for Interface” +IP “the Utilization is” +FD “Severity

level” +severity “on date and time” +timestamp. This information is stored

in the LNMS’s database (event table) and the application deletes the data

stored in the Utilization_table before exiting. If the value of the FD function

is less than 0.9 (90%), the value is stored in the database’s event table

accompanied with the IP address of the NE’s interface and a timestamp.

160

Again, the application deletes the data stored in the Utilization_table

before it exits.

In the half-duplex option, an ‘if’ function creates a decision point, where if

the calculated value is higher than 0.9 (90%), then an alert is created with

a printed value “High alert for Interface” +IP “the Utilization is” +HD

“Severity level” +severity “on date and time” +timestamp. This information

is stored in the LNMS’s event table and before the application exits, it

deletes the data stored in the Utilization_table. If the HD function gives a

value that is less than 0.9 (90%), the value is stored in the database’s

event table accompanied with the IP address of the NE’s interface and a

timestamp. The application deletes the data stored in the Utilization_table

before it exits.

161

Figure 4.29: Process flow for performing DR and HD or FD functions

4.4.6.3 Performance Information Retrieval

The agent can provide information concerning performance

measurements. These message requests can be handled individually by

the agent or can be sent altogether at once. To minimize the traffic in the

network, it is reasonable to have one request that contains all the

appropriate performance requests, instead of performing multiple request-

response operations. Figure 4.30 depicts the interaction between LNMS

and the agent when using the BULK request for acquiring multiple

management information from the agent.

162

NMS Agent

SNMPBULKGET Request

SysUpTime

ifInErrors

ifSpeed

ipOutRequests

...

.

Figure 4.30: Agent's multiple responses

The output of the SNMPBULKGET operation acquiring performance

measurement information is shown in figure 4.31.

Figure 4.31: Agent’s response messages

4.4.7 Fault and Configuration Management

4.4.7.1 Fault and Configuration Management Process

For fault and configuration management, the process is simpler compared

to performance management. Fault management requires system’s status

163

only, whereas performance management measures different aspects of

the network.

Table 4-4 presents the information that is required in order to perform fault

management functions. Those variables indicate the operational status of

the element’s network interfaces, hardware components and software

components and all have read-write mode. This means that the values not

only can be read but they can also be modified. Hence, the LNMS is able

to perform configuration management by configuring the values thus,

changing the behaviour of the NE.

Table 4-4: Variables indicating faults in network elements

Variable name Object Identifier Description and Value

ifadminStatus 1.3.6.1.2.1.2.2.1.7

The state of an interface in the network
node.

• Up(1): the interface is up and running.
• Down(2) : the interface is down and
• Testing(3) no operational packets can

be passed through this interface.

hrDeviceStatus 1.3.6.1.2.1.25.3.2.1.5

The operational status of a hardware
component of the network node.

• unknown(1): the current state of the
device is unknown.

• running(2): the device is up and
running and that no unusual error
conditions are known

• warning(3): an unusual error condition
by the operational software (e.g., a
disk device driver) but that the device
is still 'operational'.

• testing(4):, the device is not available
for use because it is in the testing
state.

• down(5): device is not available for
any use.

164

hrSwRunStatus 1.3.6.1.2.1.25.4.2.1.7

the status of software running in the network
node.

• Running(1) the software is running.
• Runnable(2) the software is waiting

for resources (i.e. waiting for memory
or CPU resources).

• Runnable(3) the software is loaded
but is waiting for an event to start the
process,

• invalid(4) the software is not running.

Fault management variables described in the table 4-5 are collected by

activating the Event Correlation component, which in turn initiates a

process to acquire the status of a NE. The Network Manager Poller

initiates an SNMP session with a SNMP GET requests and stores these

values status to the LNMS’s database. For configuration management, the

Poller uses the SNMP SET operation in order to modify the status

variables described in table 4-4.

4.4.7.2 Status information retrieval

The status information indicates the current condition of the NE. Figure

4.32 illustrates the hardware status information as well as the agent, who

is capable of terminating or starting a hardware resource on the server. In

figure 4.32, the status of hardware resources with OID values

1.3.6.1.2.1.25.3.2.1.5.9 (Intel processor CPU_1) and

1.3.6.1.2.1.25.3.2.1.5.10 (Intel processor CPU_2) are running properly. If

the value’s current state changes, the LNMS will create a fault indication.

Moreover, the LNMS can perform an SNMP SET operation in order to

force the agent to change the state of the components.

165

Figure 4.32: Server’s hardware resources retrieved by the agent

Figure 4.33 demonstrates the software resources that are installed in the

server. The agent accessed the MIB Data Store and retrieved the values

of the softwares running on the server. Same as before, the agent has the

rights to modify the states of the softwares.

Figure 4.33: Server's software resources retrieved by the agent

The most important parameter that a router should monitor is the status of

its interfaces. In this example, the agent monitors the status of the

LinkSys router’s interfaces. The router may operate as a NE indicating that

166

there is no problem related to its operation but that one interface could be

faulty or deactivated. Figure 4.34 demonstrates the output of the router’s

interfaces obtained by the agent. The SNMP operation that has been used

for acquiring the status of the router’s interfaces is the ifAdminStatus. The

status of the second interface has value down(2) indicating that the

particular interface is deactivated. By using an SNMP SET operation the

status of the interface could be modified.

Figure 4.34: Router's network interfaces obtained by the agent

4.5 Conclusion

The FCAPS functions of existing LNMSs are typically implemented as

stovepipe systems. This means that each FCAPS function operates in

isolation. For example, faults collected for fault management and statistics

collected for performance management are processed and analysed by

fault and performance management components respectively. In order to

have a comprehensive view and be able to diagnose a network problem,

management information has to be exchanged between management

systems. Due to this isolation, the management information that carries

valuable information concerning the health of the network cannot be

shared and processed by other management systems.

167

This chapter has presented the management communication (Low Level

Management Communication) between network devices. The design and

development of a network management agent that collects management

information from the NE has been described. Moreover, the design of an

XML-gateway component that connects to the Network Management

Middleware Layer has been presented.

The design and the development of an LNMS that performs fault,

performance and configuration management based on data acquired from

the agent have been explained. Messages required for performing

performance, fault and configuration management have also been defined.

168

Chapter 5 : DESIGN OF THE NETWORK

MANAGEMENT MIDDLEWARE LAYER

5.1 Introduction

NGN management requires multiple NMS systems to be able to operate

as one integrated entity [WEIS07]. This requires interoperability between

these distributed systems. A Middleware Layer can provide mediation

mechanisms that can simplify the task of bridging the distributed systems.

Middleware in general can be seen as a layer between applications and

operating systems. The role of the middleware is to provide a simple,

consistent way for integration in a distributed programming environment.

In the previous chapter we presented how to collect and process

management information from the network infrastructure. The amount of

information extracted from different network elements can be enormous

depending on the scale of the network infrastructure. In an integrated

environment several management systems are required to use this

management information for different purposes. As a result, an optimal

way is required to categorize and make available the appropriate

management information to multiple management systems.

The previous chapter proposed that management information should be

expressed in XML-based data format due to its all-encompassing

capability of being able to include data from many different databases

distributed over multiple servers.

169

This chapter proposes a Network Management Middleware Layer based

on messaging and asynchronous communication that will remove the

integration complexity from the management systems. Moreover, the

proposed middleware will handle the heterogeneity on the information

expressed by different systems and will address the following questions:

• If management information is required to be consumed by other

management systems how this information can be used?

• How to deal with management information that is heterogeneous?

• How to connect different management systems together?

• How to route the information to the appropriate management

system?

• Where these functions should be performed?

 The chapter first addresses the functional view (what should the solution

do?) and the technical view (How should the solution work?).

5.2 The Network Management Middleware

Functional Architecture

As mentioned in chapter 4, in an NGN, two levels of network management

are possible. At the local level, each transport network will have its own

Network Management System (NMS), each NMS may use different

platforms, technologies, protocols and information model. NMS at this

level will be called Local Network Management System (LNMS). At the

170

NGN or the global network level, a global network management system

(GNMS) to provide the overall management of the network. To enable the

GNMS to interact with the heterogeneous LNMSs, a network management

middleware (NMM) architecture needs to be defined in order to provide

interoperability between different LNMSs. Before deriving the functional

architecture of the NMM, its functional requirements need to be defined.

5.2.1 Middleware Requirements

Middleware requirements can be generalized into five categories

[PINU04], [EMME00], as shown below:

• Heterogeneity: Middleware should support heterogeneous

hardware and software platforms.

• Network communication: The middleware should enable

communications between heterogeneous network components,

regardless of their underlying transport protocols.

• Coordination: Middleware should enable coordination of

information exchange between heterogeneous applications and

services.

• Reliability: Middleware should ensure that information are

guaranteed to reach their destination complete and uncorrupted

and in the order they were sent.

• Scalability: The Middleware should accommodate future network

and service expansion.

171

The middleware requirements, combined with the network management

requirements defined in Chapter 4, should govern the type of services to

be supported in the middleware to allow communications between

applications and services in the GNMS and those in the LNMS. For clarity,

applications/services supported by the GNMS will hereafter be called the

global network management applications (GNMA) and those by the LNMS

the local network management applications (LNMA).

5.2.2 The Middleware Functional Architecture

Figure 5.1 illustrates the functional architecture of the Network

Management Middleware, which is based on the service oriented

architecture (SOA) and the message-oriented middleware (MOM)

concepts supported by the Core NMS Service Bus.

((((((

Figure 5.1: Functional Architecture of the Network Management Platform

172

The GNMS layer provides global network management applications and

services to support generic network management FAB functions for the

NGN. These applications and services are provided the management and

co-ordination of the underlying heterogeneous transport networks. For

example, functions to enable handover between two different transport

networks requires information of the performance and configurations of

these two networks. The LNMS layer exposes local network management

FCAPS functions as a set of network management services of individual

transport networks in the transport stratum of the NGN, each provided by

its own network management system. Services provided by the GNMS

and LNMS will interact with each other through the middleware offered by

the NMM.

Two main categories of services can be considered in the NMM:

• Interface Management Services (IMS)

• Core Messaging Services (CMS)

Interface Management Services include service registration, service

lookup, service invocation. While service registration and service look up

are integral parts of interface management, this thesis concentrates on

service invocation.

Service invocation includes message validation, message transformation,

message routing, protocol bridging. These components within the service

invocation framework ensure that the requirements for heterogeneity,

network communication, coordination, reliability are met.

173

Core Messaging Services include services that will enable service

publication and subscription through different messaging models. It can

also provide notification or topics alert services. Two storage services

associated with the core massaging services will also be included, namely,

Persistent Message Storage and the Message Archive Service. Table 5-1

summarises the services provided by the middleware.

Table 5-1: Services Provided by the Middleware

H
et

er
og

en
ei

ty

N
et

w
or

k

C
om

m
un

ic
at

io
n

C
oo

rd
in

at
io

n

R
el

ia
bi

lit
y

S
ec

ur
ity

S
ca

la
bi

lit
y

Validation x x

Transformation x

Routing x

Protocol adaptation x x

Persistent Message Store x

Message Archive Service x

Message-based

communication

 x

These services are described below:

• Transformation Service: This service transforms management

information into a common information model. This transformation

should contain message decomposition with needed information

(i.e. metadata)

174

• Validation Service: This service validates the information that Core

NMS Service Bus receives from the remote services.

• Routing Service: The Routing Service determines the destination of

each message. This service will be realized through the

implementation of a normalized message router.

• Protocol Adaptation Service: This service will adapt heterogeneous

communication protocols through a unified API.

• Message Archive Service: This service keeps a record of every

message sent by remote services.

• Persistent Storage Service: A persistent store is developed in order

to store management information consumed by services in the

NMS Layer. The Core NMS Service Bus consumes, so that in the

case of middleware failure the data can be recovered.

5.2.3 The Message Oriented Middleware (MOM) Concept

5.2.3.1 Message Producer, Message Consumer and Message Channels

In the MOM concept, message applications employ a message client API

to communicate with each other through a messaging system, in this case,

the Core NMS Service bus. In the MOM communication paradigm, an

application can act as a message producer that produces (sends) the

message or a message consumer that consumes (receives) the message.

An application may have dual functionalities of being a producer and a

consumer at the same time. In relation to the NMP, the NMSs will primarily

be the message producers whereas the GNMS will be the message

175

consumer, which retrieves local network management information from the

individual LNMSs.

Communications between producers and consumers are via virtual

channels [ERL10]. Each application may have its own channel or multiple

applications can share a single channel depending on the implementation.

Figure 5.2 shows the relationship between the producers and the

consumers. The Networks produce the management information and the

Core NMS publishes the information into virtual channels, the global users

are acting as consumers, requesting management information from the

Core NMS Service Bus. The global users can be remote services residing

on remote systems.

Figure 5.2: Communication Scenario between Core NMS Service Bus and consumers

176

Virtual channels can be expressed as queues or topics, depending on the

messaging models for information exchange through them. Virtual

channels can be further categorized into different groups according to the

type of events. Consumers can subscribe to the group of interests and

receive all messages sent to the groups. This categorization can help

filtering messages accordingly.

5.2.3.2 Messaging Models

Two common models are used to exchange information through message

virtual channels, namely, the point-to-point and publish/subscribe

(pub/sub) models. For the point-to-point model, the channels are often

referred to queues; for pub/sub model as topics.

5.2.3.2.1 Point-to-Point

The point-to-point messaging model allows message clients to send and

receive messages asynchronously via virtual channels known as queues.

Messages from the message producer are routed to the message

consumer via a queue. While there is no restriction on the number of

message producers who can publish to a queue, a message in the queue

can only be received by a single message consumer.

Figure 5.3 illustrates the point-to-point messaging model.

177

Figure 5.3: Point-to-point management messaging paradig

Even though multiple consumers are allowed to connect to a queue, each

message will only be received by a single consumer. This property

enables load balancing to be supported in the system. In this model,

messages are always delivered and will be stored in the queue until a

consumer is ready to retrieve them.

5.2.3.2.2 Publish/Subscribe

In the publish/subscribe model, messages are published to a virtual

channel called topic. Unlike the point-to-point model which only supports

one-to-one message distribution, the pub/sub model supports one-to-

many and many-to-many distribution mechanism, allowing a single

producer to broadcast a message to hundreds of thousands of consumers

[BALD05].

Figure 5.4 illustrates the publish/subscribe communication paradigm.

178

Figure 5.4: Publish/subscribe management messaging paradigm

There are two types of subscription within the publish/subscribe paradigm;

the durable subscription and the non-durable subscription. The non-

durable subscription allows temporary subscriptions to receive messages

only when they are actively listening to the specific topic. Topics cannot

hold messages except if the consumer use the durable subscription. In

duration subscription, when a subscribing consumer is disconnected from

the messaging server, the message server stores the message and holds

the data until the consumer reconnects. Thus, durable subscription can

survive the failure of the subscribing consumer.

5.2.3.2.3 Request/Reply

The request/reply model is used for the World Wide Web (WWW), where a

client requests a page from a server and the server replies with the

requested page. Any producer who sends a message (web page) must be

ready to receive a reply from consumers at some stage in the future.

179

The publish/subscribe and point-to-point message models are primarily for

asynchronous communications between message producers and

consumers. However, synchronous interactions between these two parties

are sometimes required. A request/reply message pattern can be built on

top of the two MOM message models to perform both asynchronous and

synchronous request/reply. MOM message channels (topics and queues)

are not bidirectional. To perform a request/reply operation, a requester

must use two channels: one for request and one for the response (reply).

A correlation ID can be used to correlate the request message with the

reply message.

5.2.3.2.4 Pull/Push

Pull and Push are methods used by a consumer to receive messages from

a producer. In the pull method, a consumer can pull a message from the

provider by polling the provider to check for any messages. In the push

method, a consumer can request the provider to send on relevant

messages as soon as the provider receives them, which effectively means

that the consumer instructs the provider to push messages to the

consumer application.

5.2.3.3 Message Composition

The message consists of three parts; a header, the properties and a body.

Figure 5.5 illustrates the message composition.

180

Figure 5.5: Message composition

The Header contains metadata information about the message used by

producers and consumers. The header fields that are assigned in each

message are described below:

• CorrelationID: Associates message with a previous message. This

header is used in order to associate a response message with a

request message.

• DeliveryMode: The messaging service supports two types of

delivery modes for the messages. The first mode is the persistent

mode and the second is the non-persistent mode. In the persistent

mode, the messaging service stores the messages into a database

so that if the messaging service fails, the data can still be retained.

The messaging service uses the once-and-only–once function for

sending the message, which means that if the messaging service

fails, the message will not be lost and will be delivered once the

message service resumes and only once to the message

181

consumer. Messages with persistent mode add more overheads

due to the storage of the data. However, if reliability is more

important than performance, such as the case of the Network

Management Platform (NMP) where the messages provide crucial

information concerning the health of the managed network. At the

non-persistent mode, the messaging service delivers the message

at-most-once. In other words, if the messaging service fails, the

messages will be lost and will not be sent again. The non-persistent

mode produces less overhead compared to the persistent mode. In

considering the above, this thesis considers the use of persistent

delivery in order to ensure the reliability of the NMP.

• Destination: Indicates the destination to which the message is

being sent. This is an important header that is used from clients

who consume messages from more than one destination.

• Expiration: Indicates the time that the message expires. It

prevents the delivery of a message after it expires.

• MessageID: Uniquely identifies a message that is assigned by the

messaging service. It is used for message processing or for

historical purposes in a message storage mechanism.

• Priority: It assigns a level of importance to the message. The

Priority header is assigned by the messaging service and it is

applied to all messages that have been sent from the messaging

service. There are 10 levels of message priority where zero is the

lowest and nine is the highest.

182

• Redelivered: Indicates the likelihood that a message was

previously delivered but not acknowledged. This can occur if a

service fails to acknowledge delivery. If the messaging service has

not been notified of the delivery an exception is being indicated.

• ReplyTo: Specifies a destination where a message should be sent.

• Timestamp: The Timestamp header denotes the time that the

message is sent by the message producer to the message

consumer. The value of this property uses a standard millisecond

value.

• Type: This header is used to semantically identify the message

type. This header field provides a reference to the message’s

definition in the messaging service repository.

The properties section in the message is an optional field that adds a set

of additional custom information to the message. These properties occupy

a section of the message so that filtering can be applied to the message.

The properties headers are listed below:

• AppID: Identifies the service that sends the message.

• ConsumerTXID: This optional header is the transaction identifier

that identifies the transaction which the message can be

consumed.

• DeliveryCount: This header is a counter that stores the message’s

delivery attempts.

• GroupID: This filed is dedicated to the message group of which the

message is a part.

183

• GroupSeq: This header indicates the sequence number of the

message within the group.

• ProducerTXID: Is the transaction identifier that identifies the

transaction which the message can be produced.

• State: This header is used in order to define a provider-specific

state.

• UserID: Identifies the user sending the message.

The Body which is the actual payload of the message contains the data

from the message producer. The body can contain XML message types

that allow the message payload to be accessed using common XML

parsing technologies. More specifically, there are two types of message

body:

• Message: Is used in order to send a message with no payload,

only header and properties. This type of payload is used for simple

event notification.

• TextMessage: It is a message whose payload is a string. It is

commonly used in order to send textual and XML data.

5.2.4 Reliability of Management Messages

In previous sections, the concepts, the actors, the message model and

message composition underlying the MOM have been presented. They

will be applied to the network management middleware architecture, the

following applies:

184

• The durable publish/subscribe messaging model is used to ensure

reliability.

• The messages of the NMP will follow the message format as

described in section 5.2.3.2 above. The Body will contain

management information produced by the LNMA.

• The message consumer will be the application clients in the GNMS.

In other words the message consumer is the GNMA.

• The message producer will be the application clients in the LNMS,

i.e. LNMA.

A message queue acts as a message store, accumulating messages that

are ready for transmission. Queues can be ordered in various fashion,

from first in first out (FIFO) to priority queues with messages of higher

priority being moved to the front of the messaging queue. In Figure 5.6,

the FIFO method for storing messages into the messaging queue is

presented.

Figure 5.6: FIFO message storage for messaging queues

185

The GNMA uses a durable subscription with the publish/subscribe

paradigm in order to subscribe messages to ensure reliability. If a

message is subscribed with duration subscription, the message will then

be marked as a persistent message. A persistent message in the

message queue can only be deleted when it has been consumed and

acknowledged, otherwise it will remain in the queue. In the case of the

publish/subscribe paradigm for one-to-many subscriptions, a persistent

message can only be deleted when all subscribers have consumed and

acknowledged the message. Thus, a message queue acts as a message

store and under duration subscription, the message queue acts as a

persistent message store.

Figure 5.7 illustrates the process of storing messages to the topic. When a

message is marked as persistent, the messaging service utilizes a store-

and-forward mechanism to store persistent messages to ensure that they

can be recovered if there is a failure of either the messaging service or the

message consumer, i.e. the GNMA client. The steps involved in delivering

a publish/subscribe message by using persistent messaging and durable

subscription are explained below.

186

Figure 5.7: Reliable publish/subscribe with acknowledgments, persistence and durable

subscription

The processes involved in the reliable publish/subscribe messaging are

described below:

1. GNMA client subscribes and indicates that the subscription is

durable.

2. Management Service disconnects from the messaging service, due

to a failure.

3. LNMA client sends the message using publish() method. The

publish() method will block and wait until it receives an

acknowledgment from the messaging service.

4. Messaging service writes the message to the persistent storage

entity which in this case is a MySQL database.

5. Message is held in the database.

6. Acknowledgment is sent back to the LNMA client indicating that the

message is now stored in the persistent store.

7. publish() method returns.

187

8. GNMA client reconnects and re-establishes the subscription.

9. Message is retrieved from the persistent store.

10. Message is delivered to the GNMA client.

11. GNMA client acknowledges to the messaging service that it has

successfully received the message.

12. Messaging service removes the message from the persistent store.

5.3 Design of MOM Services

To satisfy the middleware requirement, seven service components are

created as indicated earlier. These services are explained in greater detail

in the following sections.

5.3.1 Messaging Service

The messaging service is a service component that has been developed

on the Middleware Layer in order to allow the communication and data

transfer from one management system to another. This service uses

Request/Reply and Publish/Subscribe technologies that are based on the

Java Messaging Service (JMS) specification [SUNJMS] JMS provides a

standardized API for sending and receiving messages using Java

programming language in a vendor-neutral manner [SUNJMS]. The

messaging operations that are performed in the messaging service are

depicted in figure 5.8.

188

Figure 5.8: Messaging Service objects and their relationships

• Connection Factory: The Connection Factory encapsulates a set

of configuration properties for a connection. The messaging service

uses the Connection Factory to create a connection. Each

Connection Factory is an instance of the QueueConnectionFactory

or TopicConnectionFactory interface.

• Connection: The Connection object encapsulates the

Management Service’s active connection to the messaging service.

The Management Service uses a Connection in order to create

sessions.

• Session: A Session is a single threaded context for sending and

receiving messages. The messaging service uses a Session in

order to create messages, Message Produces and Message

Consumers.

189

• Message Producer: Is the messaging service that sends the

messages to a destination. The destination for the Message

Producer is the Management Service and it is implemented by the

MessageProducer interface.

• Message Consumer: Is the Management Service that receives the

message from a destination. The destination for the Message

Consumer is the messaging service and it is implemented by the

MessageConsumer interface.

• Message: The message object encapsulates a message that is

sent or received by the Message Producer or Consumer.

5.3.2 Message Validation Service

The NGN Transport Stratum consists of heterogeneous networks that act

as one converged network [M.3060]. One major problem for managing the

converged network is managing heterogeneous management information

that the different networks produce. Generally, the management

information extracted from different networks could contain errors

regarding the content of the information that they share or could share

messages that cannot be understood by other applications. A solution for

this problem is to subjecting their information to reference validation. For

this reason, a validation mechanism is proposed in order to eliminate the

creation of unnecessary faults and errors in invalid messages which store

invalid information regarding specific managed nodes that cannot be later

processed by the GNMS. A validation service component has been

developed for validating messages received from heterogeneous LNMSs.

190

5.3.2.1 Validation XML Schema for Management Messages

In general, a well-formed message is a message that conforms to the XML

syntax rules [W3C09]. These rules are illustrated below:

• The message has to begin with an XML declaration such as

<?xml version="1.0" encoding="UTF-8"?>.

• The message must have one unique root element.

• The start-tags must have matching end-tags (i.e.

<Results></Results>).

• All elements in the message has to be case sensitive.

• Attribute values have to be quoted (i.e. xmlns="http://esb.nms1.org")

• All elements must be properly nested.

The message, even if it is well-formed, it can still contain errors. These

errors are related to the content of the information that each message

provides. In order to avoid errors related to the content of the message,

the proposed Network Management Platform defines its own schema

(Validation.xsd) that is stored in the metadata repository. The Core NMS

Service Bus uses the Validation.xsd schema in order to describe the

messages in a way that the GNMA client can understand.

The Validation.xsd schema contains elements and attributes from different

LNMSs; each LNMS may have different element representation for

expressing the same type of information from other LNMS. For instance,

eventid element (<eventid>) defined in LNMS1 and id element (<id>)

defined in LNMS2 both indicate an event identifier with an integer attribute

191

type. All valid elements and attribute types need to be included into the

validation schema.

The XML schema (xsd) describes the structure of the XML-based

message. The purpose of the schema is to define the legal building blocks

of the message. The schema contains a formal description of what

comprises a valid message. In more detail, the XML schema defines

[W3C09]:

• Elements that can appear in the message.

• Attributes that can appear in the message.

• Data types for elements and attributes.

• Default and fixed values for elements and attributes.

• Child elements in the message.

• Order of the child elements.

• Number of the child elements.

• Whether an element can have an empty value or needs to include

management data.

All the attribute names that have been used in the Validation schema were

standardized and defined by the W3C recommendation [W3C09]. The

namespace URI that defines the standardized attributes in the Validation

schema is the xmlns:xs="http://www.w3.org/2001/XMLSchema".

Figure 5.9 shows the XML schema of the message defined in the

Message Validation Service.

192

Figure 5.9: Message Validation.xsd schema

The first line of the XSD (eXtensible Schema Definition) document

indicates the version of the XML specification that the document uses

since the Validation.xsd schema is based on the first version of the XML

standard.

The schema specifies a unique ID attribute with the value “Results”. This

ID value classifies the schemas of the Message Validation Service in case

other schemas are needed to be stored in the metadata repository for

other validation purposes. The namespaces (xmlns) attribute returns with

Uniform Resource Identifier (URI) attributes to identify the domain where

the event occurred. The targetNamespace attribute specifies the URI

reference of the namespace of the schema. The ‘Results’ element is

defined as a complex type in the validation schema and can be referred to

as the parent element in this example schema. The parent element has

193

several child elements (or nested elements) as presented in the table

below (Table 5-2).

Table 5-2: Nested elements in the Validation schema

Nested elements (NMS1
and NMS2) Description

NMS1: eventid
NMS2: id

Unique numeric value indicated in each event that occurs

NMS1: eventuei

Indicates the Network Management tool that has been used
to initiate the event (i.e. OpenNMS, CACTI, OpenView,
NINO, etc.)

NMS1:eventtime
NMS2collect

Time of the event

NMS1: eventhost
NMS2: host

Indicates the IP address of the Network Element that the
event occurred

NMS1: eventsource
NMS2: operatingsystem

Description of the network element

NMS1: eventdpname
NMS2: location

Location of the network element

NMS1:eventcreatetime

Timestamp of the event stored in database

NMS1: eventdescr
NMS2: Description

Description of the event

NMS1: eventlogmsg

Description of the event presented as a log message

NMS1:eventseverity
NMS2:severity

A value indicating the severity of each event

NMS1:eventlog

Indicates the choice of storing the description of the event
message

NMS1: eventdisplay

Indicates the choice of displaying the event message in the
NMS

NMS2: Sverityid

Numeric value indicating the id of the severity

NMS2: name

Indicates the event element name

NMS2: operatingsystem

The platform type of the network element that the event
occurred

NMS2: devicetype

Indicates the type of the network element (router, switch,
etc.)

NMS2: statuscheck

Indicates the if the network element is registered for events

The nested elements specified in the Validation schema can occur more

than once in the message to allow each message to contain more than

one event in order to reduce message interactions between application

194

clients in the LNMSs and GNMS. As a result, the network’s bandwidth

consumption can be minimized. Table 5-3 illustrates the XSD attributes

used in the validation schema.

Table 5-3: XSD attributes

XSD attributes Description
xs:complexType A complex type element is an XML element that contains other

elements and/or attributes
xs:int The integer data type is used to specify a numeric value without a

fractional component
xs:string The string data type can contain characters, line feeds, carriage

returns, and tab characters
xs:dateTime The dateTime data type is used to specify a date and a time. The

dateTime can be specified in the following form "YYYY-MM-
DDThh:mm:ss"

xs:sequence The sequence element specifies that the child elements must
appear in a sequence. Each child element can occur from 0 to any
number of times

minOccurs indicator that specifies the minimum number of times an element
can occur

maxOccurs indicator that specifies the maximum number of times an element
can occur

The child elements defined in the Validation schema have the following

values: integers, strings, and date and time. Moreover, the number of the

element occurrence is defined in the schema by using the maxOccurs

attribute. The value of maxOccurs is set to “unbounded” in order to

indicate that the nested elements can have unlimited appearance in the

message. The attribute name minOccurs indicates the minimum number of

times an element can occur in the message. The xs:sequence attribute

defines the appearance order of the nested elements in the message. The

type attribute indicates the value type of the each nested element that is

expected.

195

5.3.2.2 Message Validation Service Architecture

Applications in the GNMS, i.e. the GNMA, which are the message

receivers, must be able to interpret the messages published by the

applications in the LNMSs and understand their meaning. This is not

always possible, because a message could be invalid. For example, the

message body may cause parsing errors or lexical errors, or there are

missing information in the message header, or the properties values in the

message itself are wrong.

In other cases, when virtual channels are categorised into different groups

for different management information type, if a message is put in the

wrong category, the Message Validation Service should be able to detect

such error.

In Figure 5.10, the messaging service creates an incoming messaging

channel and two outgoing message channels. The incoming message

channel receives the messages transmitted by LNMAs. As for the two

outgoing channels, one is responsible for connecting the message

validation service with the GNMA and the other with the error message

handler.

196

Figure 5.10: Message validation Service

A message sent by a LNMA will be validated before reaching its destined

message consumer, the GNMA. This message contains management

information regarding a fault in a network node. The message is passed to

the virtual channel and is processed through the Message Validation

Service, where it will be compared against a validated XML schema. If the

messages satisfy the requirements of the XSD schema, then they can

successfully proceed to the destination, which is the GNMA. If they fail, the

Message Validation Service initiates an invalid fault alert and sends the

invalid messages to the error message handler.

5.3.3 Message Transformation Service

5.3.3.1 Architecture

Legacy systems only understand their own proprietary protocols and

messages and rarely agree on a common data format. This makes system

and data integration virtually impossible. One solution for integrating

heterogeneous systems is to modify the systems through data

197

transformation, where data of one system is transformed into the data

format of the other. However, this is not the most efficient way to integrate

systems due to the fact that it requires a lot of changes in the system’s

logic and data format changes are not economically feasible [CARE02a].

Furthermore, adjusting the data format of one system to match that of

another system makes the overall architecture more tightly-coupled.

Another approach is to use XML-based messages to enable service

interoperability. Transformation is performed using a stylesheet language

called XSLT (eXtensible Stylesheet Language Transformation) to

restructure XML documents from one format to another and to transform

and/or enhance the content of the XML message. The stylesheet specifies

how the XML data will be displayed. XSLT uses the formatting instructions

in the stylesheet to perform the transformation. These instructions inform

the transformation processor of how to process a source document in

order to produce a target document that is understood by all systems.

Figure 5.11: Message Transformation Service created in the Network Management Platform

198

Figure 5.11 demonstrates the Message Transformation Service that

transforms messages from one format into a common format. In this

scenario, messages are sent to the GNMA by two applications of two

different LNMSs. The messages need to be transformed into a common

information model to be understood by the GNMA.

Messages from LNMA1 (MM1) and messages from LNMA2 (MM2), each

having its own proprietary data formats, are passed to a common

message incoming channel created by the Message Service in order to be

delivered to and processed by the Message Transformation Service. The

Messaging Service also creates an outgoing messaging channel

responsible for connecting the GNMA to the Message Transformation

Service.

The Message Transformation Service has a central repository for storing

metadata defining the appropriate message format understood by the

GNMA. The metadata can be stored in a number of formats. A common

format for XML messages is defined in the XSLT. The Message

Transformation Service makes an external call to the metadata repository

for a lookup (searching the data structure of the XSLT). The messages

(MM1 and MM2) are compared against the XSLT schema and the content

is being transformed according to the XSLT schema. Finally, the

Messaging Transformation Service will place the transformed messages to

the outgoing messaging channel for delivery to the GNMA.

In the case the Transformation Service component is required to transform

information based on different information models, each XML namespace

(xmlns) included in the messages, has to be mapped to a particular XSLT

199

stylesheet. In the proposed NMP, it is assumed that GNMAs follow a

common information model and as a result, one XSLT stylesheet is

required.

5.3.3.2 The XSLT Transformation Stylesheet

The XSLT stylesheet must be a well-formed XML document and should

comply with XSLT specification [W3C99b], which describes the allowed

syntax and vocabulary. The content of the stylesheet depends on the input

document structure (schema) and the required output structure. The XSLT

stylesheet consists of a set of rules referred to as templates. A template

consists of template rules that have two parts: a pattern which is matched

against nodes in the source tree and a template which can be instantiated

to form part of the result tree. This allows a stylesheet to be applicable to

many documents that have similar source tree structure. Figure 5.12

illustrates the implemented stylesheet for the Message Transformation

Service.

200

<?xml version="1.0" encoding="utf-8"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="Results">
<xsl:apply-templates select="Row"/>

</xsl:template>

<xsl:template match="Row">
<xsl:for-each select="Row">

<event_id><xsl:value-of select="id"/></event_id>
<event_IP><xsl:value-of select="host"/></event_IP>
<event_source><xsl:value-of select="name"/></event_source>
<event_Location><xsl:value-of select="location"/></event_Location>
<Host><xsl:value-of select="devicetype"/></Host>
<event_status><xsl:value-of select="statuscheck"/></event_status>
<event_Time><xsl:value-of select="collect"/></event_Time>
<severity_id><xsl:value-of select="severityid"/></severity_id>
<Severity><xsl:value-of select="severity"/></Severity>
<event_system><xsl:value-of select="operatingsystem"/></event_system>
<event_Description><xsl:value-of select="description"/></event_Description>
<event_id><xsl:value-of select="eventid"/></event_id>
<NMS_name><xsl:value-of select="eventuei"/></NMS_name>
<Time><xsl:value-of select="eventtime"/></Time>
<event_IP><xsl:value-of select="eventhost"/></event_IP>
<Host><xsl:value-of select="eventsource"/></Host>
<Location><xsl:value-of select="eventdpname"/></Location>
<event_Time><xsl:value-of select="eventcreatetime"/></event_Time>
<event_Description><xsl:value-of select="eventdesc"/></event_Description>
<Output Message><xsl:value-of select="eventlogmsg"/></Output Message>
<Severity><xsl:value-of select="eventseverity"/></Severity>
<eventlog><xsl:value-of select="eventlog"/></eventlog>
<eventdisplay><xsl:value-of select="eventdisplay"/></eventdisplay>

</xsl:for-each>
</xsl:template>
</xsl:stylesheet>

Figure 5.12: Transformation.xslt

The transformation.xslt begins with an XML declaration indicating the XML

version that has been used and the encoding style. The <xsl:stylesheet>

element defines the start of the stylesheet and declares the document to

be an XSLT stylesheet. This element must have a version attribute to

indicate the version of the XSLT in which the stylesheet is based on. In

addition, this element declares the URI XSLT namespace attribute to

ensure the uniqueness of the elements. The template element

<xsl:template> contains rules to apply when a specified node is matched

in the input message. These rules describe the contribution that the

matched elements make to the output message. The ‘match’ attribute in

the template element specifies which node of the input message the

template is instantiated for.

201

When the XSLT transformer reads the input message, the root is the first

node it processes and the rules matched that root node are carried out.

The <xsl:apply-templates> element has been used to apply template rules

to node <Row> of the incoming message. By applying the <xsl:appy-

template> element , the XSLT transformer is instructed to compare each

child element of the matched element (<Results>) against the templates in

the XSLT stylesheet, and if a match is found, it performs the template for

the matched node. In other words, when the processor in the XSLT

transformer comes across child nodes that have value <Row> from the

root node <Results> then it will process it.

The process is performed by applying the second xsl template that

transforms child nodes of the parent <Row> into different node values. In

order to perform transformation to every Row node that the message will

have, the use of ‘for-each’ function has been applied. For example, for

every node <Row> that has element value <id>, the XSLT transformer will

modify the value to <event_id>. All elements that are required to be

transformed need to be included in this template.

5.3.4 Message Routing Service

5.3.4.1 Routing Interfaces

Network intermediaries such as routers are discouraged to provide value-

added application aware functions in the network infrastructure to avoid

violating the internet’s design guideline that states “network elements

should not process packets that are not addressed to them” [BALD05] As

202

a result of the advances in hardware, software and network technologies,

intermediaries are capable of processing data and providing decisions

according to the content of the information [CAPO02], [CAST02]. For

instance, peer-to-peer networks (P2P) use content-based routing

mechanisms for dispatching information from publishers to subscribers

[BHOL02]. Driven by the peer-to-peer network processing methods, a

Routing Service component has been developed to provide routing

functions based on the content of the messages.

Routing functions target messages that have been sent by the LNMAs and

need to be distributed to different application clients of the GNMS. By

implementing the Routing Service in the Middleware Layer, neither the

GNMA nor individual LNMAs need to be concerned with routing functions

(i.e. the destination of the message, message priority etc). As a result,

these services become more loosely-coupled and more reusable because

they do not have to specify the number of consumers that will be attached

to or how to prioritize the message exchange.

As an illustration, Figure 5.13 shows a tightly-coupled scenario where

different applications in the GNMS, i.e. the GNMAs, need to know the

intimate details of how every LNMA wants to be communicated with, the

number of methods it exposes and the details of the parameters that each

method accepts. As the number of service components of each NMS

increases, the number of interface connections that need to be created

and maintained increases to n(n-1)/2 where n is the number of

applications (n=6) [CHAP04]. This formula makes two assumptions for

calculating the number of interfaces. First, it assumes that each

203

application endpoint has only one interface, and second, it assumes that

every application needs to interact with every other application.

Figure 5.13: Number of tightly-coupled interfaces between network management remote

systems

With the Routing Service provided by the Core NMS Service Bus, the

number of interfaces is equal to exactly the number of remote services.

This approach adds more flexibility to the infrastructure and makes the

architecture more extensible for future needs.

Figure 5.14 shows a comparison of the interfaces that need to be created

for an architecture that follows a tightly-coupled approach and an

architecture that follows a loosely-coupled approach.

204

0

1000
2000

3000

4000
5000

6000

10 20 30 40 50 60 70 80 90 100
Number of Remote Services

N
um

be
r o

f I
nt

er
fa

ce
s

Tightly-coupled approach

Loosely-coupled approach

Figure 5.14: Number of interfaces for tightly-coupled and loosely-coupled remote services

5.3.4.2 Routing Functions and Routing Rules

The Routing Service is responsible for performing routing functions and

this is achieved by applying routing rules based on the content of each

message. Moreover, the Routing Service provides intelligent routing rules

for routing messages to the appropriate destination. Motivated by the

Enterprise Application Integration Patterns (EAI) that introduce solutions

for integrating applications, the Routing Service implements three

functions based on EAI [HOHP04]:

1. Content-based routing functions,

2. content-enrichment functions,

3. Content splitting functions.

Figure 5.15 demonstrates the Routing Service performing content-

enrichment functions, splitting functions and content-based routing.

205

Figure 5.15: Routing Service performing routing functions in the Middleware Layer

When a message is sent from a LNMA to the Core NMS Service Bus via

the incoming message channel, the Routing Service is activated. The

content-enrichment function will inject additional information on each

message indicating its origin. Each message is a large XML-based

message, thus the splitting function is applied in order to split the message

into smaller messages, where each message will contain one event of an

individual network node. These event messages are processed by the

routing function. Routing function routes the event messages based on the

actual content of the message, rather than by the destination specified in

the message header. The Routing Service parses the Event Message

(EM) and applies a set of rules to its content to determine the event

message’s destination. As a result, the Routing Service provides a high

degree of flexibility and adaptability to change. These are essential factors

that should be taken into account when designing an SOA framework.

5.3.5 Persistent Storage Service

One of the middleware services offered by the Core NMS Service Bus is

the provision of a persistence store that is designed for message

206

persistence. The persistent store is a relational database (MySQL) that

stores all incoming and outgoing messages to and from the Core NMS

Service Bus and to examine messages by querying the database

[MySQL]. It is used in order to recover the data in case of a Middleware

failure or failures of the LNMSs or the GNMS in order to increase

reliability. The persistence store uses a schema consisting of three tables.

Two of the tables are used in order to hold messages and the third table is

used as a lock table in order to ensure that only the middleware can

access the persistence store. The use of persistence store makes the

NMP more reliable and fault tolerant.

5.3.6 Message Archiving Service

The messages that are passed through the Middleware Layer are stored

into folders for inventory purposes. The Message Archive Service is

created to accommodate management information in XML-based form

messages. This service creates folders according to the message

destination and stores all the messages that have been transmitted from

different LNMSs. This function allows external access from service

providers to request information regarding the health of the managed

networks for inventory purposes. Six different folders have been created

by the Archive Service in the vicinity of Middleware Layer. These folders

are described in Table 5-4.

207

Table 5-4: Folders storing messages

Folder name Storing name
NMS1_F Contains all the messages (MM1) transmitted by NMS1.
NMS2_F Contains all the messages (MM2) transmitted by NMS2.
MService1_F All messages (MS1) received by Management Service 1.
MService2_F Contains all messages (MS2) received by Management Service

2.
MService3_F Contains all messages (MS2) received by Management Service

2.
MService4_F contains all messages (MS4) received by Management Service 4
Topic1_F All messages from Topic1
Topic2_F Contains all messages from Topic2
Topic3_F Contains all messages from Topic3
Topic44_F contains all messages from Topic4

5.4 Conclusion

NGN is a very dynamic environment. Services will continuously need to be

activated and deactivated in the Service Stratum. Devices will be added,

removed and change configuration in the Transport Stratum; therefore,

managing NGN will be a challenging task. NGN might be considered as

one network, but it is by far the most complex of all. Its management has

to deal with multiple vendors, multiple applications, multiple physical

devices from data and voice networks, multiple databases, and multiple

service layers (infrastructure plane, control plane, service plane). Any

management solution for NGN must be architected in a way that it can

scale to manage the current and future NGNs. This scalability challenge is

a requirement for flexibility so that the solution can be rapidly adapted to

support new services and technologies in the future without the need for

long term and complex upgrades. SOA-based architecture facilitates loose

coupling and “plugability” of new interfaces. As a result, it provides

208

extensibility and flexibility. The Middleware Layer, which is based on

message-oriented technology, is the most important layer in the creation

of an SOA-based framework that simplifies the task of bridging the

distributed systems.

The benefits of using messaging technology for the development of the

NMP include asynchronous communication, platform and language

integration, throttling, variable timing and reliable communication.

• Asynchronous Communication: For the NMP, remote

communication is a vital requirement due to the fact that the

architectural approach follows a distributed pattern. The NMP is

based on asynchronous communication. Messaging service

supports this communication pattern by enabling the ‘send-and-

forget’ approach. In this approach the sender which in this case

is the LNMA does not have to wait for the GNMA to receive and

process the message. The sender only needs to wait for the

message to be sent and successfully stored in the messaging

channel. Once the message is stored in the Middleware Layer,

the LNMS can perform other tasks while the message is

transmitted to the GNMA. The messaging service component

acts as a universal communication point that allows the

communication among remote systems that reside on different

operating platforms and are written in different programming

languages.

209

Synchronous communication on the other hand, can cause

performance degradation and even cause the receiver to crash

if too many calls are received on a single receiver. In contrast to

synchronous communication where the caller must wait for the

receiver to finish processing the call before the caller can

receive the result in order to be able to continue, asynchronous

communication has variable timing. The variable timing gives

the ability to the LNMAs to submit requests to the GNMA in

order for the messages to be processed at their own rate. This

allows NMSs to run at maximum throughput and not having

delays on waiting the messages to be processed by the GNMA.

• Platform and Language Integration: Communication in the

NMP is based on XML messages and not on exchanging object

data structures. The functionality of each service is abstracted

and defined in an interface form, where other systems can use it

and bind with it. The method calls are based on messages that

are abstracted from the programming language that is used. As

a result, management systems programmed in Java language

can communicate with other management systems implemented

in other languages.

• Throttling: Messaging services provide throttling. This is an

important requirement in the design of the NMP due to the fact

that the messaging service queues up requests until the

receiver is ready to process them. The consumer is able to

210

control the rate at which it consumes requests so as not to

become overloaded by too many simultaneous requests.

• Reliability: Furthermore, messaging service provides reliable

delivery through the store-and-forward approach for transmitting

messages that the messaging service supports. Management

data is packaged as messages, which are atomic and

independent units. When a LNMA sends a message, the

messaging service in the Middleware Layer stores this message

and it then delivers it by forwarding it to the GNMA. In addition,

the provision of Persistent Messaging and Message Archiving

Service also increase the reliability of message delivery.

This chapter has presented the design and the development of the

Network Management Middleware Layer. The service components that

have been created in order to provide middleware functions have been

analyzed. The Middleware Layer of the NMP enables communication and

transfer of management information between heterogeneous NMSs. The

main contribution in this chapter is the design of a proposed Network

Management Middleware Layer, which is the basis for developing the

SOA-based NMP. The contribution includes

• the design of a messaging service that is a component, which

allows the communication and data transfer from one

management system to another.

211

• a persistence store that is designed for message persistence

and which stores all messages. This service is used for

recovering management data in case of a middleware failure.

• a validation service that is created for the purpose of validating

messages received from heterogeneous NMSs. Validating

messages eliminates the creation of unnecessary faults and

errors by invalid messages.

• a transformation mechanism that will be responsible for dealing

with different data formats is described. Taking into account the

problem that arose from legacy systems, the NMP needs the

transformation mechanism in order to be able to accommodate

heterogeneous systems.

• a Routing Service has been created in order to minimize the

interfaces and the dependencies among remote services as well

as to provide intelligent routing rules for delivering the messages

to the appropriate destination.

• finally, a Message Archive Service was designed in order for the

messages that passes through the Middleware Layer to be

stored into folders for reliability and inventory purposes.

212

Chapter 6 : IMPLEMENTATION, TESTING AND

EVALUATION

6.1 Introduction

This chapter focuses on the implementation and evaluation of a global

network management prototype based on the proposed SOA-based NGN

management framework presented and designed in previous chapters.

The prototype development is divided into two phases:

• Software module development for the Core NMS Service Bus.

• Prototype development including the development of a Trouble

Ticketing System (TTS) as an application.

Individual software modules for the Core NMS Service Bus are tested

before integrating into the testbed. The global network management

prototype is developed by integrating the Core NMS Service Bus with the

TTS. The prototype as a whole is then tested and evaluated, subject to a

set of test scenarios and evaluation criteria.

This chapter is organized as follows: section 6.2 presents the

implementation architecture of the proposed Core NMS Service Bus. The

Validation Service, Transformation Service and the Routing Service are

explained. Next, a Trouble Ticketing System that is a part of the proposed

Network Management Platform is presented. Finally, the testing

environments as well as testing scenarios are illustrated, followed by an

analysis and discussion.

213

6.2 Service Implementation in the Core NMS

Service Bus

The Core NMS Service Bus is implemented using the open-source ESB.

The Core NMS Service Bus that provides the proposed service

components (Messaging Service, Message Validation Service, Message

Transformation Service, Routing Service and Archive Service) has been

implemented on the ServiceMix ESB platform [SERVICEMIX]. The overall

Core NMS Service Bus architecture is depicted in the following figure

(figure 6.1)

Figure 6.1: Developed Core NMS Service Bus

In figure 6.1, LNMS1 and LNMS2 are sending management information to

the Core NMS Service Bus. Their management information is

214

encapsulated in XML-based messages that are processed by services in

the Core NMS Service Bus. The destinations of the management

information are four GNMAs each of which consumes a particular type of

messages. The process order in the Core NMS Service Bus is as follows:

first, messages are being validated, second, messages are being

transformed, and lastly, messages are routed to queues and topics. The

following subsection presents the proposed service components used for

providing a dedicated middleware function.

6.2.1 Message Validation Service

6.2.1.1 Implementation Architecture

To demonstrate the validation process of the management messages, a

Message Validation Application has been developed for such a purpose.

This application is written in Java language and is based on the Swing

framework [JSR296] Swing technology is used in order to provide a

sophisticated GUI that is lightweight and independent of software

platforms [JSR296]. Figure 6.2 illustrates the proposed implementation

architecture for validating management messages. The communication

between LNMSs and Core NMS Service Bus is based on queues where

all NMS systems will make use of only one connection point in order to

send management messages to the Core NMS Service Bus. Three

message queues are created to provide asynchronous communication

with the Message Validation Service:

• The Validation.in stores management messages created by NMSs

215

• The Validation.out stores the successfully validated management

messages processed by the Message Validation Service

• The Validation.error message queue stores management

messages that do not comply with the validation schema

(Validation.xsd).

The Message Validation Application is connected to the Validation.in

message queue and listens to the Validation.out and Validation.error

messages queues.

Figure 6.2: Implementation of the Message Validation Service

The development of the messaging queues is based on the JMS

technology (JMS API) [SUNJMS]. In this scenario, LNMS1 and LNMS2

store management messages from LNMA1 and LNMA2 respectively into

the Validation.in message queue. Additionally, the Message Validation

Application can create XML-based messages and store them into the

Validation.in message queue. This function has been developed

216

specifically for the testing scenario where each management message can

be customized according to specific testing rules. For instance, instead of

waiting for the LNMA1 and LNMA2 to create a valid or invalid

management message, the application can produce valid and invalid

management messages and inject them directly into the Validation.in

message queue. Moreover, management messages can be viewed

through the application’s GUI.

6.2.1.2 Algorithmic Process for the Message Validation Service

Figure 6.3 illustrates the process that the Validation Service performs in

order to distinguish valid and invalid management messages. A valid

management message is the message that complies with the specified

schema and an invalid management message is the message that does

not comply with the schema.

Two functional components outline the Validation Service:

• Error Handler

• Validation Component.

The Error Handler is responsible for message exchange between the

Validation Component and the message queues (Validation.in,

Validation.out and Validation.error). The Validation Component decides

whether a management message is valid or invalid. The decision is made

by comparing the XML structure of the management message to the

structure that has been defined by the XML schema. Java API for XML

Processing offers an API for validating XML documents [JAXP]. JAXP

Validation API [JAXP] (javax.xml.validation.*) that has been used for

217

developing the validation component, instantiates an object representation

of a schema and uses it to validate one or more XML documents.

Figure 6.3: Process for validating management messages

Figure 6.4 demonstrates the initialization process of the Message

Validation Service. First, the Message Validation Service is initialized. The

Core NMS Service Bus command line shell indicates that the Message

Validation Service has started and the Error Handler is active.

Furthermore, the command line shell indicates the IP address of the Core

NMS Service Bus where the Message Validation Service resides.

218

After the initialization process, the Error Handler creates an In-Out

Message Exchange Pattern (MEP). The In-Out MEP is used to receive

management messages from the Error Handler and to respond back.

Next, the Error Handler copies the management messages from the

Validation.in message queue and sends them to the Validation

Component. The Validation Component parses the content of the

management message.

If the content and syntax of the XML-based management message

complies with the Validation.xsd schema then it forwards the message to

the Error Handler and the Error Handler stores the management message

to the Validation.out message queue. If the content and the syntax of the

management message do not comply with the Validation.xsd schema then

the Validation Component creates an error message that contains the

parsing errors and forwards the message to the Error Handler. The Error

Handler, which has an established In-Out MEP, stores the error message

to the Validation.error message queue.

Figure 6.4: Message Validation Service, initialization process

219

6.2.2 Message Transformation Service

6.2.2.1 Implementation Architecture

Figure 6.5 illustrates the implementation of the Message Transformation

Service. After management messages have been validated, the

Validation.out messaging queue containing the successfully validated

management messages becomes the input queue for the Message

Transformation Service.

Figure 6.5: Implementation of the Message Transformation Service

The messaging service has created the Transformation.out messaging

queue in order to store the transformed management messages.

Moreover, an application has been developed in order to demonstrate the

transformation process. This application is based on the Message

Validation Application but has been modified to enable injection of

management messages to the Validation.out messaging queue and read

messages that have been stored in the Transformation.out messaging

queue.

220

An XSLT Transformer component has been developed in order to perform

the transformation function. The transformation function is performed by

using the Saxon API [SAXON]. The latter is able to transform an incoming

message based on XSLT stylesheet. Saxon provides an XSLT processor

that takes as an input an XML document and stylesheet to convert the

XML document to other formats. In the transformation function, the

processor reads through the XML document tree, looking at each node in

turn, and compares it with the pattern of each template rule in the

stylesheet as described in chapter 5, section 5.3.3.1. When the processor

finds a node that matches a template rule’s pattern, it outputs the rule’s

template. After the transformation process, the management message is

stored into the Transformation.out messaging queue.

6.2.2.2 Implementation Process

The management messages that have been stored in the Validation.out

queue have been created by two LNMAs of different LNMSs with different

data representation. This means that the messages sent to the Core NMS

Service Bus are not homogeneous. Figure 6.6 illustrates the management

information of an event that has been generated by LNMS 1 and an event

generated by LNMS2.

221

Figure 6.6: Events occurred in two different NMSs

The Validation.out messaging queue contains two types of management

messages where each event is expressed by using different element

names. For instance, in LNMA1 the IP address of the occurred event is

encapsulated in an element with name <eventsource>, whereas in NMS2

the element that encapsulates the IP address of an event is <Host>. In

order to have a common information model that can be understood by

other management applications, such as Trouble Ticketing Systems, both

events need to be translated into a common message format. The

transformation rules that are used by the Message Transformation Service

are contained into the transformation.xslt stylesheet.

The common Information model used in the Core NMS Service Bus is

illustrated in figure 6.7. It represents only a subset of a standardized

information model and it is used as a guideline for legacy information to be

able to be expressed into a common model.

222

Figure 6.7: Common information model used for event mapping

SID [M.3190] can be used in order to provide the common information

model in the Network Management Platform so that ‘legacy’ information be

transformed into a standardized format. In this way, applications based on

the NGOSS framework [NGOSS04] could be integrated in the Network

Management Platform. SID specification, even if it is an open industry

standard, it is not publicly available without a membership license fee

[M.3190].

6.2.3 Message Routing Service

6.2.3.1 Implementation Architecture

The implemented Routing Service is based on the JAXP API [JAXP].

JAXP API deals with XML payload and provides XPath routing functions

based on the content of an XML document [JAXP]. Figure 6.8 illustrate the

components of the Core MS Service Bus and their relationships.

223

Figure 6.8: Implementation of the Routing Service

Both point-to-point and publish/subscribe communication patterns are

used for communication between the LNMSs and the GNMA through the

Core NMS Service Bus. With the publish/subscribe paradigm, four

different topics (Topic1, Topic2, Topic3, and Topic4) have been defined for

publishing different management information acquired from the local

NMSs.

• Topic1 publishes critical event messages and configuration

messages acquired from different NMSs. Critical events are related

to fault management information (i.e. an interface is down).

Moreover, the Topic1 topic publishes events related to

configuration management. For instance, an interface is up, a

server has been restarted, etc.

224

• Topic2 publishes events related to performance measurements

acquired from NMS systems. These measurements are classified

as minor events. Furthermore, this topic publishes events related to

configuration management. For the implementation, two NMS

systems are used (NMS1 and NMS2).

• Topic3 publishes information related to fault management,

performance management and configuration management acquired

from NMS1.

• Topic4 publishes event messages containing faults, performance

and configuration measurements acquired from NMS2.

The publish/subscribe pattern based on topics has been proposed in order

to completely decouple the GNMA from the LNMSs. The management

information in each topic can be consumed by GNMAs. Each GNMA can

now specify the type of management information that is required for them

to process in order to perform their own functions. For instance, one or

many customer care services from different service providers can connect

to Topic2 in order to monitor and improve the QoS of their customers.

Furthermore, GNMAs are required to have a communication channel that

will allow them to communicate with each other. The communication

pattern used for inter-GNMA intercommunications is based on the point-to-

point approach. The reason for choosing this approach is that the each

GNMA should have a dedicated messaging queue in order to receive

information from other GNMA. For this reason, four messaging queues

have been created (MS1, MS2, MS3, and MS4).

225

6.2.3.2 Routing and Publishing Management Information

The content of the management message defines an element tag

<severity></severity> that determines the severity level of the

management information. Three types of severity levels have been

defined: critical level, minor level and notifications. The critical events are

dedicated to fault management indicating faults occurred in the network.

The minor level events are concerned with performance measurements.

Notifications are events depicting configuration parameters of the network.

For NMS1 the severity levels are:

• <Severity> 1 </Severity> for critical events

• <Severity> 2 </Severity> for minor events

• <Severity> 3 </Severity> for notifications

For NMS2 the severity levels are:

• <Severity> High </Severity> for critical events

• <Severity> Low</Severity> for minor events

• <Severity> information <Severity> for notifications

As described in section 6.2.2, the Transformation Service transforms the

management messages into a common information model and stores

them into the Transformation.out messaging queue. Routing Service

consumes management messages from the Transformation.out queue

and processes them. First, the enriching function adds content to the

messages. This is performed due to the fact that in some messages the

payload may not contain any information concerning the identity of the

226

NMS that they were extracted from. A solution is proposed to add a

dedicated element tag in every management message payload indicating

the origin of the message.

Management messages contain an XML namespace (xmlns) header

indicating the origin of the message (figure 6.9). For instance, messages

published by LNMA1 have namespace attribute http://esb.nms1.org and

messages published from LNMA2 have namespace attribute

http://esb.nms2.org.

<?xml version="1.0" encoding="UTF-8"?>
<Results xmlns="http://esb.nms1.org"></Results>

Figure 6.9: LNMS1 namespace

The content-enriching function parses the management message and if

the namespace of the management message is http://esb.nms1.org then it

inserts an element tag <NMS> with value 1. If the namespace is

http://esb.nms2.org then the element tag will have value 2. This function is

implemented in the processor interface of the JAXP API. The psudo code

for this interface is illustrated below (figure 6.10):

Get namespaceURI

If (namespace.equals (“http://esb.nms1.org”)){
Normalized Message nms createMessage();
nms.setContent(new StringSource("<NMS>1</NMS>");
}

else if(namespace.equals (“http://esb.nms2.org”)){
Normalized Message nms createMessage();
nms setContent(new StringSource("<NMS>2</NMS>");
}

else{
 throw exception
}

Figure 6.10: enriching algorithm

227

The content-enriching function (figure 6.11) uses the JAXP Spring

technology [JAXP] in order to call the processor interface. The following

XML parameters have been implemented in order to define the

processor’s interface class (esb:DecisionPoint) and the service from which

the content-enriching function receives the management messages

(esb:TransformationService).

<content-enricher service="esb:ContentEnrichingFunction"
endpoint="EnrichingEndpoint">
 <enricherTarget>
 <exchange-target service="esb:DecisionPoint" />
 </enricherTarget>
 <target>
 <exchange-target service="esb:TransformationService" />
 </target>
</content-enricher>

Figure 6.11: content-enriching function

Each management message consists of multiple events. The splitting

function splits the management message into messages that contain an

individual event. Each <Result> parent element in the management

message contains multiple <Row> elements and each <Row> element

encapsulates an individual event. The following XPath expression is used

for splitting the management message into multiple event messages.

228

<xpath-splitter service="esb:RRouter" endpoint="RRouterEndpoint"
xpath="/Results/Row" namespaceContext="#nsContext">
<target>
 <exchange-target service="esb:AppInput" />
</target>

<namespace-context id="nsContext">
 <namespaces>
 <namespace prefix="nms1">http://esb.nms1.org
 </namespace>
 <namespace prefix="nms2">http://esb.nms2.org
 </namespace>
 </namespaces>
</namespace-context>

Figure 6.12: splitting function

In figure 6.12, the expression /Results/Row splits all Row elements that

are children of Results and forwards them to the content-routing function

(target-service=”esb:AppInput).

The namespace context is used as an identifier in the management

message and it is defined in the header of the management message, and

since there are more than one LNMA sending messages to the Core NMS

Service Bus, the namespace context indicates in which messages the

functions will be performed. For instance, the splitting function is

performed in management messages transmitted by both LNMS1 and

LNMS2.

The routing function uses XPath expressions in order to route each

message to the appropriate destination. Figure 6.13 shows the XPath

code which illustrates the routing function’s decision part for routing event

messages to Topic2. As stated earlier, Topic2 publishes events related to

performance management for both LNMS1 and LNMS2. The predicate

XPath expression denotes the rule to be applied while JAXP is parsing the

229

message. If the condition is true, then the output will be forwarded to the

exchange-target service (esb:duplicate1).

<content-based-router service="esb:AppInput"
endpoint="AppInputEndpoint">

<rules>
 <routing-rule>
 <predicate>
 <xpath-predicate
xpath="//nms1:severity='2'|xpath="//nms1:NMS='1'"
 namespaceContext="#nsContext" ></xpath-predicate>
 </predicate>
 <target>
 <exchange-target service="esb:Duplicate1"></exchange-
target>
 </target>
 </routing-rule>
 <routing-rule>
 <predicate>
 <xpath-predicate xpath="//nms2:severity='Low'|
xpath="//nms2:NMS='2'"
 namespaceContext="#nsContext" ></xpath-predicate>
 </predicate>
 <target>
 <exchange-target service="esb:Duplicate2"></exchange-
target>
 </target>
 </routing-rule>
<rules>
</content-based-router>

Figure 6.13: XPath Routing Rule

While Topic2 publishes events related to performance measurements

acquired from NMS1 and NMS2, Topic3 publishes the same events but

only from NMS1. Thus, two topics (Topic2 and Topic3) require the same

message to be published. The event message needs to be duplicated; as

a result, the XPath code as shown in figure 6.14 has been used in order to

create a copy of the original event message and send it to two

destinations (esb:Topic2 and esb:Topic3).

230

<wire-tap service="test:Duplicate1" endpoint="Dupendpoint1">
 <target>
 <exchange-target service="esb:Topic2" />
 </target>
 <inListener>
 <exchange-target service="esb:Topic3" />
 </inListener>
</wire-tap>

Figure 6.14: Duplicating messages

6.2.3.3 Process for Routing Management Message to Topics

Figure 6.15 shows the algorithmic process of the Routing Service that

decides the destination of the management messages.

231

Read Management
Message from

Transformation.out
queue

Add child element
<NMS> in every

<Row> parent element

XML
namespace =

NMS1?
Y

Add value 1 in
the <NMS>

N

Add value 2 in
the <NMS>

Split Management
Message into Event

messages

Is <severity>
= 1?

Is element
<NMS> = 1?

Is <severity>
= High?

Is <severity>
= 2?

Is element
<NMS> = 2?

Store event message to
Topic1Y

Y

Y

N
N

N

Y

N

Is <severity>
= Low?

Y

N
Store event message to

Topic2

Is element
<NMS> = 1?

Store event message to
Topic3

Store event message to
Topic4

Store event message to
error folder

Is element
<NMS> = 2?

Y

Y Y

Content-enriching
function

Splitting function

Routing
function

Is <severity>
= 3?

Is <severity> =
information?

Y

N

Is element
<NMS> = 1?

Is element
<NMS> = 2?Y

N

Duplicate message
and send to Topic1

and Topic3
Y

Y
Duplicate message
and send to Topic1

and Topic4

Duplicate message
and send to Topic2

and Topic4

Duplicate message
and send to Topic3

and Topic2

Send to
Topic1

Send to
error

Send to
error

N

N

Figure 6.15: Process for routing management messages to Topics

232

1. Routing Service consumes management messages from the

Transformation.out messaging queue.

2. The content-enriching function parses the management message

and adds the element <NMS> </NMS> in every <Row> parent

element. If the xmlns is http://esb.nms1.org the element <NMS> will

have value of 1, if not, the value of <NMS> will be 2.

3. Next, management messages are split into event messages. Each

event message contains information regarding an individual event

occurred in the managed network. Each event contains an element

that indicates the severity of the event.

4. After management messages have been split, routing function

parses each event message and:

• If the EM message has an attribute value of 1 in the severity

element and if the value of the NMS element is set to 1, then the

EM message is routed to Topic1.

• If the EM message has an attribute value of High in the severity

element and if the value of the NMS element is set to 2, the

destination of the EM message is again Topic1.

• If the severity element has an attribute value of 2 and the NMS

element has value 1, then the EM message is duplicated and

routed to Topic1 and Topic3.

233

• If the EM message has an attribute value of Low in the severity

element and if the value of the NMS element is set to 2, then the

EM message is duplicated and routed to Topic2 and Topic4.

• If the attribute value of severity element is 3 and if the value of

the NMS element is set to 1, then the EM message is routed to

Topic1 and Topic3.

• If the attribute value of severity element is information and if the

value of the NMS element is set to 2, then the EM message is

routed to Topic1 and Topic4.

• If the predefined severity values or the NMS values do not exist

in the EM then the message is stored into an error folder in the

Core NMS Service Bus.

6.2.3.4 Process for Management Service Inter-communication

Even though management services subscribe to one or all topics for

acquiring management information, it is necessary for them to be able to

communicate with each other. Topics are publishing messages to the

subscribed applications, this means that the same message is multiplied

and ‘pushed’ to the registered destinations.

To establish communication among GNMAs, four queues have been

developed one for each GNMA. These queues are uni-directional,

meaning that they can only receive information. For sending messages,

the services use the Validation.in messaging queue as depicted in figure

6.8. In every request/reply interaction, the application components of

GNMA are required to declare a unique namespace that will be included in

234

each message request. For example, xmlns=”http://esb.management.

service1.org is included in every message request by GNMA1. The XML

namespace can be used to identify the origin of the message so that each

service component in the Core NMS Service Bus is able to differentiate

the GNMA components. Message requests and replies do not need to be

validated or transformed as they would have already conformed to a

common information model. The xmlns is used as a rule for excluding the

messages from being processed by the validation service and the

transformation service. Hence, messages created by Management

Services can bypass the validation and transformation processes. To

route the messages to the appropriate queue, GNMAs need to indicate in

the message, the recipient’s intended destination. This will allow the

Routing Service component to process each message and route it to a

queue.

An element tag needs to be defined in each message

(<Destination></Destination>) indicating the recipient. Four values are

specified for the destination element:

• <Destination>MS1</Destination> for GNMA1 destination

• <Destination>MS2</Destination> for GNMA2 destination

• <Destination>MS3</Destination> for GNMA3 destination

• <Destination>MS4</Destination> for GNMA4 destination

The Routing Service component consists of three functions as stated

before. Content-enriching and splitting functions are not required to be

implemented for messages exchanged among GNMAs, Thus, they need

235

to be bypassed. The prefix values (i.e. Service1, Service2 etc.) bind a

particular rule function to a message that has the appropriate namespace

URI. In other words, it instructs the routing function to apply specific XPath

rules only to messages that have the approved xmlns URI. The XML code

in figure 6.16 illustrates the prefixes as well as the xmlns URIs used in the

routing function for the purpose of routing messages to MS1, MS2, MS3

and MS4 queues.

<namespace-context id="nsContext">
 <namespaces>
 <namespace prefix="Service1">http://esb.managementservice1.org
 </namespace>
 <namespace prefix="Service2">http://esb.managementservice2.org
 </namespace>
 <namespace prefix="Service3">http://esb.managementservice3.org
 </namespace>
 <namespace prefix="Service3">http://esb.managementservice4.org
 </namespace>
 </namespaces>
</namespace-context>

Figure 6.16: Namespace prefixes for the GNMAs

The XML code in figure 6.17 illustrates the XPath rules applied for routing

messages to the queues.

<rules>
 <routing-rule>
 <predicate>
 <xpath-predicate xpath="//Service1:Destination='MS1'
 namespaceContext="#nsContext" ></xpath-predicate>
 </predicate>
 <target>
 <exchange-target service="esb:MS1"></exchange-target>
 </target>
 </routing-rule>
 <routing-rule>
 <predicate>
 <xpath-predicate xpath="// Service2:Destination='MS2'
 namespaceContext="#nsContext" ></xpath-predicate>
 </predicate>
 <target>
 <exchange-target service="esb:MS2"></exchange-target>
 </target>
 </routing-rule>

236

<routing-rule>
 <predicate>
 <xpath-predicate xpath="//Service3:Destination='MS3'
 namespaceContext="#nsContext" ></xpath-predicate>
 </predicate>
 <target>
 <exchange-target service="esb:MS3"></exchange-target>
 </target>
 </routing-rule>
<routing-rule>
 <predicate>
 <xpath-predicate xpath="//Service4:Destination='MS4'
 namespaceContext="#nsContext" ></xpath-predicate>
 </predicate>
 <target>
 <exchange-target service="esb:MS4"></exchange-target>
 </target>
 </routing-rule>
<rules>

Figure 6.17: Routing rules for GNMA intercommunication

The Routing Service differs from classical routing methods in the sense

that management messages are addressed based on their content instead

of their destination. In conventional systems [BALD05], the sender

explicitly specifies the intended message recipients using either a unicast

address in the case when the recipient is one or a multicast address in the

case when there are many recipients. Instead, in the Network

Management Platform, the sender simply injects the management

messages in the network, and the Routing Service determines how to

route the management messages according to the recipient’s

(Management Service) interests. Therefore, the Middleware Layer

determines the message delivery and not the senders. Routing Service

results in a more optimal solution than conventional routing in the sense

that routing is dynamically reconfigured in one location and not in every

LNMS. LNMSs are focused on providing management functionality and

not performing routing algorithms that will couple them to specific clients.

237

Furthermore, interfaces among application clients are less when Routing

Service is used. Finally, routing algorithms could be easily updated and

adjusted according to the destination’s needs. Routing Service component

allows the Network Management Platform to be scalable for future needs.

For instance, when a new NMS needs to be added into the platform, the

Routing Service is in charge of providing the routing rules for deciding the

message destination and not the services.

For storing the messages into folders, the Message Archive Service

creates folder destinations where each message can be stored. The

folders are located in the Core NMS Service Bus and via FTP, remote

access can be achieved. A duplicate method has been defined in the

routing rule in order to duplicate each message before it is sent to the

topic or queue. The following XML code (figure 6.18) illustrates the wire

tap method used for duplicating messages. The figure shows only one of

the ten folders created in the Core NMS Service Bus. The messages sent

to Topic1 are also sent to Folder 1. A destination directory has been

created (NMS1_F) for storing the each message in an XML-based file.

<rule:wire-tap service="esb:wireTap6" endpoint="wireTapendpoint6">
 <rule:target>
 <rule:exchange-target service="esb:Topic1" />
 </rule:target>
 <rule:inListener>
 <rule:exchange-target service="esb:Folder1" />
 </rule:inListener>

<file:sender service="esb:Folder1" endpoint="folder1Endpoint"
 directory="file:NMS1_F"></file:sender>

Figure 6.18: Archive message duplication and destination of the message

238

Appendix E contains the Core NMS Service Bus, the routing service’s

routing rules.

6.3 Implementation of the Global Trouble Ticketing

System (TTS)

6.3.1 Implementation Architecture

TTS is a sophisticated application providing a number of tools related to

processing, categorizing and presenting the tickets. Tickets are incidents

that have been created in a network [GREE01]. TTS is used for network

management purposes, as well as for other business-related functions; for

example in many organizations in order to resolve reported customer

issues or even issues reported by the organization’s employees

[GREE01]. TTS acts like a hospital chart, coordinates the work of multiple

people who may need to work on the problem and aids the Network

Operations efficiency [JOHN92]. The functions that TTS performs are as

follows:

• It acts as a short-term memory about the specific problems for the

Network Operation Center (NOC) as a whole.

• It provides real time lists of open problems, sorted by priority and

allows network operators to keep track of the current NOC

workload.

• It is useful for statistically analyzing equipment and NOC

performance.

239

TTS is effective and efficient if it is integrated with network monitoring

systems for alert, with electronic mails for notification, and with other TTSs

for a global view of network status.

To evaluate the performance of the Core NMS Service Bus, four different

TTSs have been developed, each acting as the message consumer in the

MOM technology context. Using a loosely coupled SOA implementation,

the systems have been integrated with the Core NMS Service Bus that

connects with different LNMS. Each TTS handles a specific event and

sends out e-mail notifications to network operators and high-end

customers who are concerned with the performance of the network

service. The TTS’s architectural design consists of three main parts:

• Connectivity and Message Consumption part that connects the

Core NMS Service Bus with the TTS and how to consume the

messages.

• Presentation part that presents the application’s information through

a web-browser

• Application logic for creating and sending e-mails.

TTSs use the publish/subscribe paradigm to subscribe to any topics

related to management information (i.e. performance and/or fault

management etc.) that they are interested in. Moreover, TTSs use the

point-to-point paradigm and message queues for information exchange as

depicted in figure 6.19.

240

Figure 6.19: Trouble Ticket System integrated with Core NMS Service Bus

In the basic model that was designed in chapter 5, four topics are created:

• Topic1 contains fault- and configuration- related management

messages required for the GNMAs (i.e. TTSs)

• Topic2 contains performance management messages required

for the GNMAs (i.e. TTSs).

• Topic3 contains messages required by LNMS1 (i.e. Local

Network Planning, Local Provisioning, etc.).

• Topic4 contains messages for LNMS2 (i.e. Local TTSs,

Statistics, etc.).

These four different topics provide critical information about the network

status, i.e. fault and configuration both local and global. Although the

topics can also be classified according to Fault, Configuration, Accounting,

Performance and Security (FCAPS) functions. Furthermore, in a large-

241

scale information processing environment, content-based messaging

system can provide more choices. Content-based router examines the

message content and routes the message onto a different channel based

on data contained in the message. Routing can be based on a number of

criteria such as existence of fields, specific field values. However,

implementation will be much more complex when compared to topic-

based messaging. Thus, topic-based messaging is used for the

implementation of the TTS.

6.3.2 Implementation of TTS with J2EE

J2EE is a development for Java enterprise applications, which provides a

powerful set of APIs in order to reduce the development time and the

application complexity and to improve the performance of the applications.

Java EE platform uses a distributed multi-tier application model for

enterprise applications. That is, in a J2EE multi-tier environment, each part

of the application can run on a different platform or node [J2EE]. The

following figure (figure 6.20) illustrates the Java Enterprise Edition multi-

tier architecture.

242

Figure 6.20: J2EE multi-tier architecture [J2EE]

The Java EE platform consists of four tiers:

• Client-tier: Provides components that run on the client machine.

Examples of a client-tier are the web clients (dynamic web pages

containing various markup languages such as HTML and XML),

applets, or application clients.

• Web-tier: Runs on the Java EE server. The components are

servlets and JavaServer Pages (JSP). Servlets are Java

programming language classes that dynamically process requests

and construct responses. JSP pages are text-based documents

that are executed as servlets but allow a more natural approach for

creating static content.

• Business-tier: This tier provides the business code, which is the

logic that solves a particular business domain. It receives data from

client programs, processes it and sends it to the Enterprise

Information System-tier for storage and vice versa. The business-

tier resides on the server side.

243

• Enterprise Information System-tier (EIS): EIS includes database

systems and other legacy information systems. The application

components might need access to enterprise information systems

for database connectivity.

For the development of the TTS, the following J2EE technologies have

been deployed: Enterprise Java Beans (EJB), JMS, JSP with Servlet,

JavaMail 1.3 and MySQL, as can be seen in table 6.1.

Table 6-1: Technologies for Trouble Ticketing System

Enterprise Java API Applications in J2EE for GTTS
Enterprise Java Beans
(EJB)

A server-side model that encapsulates the business logic of
an application. Provide an infrastructure for creating, hosting
and accessing server-based, distributed business
components.

JMS 1.1 API Provide reliable point-to-point and publish/subscribe
messaging. Communicate with the Core NMS Service Bus.

JavaServer Pages(JSP) enables Java inside HTML pages i.e. adding dynamic
content. [JSP].

Servlet A protocol for a java class to respond to HTTP requests.
Provides a concise mechanism for creating and accessing
web-based applications that are server and platform
independent [SERV].

JavaMail 1.3 Provide complete support for accessing; creating and sending
e-mail messages using IMAP, POP and SMTP protocols
[JMAIL]

MySQL 5.1 Storing and persisting management messages.

In particular, Enterprise Java Bean (EJB) [EJB] was chosen for the

implementation of the TTS. EJB was chosen since it uses JMS API for

establishing communication with queues and topics in the Core NMS

Service Bus [SUNJMS]. Two Java-bean classes (ticket.class and

email.class) form the business-tier of the TTS. Figure 6.21 illustrates the

relationship of the implemented classes.

244

Figure 6.21: Application’s classes and relationships

The ticket.class reads the management information from the Core NMS

Service Bus by subscribing to a topic through the use of Java ‘getters’

[VALE99]. By adding setter and getter methods, the state of the managed

bean is made accessible. The configureConnection method contains the

connection details of the subscribed topic and queue.

The email.class provides the onMessage method, which contains the

business logic for creating emails. JavaMail API classes have been used

in order to establish connection with an e-mail server, create the email and

transport it to the specified address. ejbCreate and ejbRemove methods

have been used by both classes in order to insert and delete data from the

database. These methods use SQL expressions for inserting and deleting

objects from the database.

245

The servlet class performs doGet and doPost methods that are called in

response to an HTTP GET and an HTTP POST respectively, which are

submission methods used in HTML form. They have been used in

combination with the doProcess method in order to send and receive

requests from the trouble ticketing system’s web page. The user interface

of the TTS is implemented on a JSP web page as it is illustrated in figure

6.22. Moreover, the ‘get’ and ‘set’ methods are exposed via a web service

in order to be able to exchange data with other applications and not only

with the Core NMS Service Bus.

The WSDL file implemented as a service contract can be seen in

Appendix E. The service contract is used in order to expose the binding

parameters required to be known by other applications in order to

communicate with the TTS.

Figure 6.22 illustrates the TTS’s main user interface. It consists of two html

web pages. The main page presents the event messages received from

the Core NMS Service Bus and the second page creates tickets and

assigns the person responsible to resolve the event (figure 6.23). In figure

6.22 the list of events is presented on the JBoss application server. These

events have been captured by both LNMS1 and LNMS2.

246

Figure 6.22: Global TTS subscribed to Topic 1

Each of these events can be sent to an email in order to inform the person

who is responsible to fix the particular fault.

Figure 6.23: User Interface of the Trouble ticketing system

The TTS has been used as a Management Service. Four TTSs are hosted

in separate PCs, each of which has a dedicated subscription to a

particular type of management information. Thus, four instances of the

247

same TTS have been implemented, each one residing on different host.

The above figure illustrates only one of the three instances.

6.4 Test Procedure

6.4.1 Testing Environment

Testing is performed on different platforms. Since Java is a cross-platform

technology [VALE99], it can be embedded on different operating systems

such as Windows platforms, Solaris, Linux etc. therefore, Core NMS

Service Bus can run on every platform.

The test environment involves the following software:

• Eclipse Integrated Development Environment (IDE) tool has been

used for compiling and executing the Core NMS Service Bus

[ECLIPSE]: Eclipse is an open source multi-language software

development tools with extensible plug-in system.

• Application Server: JBoss application server 4.2 functions as a Java

EE application server and deploys EJB requiring JDK [JBOSS].

• Java Development Kit (JDK): JDK 1.6 [JDK].

• Jconsole is used to observe information about an application

running on the Java platform [JCON].

• MC4J console to create a visual management application for Java

servers. It supports connections to all major J2EE application

servers with the feature of register and track notifications [MC4J].

248

6.4.2 Software Module Tests

6.4.2.1 Tests for Message Validation Service

Tests have been carried out through the Message Validation Service

application. The application’s Graphical User Interface is illustrated in

figure 6.24. The user interface is split into two areas. The GUI’s area in the

red premises is the Network Management Platform Input area and the

blue area is the Network Management Platform Output area.

The input area has two tabs: Msg-1 and Msg-2. Msg-1 tab is developed for

creating and sending valid management messages to the Validation.in

message queue and the Msg-2 tab is developed for creating and sending

errored management messages to the Validation.in message queue.

Similarly, the output area has two tabs: Rec-1 and Rec-2. Rec-1 tab reads

the management messages that have been successfully processed by the

Message Validation Service and have been stored into the Validation.out

message queue. Rec-2 tab reads the errored management messages

stored in the Validation.error message queue.

249

Figure 6.24: Message Validation GUI, Valid Message Console

The valid management messages are stored in sequence in the

Validation.out message queue. The messages have a timestamp

indication to indicate the time that the message was processed by the

Validation Service. Furthermore, a unique name id has been injected to

each management message serving as a message identifier.

6.4.2.1.1 Test Scenario 1: Validation of a Valid Management Message

Figure 6.25 shows a valid management message that can be viewed by

using the Message Validation Application. The validated management

message is extracted from the Validation.out messaging queue. It can be

seen that the valid management message agrees upon the Validation.xsd

schema and is placed in the appropriate messaging queue.

250

Figure 6.25: Valid management message

6.4.2.1.2 Test Scenario 2: Validation of an Errored Management

Message

Figure 6.26 shows the Invalid Message Console of the Message

Validation Application. In the input area, a management message with

errors is injected in order to test whether the Validation Service can

process the error management message correctly.

Figure 6.26: Message Validation Application GUI, Invalid Message Console

251

The errored management message does not have errors concerning the

syntax of the document. Since this message contains error, it will not be

understood by the GNMAs.

Figure 6.27 illustrates the invalid management message that is stored into

the Validation.error messaging queue. The invalid message indicates that

the content of the message has errors, which are also presented in that

message.

Figure 6.27: Invalid management message

6.4.2.2 Tests for Message Transformation Service

The initialization of the Message Transformation Service is depicted in

figure 6.28. The Core NMS Service Bus command line shell indicates that

the Message Transformation Service has started and the XSLT processor

(XSLT Transformer) is waiting to consume messages.

252

Figure 6.28: Message Transformation Service, initialization process

To test the Transformation Service component, a Message Transformation

application has been developed in order to inject management messages

to the Validation.out messaging queue and to read the Transformation.out

queue. Figure 6.29 illustrates the Message Transformation application.

A management message is sent to the Validation.out message queue.

The message contains multiple events concerning faults and performance

measurements generated from the LNMSs. The events described in this

management message follow the representation presented in figure 6.29.

Each Row element (<Row> </Row>) contains information regarding a

certain event that occurred in the network. The management message

can be seen in the Input area of the transformation application.

253

Figure 6.29: Message Transformation GUI, LNMS1 and LNMS2

The transformed management message is stored in the

Transformation.out messaging queue and is read by the Message

Transformation application. The transformed management message is

shown in the figures 6.30.

Figure 6.30: Transformed management messages from LNMS1 and LNMS2

254

The information of the management message generated by LNMA1 and

LNMA2 is transformed into a common information model as illustrated in

the figures above, demonstrating the capability of the Message

Transformation Service for solving the heterogeneity of the management

information by transforming the information into a common data format. A

user application in the GNMA can use this common information model

provided by the Core NMS Service Bus to process the management

information obtained from LNMA1 and LNMA2. With the Transformation

Service implemented in the Core NMS Service Bus adopting a common

information model can alleviate the processing load of transformation in

the GNMA. The benefit of this approach is even more noticeable when the

Core NMS Service Bus needs to accommodate numerous heterogeneous

LNMSs that have different data representation. In this way, GNMA can be

kept lightweight and can concentrate on carrying out the network

management functions that it is supposed to perform.

6.4.2.3 Tests for Message Routing Service

The final stage of the message process is the Routing Service. Each event

message needs to be sent to the appropriate topic. The routing algorithm

defined in section 6.2.3.2 is tested in this section. LNMS1 and LNMS2 are

sending messages to the Core NMS Service Bus, the messages are first

enriched, split into individual messages each of which contains one event

and finally routed to the appropriate topic according to the rules defined

previously. In order to demonstrate the process, Hermes tool [HERMES]

has been used in order to capture the messages contained into the topics.

255

As explained earlier, four topics have been developed in the Core NMS

Service Bus. Each topic accepts event messages for a particular event.

Figure 6.31, illustrates the Hermes GUI, capturing the messages from the

topics. In this figure, each column contains the event messages from each

topic (Topic1, Topic2, Topic3, and Topic4). Moreover, in each column, the

body of the event message can be seen. As can be seen, event messages

are stored in the topics as defined in the routing algorithm.

Figure 6.31: events captured by Hermes Software

In addition, Jconsole [JCON] has been used in order to demonstrate that

topics are filled with messages. Figure 6.32 depicts the number of

messages stored in each topic. In more detail, the AverageEnqueueTime

shows the average time that the messages are stored in the topic before

they sent to the destination. ConsumerCount represents the number of

subscribers in the specific topic. DequeueCount represents the number of

messages removed from the topic. DispacheCount shows the number of

256

messages sent to the subscriber correctly. The EnqueueCount represents

the messages stored in the topic. As can be seen in the figure, Topic 1

received 113 messages. The 113 messages are left the topic and 113

messages are received by the subscriber.

Figure 6.32: Topic detailed measurements

6.4.3 Testbed for the NGN Management Prototype platform

6.4.3.1 Testbed Set up and Objectives

Figure 6.33 illustrates the testbed architecture used for testing the Network

Management Platform. The Core NMS Service Bus has a dedicated server

that runs on Windows XP Professional. The server is equipped with 3 GHz

CPU processor and 3 GB system memory. The two LNMSs as well as the

TTSs run on PCs with 2 GHz processors and 1 GB memory each. Each

TTS represents an application on a GNMA and each is connected to the

Core NMS Service Bus’s 61616 port in order to send and receive

messages to/from the queues and topics.

257

Figure 6.33: Testbed architecture

The objectives of the testbed are:

• To validate the correct operation of the Core NMS Service Bus

• To measure the performance and examine the behaviour of the

Core NMS Service Bus

Pre-integration tests on individual software modules for the message

validation service, message transformation service and message routing

service were carried out as described in the previous sections.

Connections between each equipment were also tested during the

integration process. Tests, each lasting for 100 seconds, were conducted

in several stages as follows:

1. The First Stage: A large amount of management information was

generated by the LNMSs and was stored in their databases

respectively. This allows the construction of different XML-based

message sizes to be sent to the Core NMS Service Bus.

2. The Second Stage: The LNMSs ran at full capacity, i.e., they sent

management messages as fast as possible to the Core NMS Service

258

Bus. Once the Core NMS Service Bus became overloaded, the

messages would be stored in queues.

3. The Third stage: The messages that go through the Core NMS

Service Bus were captured and calculated. MC4J console and

Jconsole have been used in order to capture the messages as well as

to calculate the throughput of the Core NMS Service Bus under

different scenarios. For verification purposes, the measurements are

repeated several times.

6.4.3.2 Validation of Core NMS Service Bus Functions

Figure 6.34 illustrates a typical message transaction between a LNMS, the

Core NMS Service Bus and the TTS, which is used in carrying out the

tests.

259

Trouble Ticketing
System1

Message
Validation
Service

Messaging
Service

Message
Transformation

Service

Routing
Service

Create session with 143.53.36.62:61616/Validation.in

Session accepted

Subscribe to 143.53.36.62:61616/Topic1

Send Management message to Validation.in queue

Subscription ack

LNMS1

Read message from
Validation.in queue

Store to Validation.out
queue

Read messages from
Validation.out

Store to
Transformation.out

queue

Read messages from Transformation.out queue

Store event message to Topic1

Store event message to Topic2

Store event message to Topic3

Store event message to Topic4

Send event message to 143.53.36.44

ack

Core NMS Service Bus

Figure 6.34: Interactions between remote services and the Core NMS Service Bus

In figure 6.34, the LNMS creates a session with the Core NMS Service

Bus as described in chapter 5. The Core NMS Service Bus sends an

acknowledgement back to the LNMS. The Messaging Service contains all

the queues and topics as explained in the previous chapter. The LNMS

sends its management information in the form of management messages

to the validation.in queue. As messages are stored into the queue, the

Message Validation Service is initialized and reads the messages from the

queue. It processes each management message and sends the validated

management message back to the Messaging Service to store it in the

validation.out queue, if it complies with the XSD schema, or else it sends

an error message and stores it in the validation.error queue.

260

The Message Transformation Service reads the messages from the

validation.out queue and transforms them. After the transformation

process the messages are sent back to the Messaging Service and they

are stored into the transformation.out queue. Next, the Routing Service

reads the messages from the transformation.out queue and processes

them. Each management message completes a series of processes as

explained in the previous section by the Routing Service and the output of

each management message is stored to the different topics. The final step

is the transmission of the event messages to the subscribed TTS. Each

message that is sent to the subscriber is acknowledged.

The message that is being sent to the Core NMS Service Bus is depicted

in figure 6.35. As can be seen this message consists of three events that

have been originated from the LNMS1 (http://esb.nms1). The message is

consumed by the Messaging Service and is being validated. The

validation output is successful since the management message complies

with the validation.xsd schema. This stage is not depicted in a figure since

the Transformation Service is being activated. In case of a message error

in the validation process, the message would not be transformed since it

would have been placed to the validation.error queue. The message, after

validation is sent to the validation.outqueue.

261

Figure 6.35: Input management message consist of 3 events

 The Transformation Service reads the message from the validation.out

queue and the output of the process is shown in figure 6.36.

Figure 6.36: output of the Message Validation Service

262

From the figure above, it can be seen that the representation of the

elements have been transformed according to transformation.xslt file. The

message is now stored in the transformation.out queue. The Routing

Service retrieves the message from the queue and processes it. The

output of the process can be seen in the figure 6.37.

Figure 6.37: Event messages in the 4 Topics

Hermes software has been used in order to capture the event messages.

The message is split into thee individual event messages that each had

been enriched with an element <NMS>1</NMS>. As can be seen in figure

6.37, there are five event messages in total. This is because two of the

tree events in the management message are being duplicated. The results

show the correct functioning of the Core NMS Service Bus as an integral

part of the network management platform.

263

6.4.3.3 Performance Behaviour of the Core NMS Service Bus

This section presents the tests being carried out in order to evaluate the

performance behaviour of the Core NMS Service Bus subject to the

following performance parameters:

• Message throughput

• Total events per message

6.4.3.3.1 Message Throughput

The test involved two LNMSs sending high volumes of management

information related to faults to the Core NMS Service Bus during the event

reporting period. These faults are collected and processed by both the

LNMS itself and the GNMA in order that they can be shared by other

LNMSs. For this experiment, each management message has been

predefined to contain 120 events and its message size to be

approximately 120Kbytes. Four TTSs were connected to the Core NMS

Service Bus and act as consumers. Each TTS subscribed to one of the

topics that the Core NMS Service Bus provided in order to consume

specific management information. Thus, one consumer per topic was used

for this experiment. The test ran for 100 seconds in order to evaluate the

throughput of the Core NMS Service Bus in order to examine the

efficiency of the Core NMS Service Bus and to test whether it is capable of

handling large amounts of information within a specific time period. Figure

6.38 illustrates the performance of the Core NMS Service Bus.

264

Figure 6.38: Throughput of the Core NMS Service Bus

Results and Analysis

Figure 6.38 illustrates the message throughput at the Core NMS Service

Bus. The throughput measurements have been conducted by measuring

the time needed for each management message to be validated,

transformed and routed to the appropriate topic and dispatched to the

TTSs. The experiments do not focus on the actual message size of each

management message but on the number of events that are contained in

it. This has been decided due to the fact that the size of each message

could vary according to the information that they carry. For instance, an

event could have a long descriptive text explaining the particular event. As

can be seen in figure 6.38, there is a warm-up period that the Core NMS

Service Bus needs in order to reach the maximum rate. This is due to

hardware and software requirements since there is a high volume of

265

information that has to be processed and the appropriate resources have

to be allocated to the Java Virtual Machine. The recourses are given to the

software gradually and not immediately. The overall message throughput

reaches its average rate at 62 msgs/sec for four subscribers and stay at

this rate almost constantly. The throughput indicates the number of event

messages sent to the TSSs. Since the average message size of each

event is approximately 1 Kbyte, the amount of information that is

processed per second is approximately 62 Kbytes. The events are shown

in the each TTS’s web page as illustrated in figure 6.22.

6.4.3.3.2 Event Processing Capability

The previous scenario presented the performance of the Core NMS

Service Bus when the number of events is fixed to 120, each event

requires a message size of 1 Kbytes to carry. Due to the event-driven

nature of the Core NMS service Bus, it will be of interests to examine the

number of events that the Core NMS Service Bus can handle. A change in

the state of the network will trigger an event being captured by the LNMSs

and being forwarded to the Core NMS Service Bus. The test that follows,

examines the impact on the performance of the Core NMS Service Bus

when the LNMSs send management messages that contain a variable

number of events per management message.

The tests were performed as follows: management messages were sent

constantly to the validation.in queue. From the validation.in queue, each

message is validated, then transformed and split into several one-event

messages. The throughput of the Core NMS Service Bus was measured

266

by increasing the number of events per management message each time.

The results are depicted in figure 6.39.

Figure 6.39: Throughput of the Core NMS Service Bus in relation to events per message

Results and Analysis

As seen in figure 6.39, the Core NMS Service Bus performs better when

there are many events in each management message. The reason is that

each management message is considered as a packet that has to be

processed in several steps. First, the message is stored in the incoming

queue (validation.in) and processed by the Validation Service. In this step,

the body of the message is processed by the validation component where

it is compared against a predefined XML. As explained in Chapter 5, JAXP

validation API has been used in order to process the XML-based body of

the message. This means that the body is parsed and compared against

the XSD schema. After the validation process the message is stored in the

validation.out queue. Next, the Message Transformation Service reads the

message from the queue and processes it again. This time, the body of

the message is parsed by the XSLT transformer and transformed into a

267

format that has been defined in the XSLT stylesheet file. The third step is

the routing of the message where, as explained in the previous chapter,

the body of the message is enriched, split and routed to different queues

and topics according to the content of the message. Messages originated

from the LNMS are routed to the topics and messages originated from the

trouble ticketing systems are routed to queues.

Thus, in the Core NMS Service Bus each management message is parsed

and processed in three separate instances. In the case of small

messages, such as management messages with one event per message,

the parsing and processing of the XML-based body takes less time when

compared to larger management messages, because the content that has

to be processed is less. However, the process of reading and storing each

message from/to the queue is more frequent with messages being passed

from one pluggable component to another (i.e. from Message Validation

Service to Message Transformation Service etc.). This results in many

interactions (message exchange) taking place in the service bus and

consequently leads to a reduced performance. As the number of events

increase in every message exchange, there is a trade-off in performance.

As depicted in figure 6.39, with over 50 events per management message

the throughput rate reaches its maximum.

6.4.3.4 Number of Subscribers

In this test, the impact of the number of subscribers on the message

throughput is examined. For this experiment Hermes software [HERMES]

268

has been used in order to act as message subscriber. Hermes provides

access to JMS queues and topics. Multiple instances of this software have

been used in four different hosts in order to increase the number of

subscribers. Each of these instances is listening on every topic of the Core

NMS Service Bus. In total, the number of subscribers used for this

experiment is 160. The following figure illustrates the results of this

experiment.

Figure 6.40: Throughput of the processed and dispatched messages

Result and Analysis

Figure 6.40 shows the throughput of the processed and dispatched

(dequeued) messages. Dequeued are the messages that have been

successfully read off the queue (i.e., they have been acknowledged by the

consumer) [SUNJMS]. The tests have been performed for a wide range of

subscribers but this figure illustrates three cases that show the major

269

performance degradation due to the increasing numbers of subscribers.

First observation from the figure 6.40 is the difference between the

processed messages per second by the Core NMS Service Bus and the

dispatched messages per second. This difference is due to the extra time

that each event message needs in order to be sent to the destination and

to be processed by the subscriber. In case of a slow connection or an

application that processes slowly each message, the actual throughput

could be lower. On the other hand, if the subscriber resides in a system

that is powerful and the connection is fast (i.e. intranets) then the

throughput could be closer to the processed throughput.

The first test has been performed by using four subscribers. For this test

the implemented TTS has been used, as explained in the previous

section. Running multiple instances of the trouble ticketing application on

each PC can result in high memory consumption. An alternative software

(Hermes) has been used in order to consume event messages from the

topics. It is lightweight and it can be subscribed more than once to each

topic; as a result, it is possible to increase the number of subscribers by

using this software. As seen in figure 6.40, as the number of subscribers

increases the throughput drops. The received message rate decreases

significantly with an increasing number of subscribers. This can be

explained as follows: all event messages are delivered to many

subscribers, therefore each message is replicated according to the

number of subscribers. This requires more CPU processing power for

dispatching messages and increases the overall processing time of a

single message in the Core NMS Service Bus.

270

6.5 Conclusion

This chapter first presented the development of the Core NMS Service

Bus according to the theoretical design of the previous chapter.

Furthermore, the development and testing of Message Validation Service,

Message Transformation Service and Message Routing Service have

been presented. Moreover, a TTS that has been developed as a part of

the overall proposed architecture has been presented. TTS has been used

as a global management service in order to consume management

information provided by LNMSs through the Core NMS Service Bus. This

chapter also included tests that have been performed in order to test the

performance of the Core NMS Service Bus. Several experiments in the

form of scenarios have been conducted in order to evaluate the behaviour

of the proposed Network Management Platform. Furthermore, an analysis

of the results is included in each test case. It is shown how the Core NMS

Service Bus behaves under different conditions.

271

Chapter 7 : CONCLUSIONS AND FUTURE

DEVELOPMENTS

This final chapter summarises the research work in this thesis. Section 7.1

summarises work being carried out in this thesis and draws the

conclusions that the proposed network management framework can fulfil

the SOA design principle. Section 7.2 states the significance of this thesis

in terms of contributions and achievements and section 7.3 indentifies

areas in which this work can be developed further.

7.1 Summary

The key contribution of this thesis is the design of a Next Generation

Network Management framework based on the SOA concept. International

Telecommunication Union (ITU) has foreseen the benefits of loosely-

coupled architectures and has adopted the SOA concept in many areas in

the NGN architecture such as IMS (IP Multimedia Subsystem) and SDP

(Service Delivery Platform) for delivering Internet based services such as

VoIP, email and social network to mobile telecommunication network

users [OHNI07]. Furthermore, ITU proposes the use of SOA for designing

the management plane of the NGN architecture; however a complete

SOA-based model has not yet been proposed [M.3060].

The focal attention regarding the use of SOA principles and methodologies

in management frameworks has been made in the Business Management

Layer due to the fact that TM Forum follows a top-down approach

[TMF053]. eTOM and SID frameworks provided by the TM Forum are the

272

leading industry models for developing business process functions aimed

at simplifying interoperability and promoting process and service reuse

between IT systems and business partners [TMF]. Moving towards the

lower layers of the management framework (from Service Management

Layer to Element Management Layer), there is a mixture of legacy

management applications, monolithic OSS systems and software systems

that are usually operate in isolation. The emergence of the NGN will

require the collaboration and the convergence of those monolithic

management systems running in distributed and heterogeneous

environments to be operated as one agile Next Generation Network

Management framework supporting the business needs of the service and

network providers. Although solutions have been proposed over the years

[PAV00], [HASS09], [LI05], the outcome (of these solutions) is a

management infrastructure that is still tightly coupled, not flexible and not

scalable enough to support the NGN as having discussed in chapter 2.

Given the fact that there is not yet a complete solution for an open

standard management framework for integrating heterogeneous

management systems into a loose coupling way, this research is focused

on designing and developing an SOA-based management framework,

which could be used as a backbone infrastructure for managing NGNs.

For achieving this goal, a comprehensive understanding of the evolution of

telecommunication management frameworks has been studied at Chapter

2. Additionally, a thorough examination of software architecture and the

integration technologies has been conducted and the concept of the SOA

philosophy has been explored at Chapter 3.

273

This research spans across all the layers of the TMN model starting from

the lowest layers to the highest layers. More specifically, the author first

presented how management information is being collected from different

network elements through the use of agents and then how this information

is being processed by the NMSs. Next, a Network Management

Middleware Layer that allows heterogeneous management systems to

communicate with each other, regardless of the implementation

technology has been proposed. Experiments were carried out throughout

the development phase and verified that the components comprising the

Network Management Middleware Layer were functioning as it was

anticipated. Finally, a testbed consisting of NMSs, the Core NMS Service

Bus and a developed trouble ticketing system has been developed in

order to conduct experiments and test the behaviour of the proposed

Network Management Platform.

7.2 Fulfilling SOA Design Principles

In relation to fulfilling the SOA design objectives, the agile and scalable

Network Management Framework developed in this thesis provides a

dynamic integration of heterogeneous network systems that support a

wide range of management protocols with different information models.

The integration adopts a loosely coupled approach that allows the critical

network management information, such as fault data, to be exposed as a

service that can be subscribed by customers or network operators. In this

case, a TTS is designed for notifying network operators about the health of

274

the network infrastructure. The framework can also be linked up with a

SDP in order to manage the service delivery. Therefore, the management

of the NGN based on the SOA philosophy is achieved (figure 7.1).

Figure 7.1: SOA-based Network Management Platform

The following summarises how the proposed network management

framework fulfils the SOA design principle.

7.2.1 Service Reusability

As stated in chapter 3, service-orientation encourages reuse in all

services, even if there is no immediate requirement for reuse [ERL05]. The

communication between management applications in the local and global

level in the proposed Network Management Platform is based on

messaging and is achieved using queues and topics residing on the

Network Management Middleware Layer, providing asynchronous

275

communications. Furthermore, the management information is not bound

to particular management services and applications; however, it is

categorized and made available for consumption by any remote service

interested in it.

In addition, both local and global management services can be easily

repurposed and reused in other parts of the architecture. For example,

TTSs can subscribe to other queues and topics as defined in Chapter 6 in

order to consume management information that could be provided by

external providers or it can consume other types of management

information in the same infrastructure. For instance, a TTS can register to

topics and consume management information related to faults,

performance, configuration, accounting, and security. Furthermore, the

Routing Service implemented in the Core NMS Service Bus is capable of

accommodating other rules related to other types of information. For

instance, new rules can be included in order to relate the network usage of

a particular service to the subscribed customers. A Customer Relationship

Management (CRM) system can acquire this type of information from the

Core NMS Service Bus in order to charge those customers.

7.2.2 Services Discoverability

Services need to express their functionality via service contracts. This

means that a service contract should express the functionality, the data

types and data models. Each remote service has its own service contract.

The service contracts are WSDL [W3C01] files that expose the available

operations, the structure of the request parameters, and the response

276

generated by the service. The types of binding supported by the service

are also included in this file as well as the location of the service known as

endpoint. The content of the WSDL file is expressed in XML-based format.

Appendix E contains the WSDL files of the local management services.

The remote service’s WSDL files can be uploaded in a public UDDI

service repository such as IBM UDDI [IBMU] for public exposure and

consumption or can be stored internally in an application server for local

exposure and consumption by other services. These services allow their

underlying logics to be discovered, accessed and understood by new

potential service requestors. Thus, services are naturally discoverable.

7.2.3 Service Loosely Coupling

Loose coupling is a fundamental concept of SOA aimed at reducing

dependencies between different systems [ERL05]. Asynchronous

communication reduces the dependencies among systems and as a result

it promotes loose coupling. The LNMAs in the Network Management

Platform are not connected directly with each other; however; they are

connected to the Core NMS Service Bus. They can be added or removed

to/from the Network Management Platform without affecting the overall

function of the architecture. This forms a high degree of loose coupling

and new applications can be added or removed from the architecture, can

listen to more than one type of information without affecting any other

system.

277

7.2.4 Service Composability

On a fundamental level, this principle emphasizes the need to hide the

underlying details of a service. This directly enables and preserves the

loosely coupled principle and allows services to act as black boxes, hiding

the underlying logic. Data abstraction is the approach followed in this

thesis in order to meet this principle. This approach hides the complexity

of the data shared among services by defining a new, better organized

structure, which is handled by the Core NMS Service Bus. The result is

that a remote service can access the data in a well-organized, logical

format, without knowing the actual physical layout of the data that it

receives. For data abstraction to be provided for LNMAs, the data model

used for exchanging information among them is based on the XML. XML

provides mechanisms that define and describe the structure, content and

schematics of the data and can support the creation of coarse-grained

services. Through XML, new coarse-grained functionality, which is derived

from other remote services, has been created in the Core NMS Service

Bus.

In the proposed Network Management Platform the new coarse-grained

functionality is exposed in the form of topics. This means that each topic

exposes a particular type of information, for instance, performance

management information, fault management information, etc. LNMAs offer

basic services that provide the information in order to create this new

coarse-grained functionality, which abstracts the underlying logic, data

structures and data format of the LNMSs. Furthermore, the new coarse-

grained functionality can be viewed as a basis of creating new

278

composable services because it exposes information that cannot be

provided by other individual LNMAs. This composable service can be

regarded as a new service that exposes its own types of management

information by using its own communication patterns (Publish/Subscribe),

having its own data representation and schematics.

7.2.5 Service Autonomy

Autonomy gives the service control over the logic that they encapsulate

[ERL05]. In the proposed Network Management Platform, each NMS

encapsulates its own logic (i.e. agents, control unit, polling unit etc.) and

as a result it can operate independently as a standalone application. This

means that they can collaborate to provide shared functionality but at the

same time they remain independent and no other system can affect their

internal operations (i.e. data polling intervals, agent configuration, etc.). In

the same way, the GNMAs (i.e. TTSs) control their own logic.

7.2.6 Service Statefulness

Depending on the scale of a service landscape, state management can

become one of the central problems in the efficient service design

[ERL05]. Stateful services are based on the assumption that a service

keeps the state of an ongoing interaction, leading to problems for services

with many clients, high throughput and long-running transactions. The

alternative is to design a stateless architecture where each service does

not keep a state with other cooperating services.

279

In the proposed Network management Platform the remote services are

stateless because they are based on asynchronous (fire and forget)

communication. For instance, the Core NMS Service Bus does not reply to

requests originated from the TTSs in the testbed. This means that it does

requests (i.e. keep a state), but stores the management information to

topics and the TTSs that are interested in a particular type of information

(i.e. faults, performance, configuration etc.) can perform a subscription

request to the interested topics and then the information is forwarded to

them. In the same way, LNMSs are not processing requests from the Core

NMS Service Bus to acquire management information; it rather sends

(push) the collected information to the Core NMS Service Bus. As a result,

the components comprising the Network Management Platform are

stateless. Stateless services can achieve low bandwidth consumption

compared to stateful services due to the fact that interactions between

stateless services are fewer compared to stateful services.

7.3 Achievements Derived from the Thesis

The following subsections elaborate the major contributions and

achievements of this thesis.

7.3.1 Design and Development of an Agent

An agent has been designed based on the SNMP framework. This agent

resides in a network element and collect performance, faults and

configuration management information from network elements. This agent

280

was then to pass the collected management information to a proposed

network management system when requested.

7.3.2 Design and Development of an Event-driven Network

Management System

Following the principles of SOA, a network management system has been

developed. The author designs FCAPS functionalities to be exposed as

Web service. NMS can share its functionality with other systems such as

customer relationship management system and consequently network

management information can be accessed by network operators as well

as users at the NGN.

7.3.3 Design and Development of an XML-based Gateway

Component

An XML gateway component has been developed in order to expose the

management information in a common message format, XML-based.

Other approaches have been proposed to express SNMP-based

management information into XML [YOON06], [MART02], [STRA99];

however, these approaches cannot be used for managing large,

heterogeneous networks as discussed in Chapter 4. The proposed XML

gateway converts management information residing in the NMS’s

database, into XML-based messages. This allows the NMS to use its own

information model to retrieve management information from the agents

and store it to a database without the XML gateway interfering with this

281

process. The benefit is that the XML gateway can be used to retrieve

management information from any NMS system.

7.3.4 Design and Development of a Network Management

Middleware Layer

The main contribution of this research is the design and development of a

Network Management Middleware Layer. The proposed layer is based on

messaging and asynchronous communication that removes the integration

complexity from the management systems. Moreover, it handles the

heterogeneity on the information expressed by different systems.

The contribution includes the design and development of a messaging

service that allows communication and data transfer among management

systems. A persistent store has been proposed in order to recover

management data in case of a middleware failure. Moreover, a Validation

Service that has been created for the purpose of validating management

messages received from heterogeneous NMSs has been developed. The

Validation Service eliminates the creation of unnecessary faults and errors

by invalid messages. Furthermore, a transformation mechanism that is

responsible for dealing with different data formats has been developed.

Taking into account the problem that arose from legacy systems, the SOA-

based management platform uses this transformation mechanism in order

to accommodate heterogeneous systems. In addition, a Routing Service

has been designed and developed in order to minimize the interfaces and

the dependencies among remote services as well as to provide routing

rules for delivering management messages to other management

282

systems. Finally, a message archive service has been developed in order

the management messages that are passed through the Middleware Layer

to be stored into folders for inventory purposes.

7.3.5 Testbed Development – Applications and Evaluation

A trouble ticketing system has been developed as a part of the overall

proposed architecture. It has been used as a Management Service in

order to consume management information provided by the Network

Management Middleware Layer. A testbed has been developed in order to

test the performance and behavior of the Network Management

Middleware Layer. Several experiments in the form of scenarios have

been conducted in order to evaluate the behavior of the proposed SOA-

based management platform.

7.4 Future Work

The research in this thesis can be progressed further in several areas. The

following subsections illustrate some of the areas that this research could

be extended into.

7.4.1 Alternative Mechanisms for Message Routing

Management information is routed to the appropriate destination via rules.

These rules are based on XPath expressions. Other techniques can be

incorporated in order to provide more advanced rules for making decisions

according to the content of the message. For example, content-based

routing algorithms based on the Ant Colony Optimization could be applied

283

in the Core NMS Service Bus [ABBA02]. Furthermore, advertisement-

based routing techniques could be used as filters by the Core NMS

Service Bus in order to indicate its intention to publish notifications to the

subscribers. Advertisements can be used as an additional mechanism to

further optimize content-based routing [BALD05].

Additionally, rule engines such as Drools [DROOL] could be used in order

to dynamically reconfigure the routing rules when new management

systems are connected to the Core NMS Service Bus.

7.4.2 Scheduling of Message Queues

In the proposed Core NMS Service Bus, four different queues (MS1, MS2,

MS3, and MS4) have been developed. As explained in Chapter 5, queues

have been used in order to make possible the communication among

Management Services connected to the Core NMS Service Bus. A major

drawback of dedicating one queue for each Management Service is that if

an additional Management Service would like to connect and

communicate with an existing Management Service via the Core NMS

Service Bus, a new queue has to be created manually. A proposed

solution is to use one queue for all Management Services. A scheduling

algorithm can be applied in the Core NMS Service Bus in order to

distribute the messages to the connected Management Services. Hence,

new Management Services can be connected to the Core NMS Service

Bus without the need for manually creating new queues.

284

7.4.3 Security, Policy and Co-ordination

In this research, the proposed Network Management Middleware Layer is

being built on a single Enterprise Service Bus. However, from a business

perspective, some questions need to be answered: If there are competing

service and network providers that would like to share management

information among them via the proposed middleware layer then who will

have the ownership of the middleware infrastructure? How secure is the

management information exchange?

In an actual business environment, enterprise organizations need to

consider ownership as well as intellectual property rights, which need to

be protected from other competitors. This could require preservation of

their technological innovations and trade secrets. As a result, one common

Core NMS Service Bus may not be an attractive solution for the

enterprises. However, a solution would be for each enterprise to develop

its own Core NMS Service Bus and expose the information that they would

like to share with their partner’s Core NMS Service Bus. This will allow

each of them to control, categorize and prioritize their own management

information that they will share internally and with other partners. In this

case, multiple Core NMS Service Buses will be required to communicate

with each other and be able to exchange management information among

them. This means that they need to regulate and secure their

management information. To regulate management information, WS-

Coordination, WS-policy and WS-security [W3C07d], [W3C06c]

[OASIS07a], could be used in the Core NMS Service Bus. WS-

Coordination is a Web Service specification that enables an application to

285

create context needed to propagate an activity to other services and to

register for coordination. It could be used in order to define the structure of

context and requirements for propagating context between cooperating

remote services. In other words, it can specify which applications are

allowed to exchange information under certain circumstances. The WS-

Policy specification can also be used in order to advertise the policies (i.e.

certain circumstances) to other Core NMS Service Buses. The WS-

security could also be used in order to add security features to messages

that will be exchanged among Core NMS Service Buses.

7.4.4 SID Information Model

The information framework, also known as the SID, is one of the TM

Forum’s foundational frameworks [TMF]. As it is described in Chapter 2,

SID addresses the needs of the industry where shared information and

data model is required. SID can be used as a way to map application

programme interfaces that are exposed by different applications and to

express the information in the standard structure and terminology. In the

proposed Core NMS Service Bus, the Message Transformation Service

transforms the management information into a common message format

based on an information model that does not follow a standardized

specification. SID model can be applied in the Core NMS Service Bus in

order to be able to standardize the management information that is

transformed by the Message Transformation Service. As a result, it will

allow the Core NMS Service Bus to operate as a backbone messaging

infrastructure for NGOSS enabled applications standardized by TM Forum.

286

NGOSS applications can be integrated into the Core NMS Service Bus in

order to expand the proposed SOA-based Network Management Platform

to become a complete OSS/BSS solution. NGOSS applications are

developed by companies such as Ericsson and IBM by being exposed as

Web Services and by following the SID information model [TMF053].

These NGOSS solutions are envisioned to be a part of the eTOM

framework.

There are many emerging research topics that can be further studied in

relation to SOA, Next Generation Network Management, which are not

limited to the above mentioned directions.

287

REFERENCES

[ABBA02] H. A. Abbass, R. A. Saeker and C. S. Newton, Data

mining: A Heuristic Approach

[ABER06] Aberdeen Group, “Enterprise Service Bus and SOA

Middleware,” June 2006. [Online] Available at
http://www.fiorano.com/docs/aberdeen.pdf

[ADAM98] D. X. Adamopoulos and C. A. Papandreou,

“Distributed Processing Support for New
Telecommunications Services,” in proceedings of
IEEE/IEE ICT ’98, Greece, Vol. III, pp. 306-310, 1998.

[AMIR95] K. Amirthalingam and R. J. Moorhead, “SNMP-an

overview of its merits and demerits,”in proceedings of
the 27th Southeastern Symposium on System Theory
(SSST'95), 1995.

[AXIS] Apache Axis, http://ws.apache.org/axis, March 2008.

[BALD05] R. Baldoni, L. Querzoni and A. Virgillito, “Distributed

Event Routing in Publish/Subscribe Communication
Systems: a Survey,” 2005. [Online]. Available at
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10
6.1108

[BEN90] A. Ben-Artzi, A. Chandna and U. Warrier, “Network

management of TCP/IP networks: present and future”,
IEEE Network Magazine, Vol. 4, pp. 35-43, 1990.

[BEHA10] G. K. Behara, P. Mahajani and P. Palli, “Telecom

Reference Architecture, Part 1.” 2010. [Online].
Available at
http://www.bptrends.com/publicationfiles/FOUR%2007
-10-ART-Telecom-Reference%20Arch-
Gopala%20et%20al.pdf

[BERNE05] T. Berners-Lee, R. T. Fielding and L. Masinter,

“Uniform Resource Identifier (URI): generic syntax,”
IETF RFC 3986, January 2005.

[BIH05] J. Bih, “Deploy XML-Based Network Management

Approach,” IEEE Potentials, Vol. 24, Iss. 4, pp. 26-31,
2005.

288

[BHOL02] S. Bohla, R. Strom, R. Bagchi, S. Zhao and Y.

Auerbach, “Exactly-once Delivery in a Content-based
Publish-Subscribe System, in proceedings of the
International Conference on Dependable Systems and
Networks, 2002.

[BLUM99] U. Blumenthal and B. Wijnen, “User-based Security

Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3),” IETF RFC 2574,
April 1999.

[BOHO02] C. Bohoris, G. Pavlou, A. Liotta, “A Hybrid Approach

to Network Performance Monitoring Based on Mobile
Agents and CORBA,” in proceedings of the IEEE/ACM
International Workshop on Mobile Agents for
Telecommunication Applications (MATA'02),
Barcelona, Spain, pp. 151-162, Springer, October
2002.

[BORL] Borland, A Micro focus Company,

http://www.borland.com/us/products/visibroker/index.h
tml.

[CAET07] J. Caetano, et al, “Introducing the user to the service

creation world: concepts for user centric creation,
personalization and notification,” in proceedings of the
International Workshop on User centricity – state of
the art, Budapest (Hungary), 2007.

[CAPO02] M. Caporuscio, A. Carzaniga and A. Wolf, “An

Experience in Evaluating Publish/Subscribe Services
in a Wireless Network,” in proceedings of the 3rd
International Workshop on Software and Performance,
Rome, Italy, pp. 128-133, 2002

[CAST02] M. Castro, P. Druschel, A. Kermarrec and A,

Rowston, “Scribe: A large-scale and decentralized
application-level multicast infrastructure,” IEEE
Journal on Selected Areas in Communications, Vol.
20, 2002.

[CARE02a] P. Carey, New Perspectives on XML, Course

Technology, 2nd edition, 2002.

[CARE02b] K. Carey and F. O’Reilly, “Heterogeneous Network

Management using WBEM,” Distributed Management
Task Force (DMTF) Conference, San Jose USA,
2002.

289

[CARL08] M. L. Carlander and J. Olander, “Service delivery

platforms for the multimedia marketplace,” Erickson
Review, No. 2, 2008.

[CASE96] J. Case, K. McCloghrie, M. Rose and S. Waldbusser,

“Protocol Operations for Version 2 of the Simple
Network Management Protocol (SNMPv2),” IETF RFC
1905, January 1996.

[CASE99] J. Case, R. Mundy, D. Partain and B. Stewart,

“Introduction to Version 3 of the Internet-standard
Network Management Framework,” IETF RFC 2570,
April 1999.

[CASE02] J. Case, R. Mundy, D. Partain and B. Stewart,

“Introduction and Applicability Statements for
 Internet Standard Management Framework,” IETF

RFC 3410, December 2002.

[CHAE05] L. Chae-Sub and D. Knight, “Realization of The Next-

Generation Network,” IEEE Communications
Magazine, Vol. 43, Iss. 10, pp. 34-41, 2005.

[CHAP04] D. A. Chappell, Enterprise Service Bus, O’Reilly

Media, 2004.

[CHUN98] P. E. Chuang, Y. Huang, S. Yajnik, D. Liang, J. C.

Smith and C. Y.Wang, “DCOM and CORBA Side by
Side, Step by Step, and Layer by Layer,” C++ Report,
January 1998

[CISC07] CISCO, “Performance Management: Best Practices

White Paper,” 2007.

[CLEM07] A. Clemm, Network Management Fundamentals,

Cisco press, 2007.

[COM] Microsoft, Distributed Component Object Model

technologies,
http://www.microsoft.com/com/default.mspx

[CORBA] CORBA, http://www.corba.org/

[DATE06] C. J. Date, The relational database dictionary, O’Reilly

Media, 2006.

[DDWRT] DD-WRT, http://www.dd-wrt.com/site/index

290

[DAVI99] R. Davison and T. Turner, “A Practical Perspective on
TMN Evolution,” in proceedings of the 6th International
Conference on Intelligence and Services in Networks:
Paving the Way for an Open Service Market,
Barcelona, Spain, April 1999, pp. 3-12, 1999.

[DROOL] Drools, http://www.jboss.org/drools

[ECLIPSE] Eclipse IDE http://www.eclipse.org/

[EGGE03] R. Egger and S. Sunku, “Efficiency of SOAP Versus

JMS,” in proceedings of the International Conference
on Internet Computing (IC’2003), June 2003.

[EJB] Enterprise JavaBeans Technology,

http://www.oracle.com/technetwork/java/index-jsp-
140203.html

[EMME00] W. Emmerich, “Software Engineering and Middleware:

ARoadmap,” in proceedings of the International
Conference on the Future of Software Engineering,
Limerick, Ireland, pp. 117-129, 2000.

[ERL04] T. Erl, Service-Oriented Architecture: A Field Guide to

Integrating XML and Web Services, New York:
Prentice Hall, 2004.

[ERL05] T. Erl, Service-Oriented Architecture (SOA): Concepts,

Technology, and Design, New York: Prentice Hall,
2005.

[ERL09] T. Erl, SOA Design Patterns, New York: Prentice-Hall,

2009.

[ERL10] T. Erl, C. Utschig, B. Maier, H. Normann, B. Trops, T.

Winterberg and P. Cheliah, Next Generation SOA: A
Real-World Guide to Modern Service-Oriented
Computing, New York: Prentice-Hall, 2010.

[ETSI] European Telecommunications Standards Institute

(ETSI),
http://www.etsi.org/deliver/etsi_ts/101400_101499/101
441/06.11.00_60/ts_101441v061100p.pdf

[EURE99] Eurecom, “Project P812-GI: TMN Evolution – Service

Providers’ Needs for the Next Millennium,” 1999.

[EURO04] T. Unterschütz, “Operations Support Systems for

NGN: Co-ordinating Actions for Telecoms,” 2004.

291

[EURO06] European Communications, “Data

Management/NGOSS – SID to the rescue,” 2006.
[Online]. Available at
http://www.eurocomms.com/features/111083/Data_ma
nagement%252FNGOSS_-_SID_to_the_rescue.html

 [FIEL00] R. T. Fielding, “Architectural Styles and The Design of

Network-based Software Architectures,” PhD thesis,
University of California, Irvine, 2000. [Online] Available
at
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.h
tm

[FIEL07] R. T. Fielding, “A little REST and Relaxation,“ in

proceedings of the International Conference on Java
Technology (JAZOON07), Zurich, Switzerland, June
2007.

[FOWL95] J. Fowler, "TMN-based Broadband ATM Network

Management," IEEE Communications Magazine, Vol.
33, Iss. 3, pp. 74-79, March 1995.

[FUEN95] L. A. de la Fuente, M. Kawanishi, M. Wakano, T.

Walles and C. Aurrecoechea, “Application of the TINA-
C Management Architecture,” in proceedings of the
4rth International Symposium on Integrated Network
Management, pp. 424-435, 1995.

[G.774.05] ITU-T Recommendation G.774.05, “General aspects

of digital transmission systems,” July 1995.

[GALL05] C. R. Gallen and J. S. Reeve, “Investigating the

Feasibility of Open Development of Operations
Support Solutions,” in proceedings of the 9th
IFIP/IEEE International Conference on Integrated
Network Management, 15-19 May 2005, Nice, France,
2005.

[GOLD93] G. Goldszmidt, “On Distributed System Management,”

in proceedings of the 1993 Conference of the Centre
for Advanced Studies on Collaborative Research:
Distributed Computing, Toronto, Ontario, Canada, Vol.
2, pp. 637-647, 1993

[GOTT02] K. Gottschalk, S. Graham, H. Kreger and J. Snell,

“Introduction to Web Services Architecture,” IBM
Systems Journal, Vol. 41, Iss. 2, 2002.

292

[GREE01] J. H. Green, The Irwin handbook of
telecommunications management, 3rd edition,
McGraw-Hill, 2001

[HARO04] E. R. Harold and W. S. Means, XML in a Nutshell,

O’Reilly Media, 3rd edition, 2004.

[HARR99] D. Harrington, R. Presuhn and B. Wijnen, “An

Architecture for Describing SNMP Management
Frameworks,” IETF RFC 2571, April, 1999.

[HARR02] D. Harrington, R. Presuhn and B. Wijnen, “An

Architecture for Describing Simple Network
Management Protocol (SNMP) Management
Frameworks,” IETF RFC 3411, December 2002.

[HASS09] R. Hassan, R. Razali, S. Mohseni, O. Mohamad and

Z. Ismail, “Architecture of Network Management Tools
for Heterogeneous System,” International Journal of
Computer Science and Information Security, Vol. 6,
No. 3, pp. 31-40, 2009.

[HENN06] M. Henning, “The Rise and Fall of CORBA,”

Association for Computing Machinery, 2006.

[HERMES] Hermes JMS

http://www.hermesjms.com/confluence/display/HJMS/
Home

[HP07] Hewlett-Packard White Paper, HP Service Delivery

Platform, Oct 2007.

 [HOHP04] G. Hohpe and B. Woolf, Enterprise Integration

Patterns, Pearson education, 2004.

[HUBA98] J. P. Hubaux, C. Gbaguidi, S. Kopperhoefer and J.Y

LeBoudec,”The impact of the Internet on
Telecommunication Architectures,” Computer
Networks: The International Journal of Computer and
Telecommunications Networking, Vol. 31, Iss. 3,
February 1999.

[IBM] International Business Machines,

http://www.ibm.com/uk/en/

[IBMU] http://www-

01.ibm.com/software/solutions/webservices/uddi/

293

[IEC02] Operations Support Systems 2002: Enabling the Next
Generation Network By International Engineering
Consortium]

[INTGR] IntelliGrid Electric Power Research Institute

http://intelligrid.epri.com/

[IETF] Internet Engineering Technology Taskforce,

http://www.ietf.org/

[ISO93] ISO/IEC10165-1, “Information Processing Systems -

Open Systems Interconnection – Structure of
Management Information - Part 1: Management
Information Model”, Geneva, 1993.

[ITU-T] International Telecommunication Union -

Telecommunications, http://www.itu.int/ITU-T/.

 [J2EE] Java 2 Platform, Enterprise Edition (J2EE) Overview

http://java.sun.com/j2ee/overview.html

[JAXP] Java API for XML Processing JAXP,

https://jaxp.dev.java.net/

[JBOSS] JBoss Community, http://www.jboss.org/

[JCON] The Java Monitoring and Management Console

JConsole http://openjdk.java.net/tools/svc/jconsole/

[JCP] Java Community Process, “JSR 21: JAINTM JCC
Specification,” http://jcp.org/en/jsr/detail?id=21

[JENK06] I. Jenkins, “NGN Control Plane overland and its

management, MSF technical report, MSF-TR_ARCH-
007-Final,” 2006.

[JDK] JDK,

http://www.oracle.com/technetwork/java/javase/downl
oads/index.html

[JMAIL] JavaMail

http://www.oracle.com/technetwork/java/index-jsp-
139225.html

[JOHN92] D. Johnson,”NOC Internal Integrated Trouble Ticket

System Functional Specification Wishlist,” IETF RFC
1297, January 1992.

294

 [JOSU07] N. M. Josuttis, SOA in Practice: The Art of Distributed
System Design, O’Reilly Media, 2007.

[JRMI] Remote Method Invocation

http://www.oracle.com/technetwork/java/javase/tech/in
dex-jsp-136424.html

[JSON] JavaScript Object Notation, http://www.json.org/

[JSP] JavaServer Pages Technology,

http://java.sun.com/products/jsp/

[JSR296] JSR 296,

http://java.sun.com/developer/technicalArticles/javase/
swingappfr/

[JING09] L. Jing-min and L. Zi-hui, “Design and Implementation

of an Embedded Devices Monitoring System Based
on SNMP,” 2009. [Online]. Available at
http://en.cnki.com.cn/Article_en/CJFDTOTAL-
XDJS200906054.htm.

[KAST91] F. Kastenholz, “SNMP Communications Services,”

IETF RFC 1270, October 1991.

[KAVA00] R. Kavasseri and B. Stewart, “Distributed

Managament Expression MIB,” IETF RFC 2982,
October 2000.

[KNUT05] K. Knüttel, T. Magedanz, and D. Witszek, “The IMS

Playground @ FOKUS: An Open Testbed for Next-
Generation Network Multimedia Services,” in
proceedings of the 1st International Conference on
Testbeds and Research Infrastuctures for the
Development of Networks and Communities,
Tridentcom 2005, IEEE CS Press, pp. 2-11, 2005.

[KOTS08] K. Kotsopoulos, P. Lei and Y. F. Hu, “A SOA-based

Information Management Model for Next-Generation
Network,” in proceedings of the International
Conference on Computer and Communication
Engineering, ICCCE 2008, 13-15 May 2008, Kuala
Lumpur, Malaysia, pp. 1057-1062, 2008.

[KREG01] H. Kreger, “Web Services Conceptual Architecture

(WSCA 1.0),” IBM Software Group, May 2001.

[KREG05] H. Kreger, „Management Using Web Services: A

Proposed Architecture and Roadmap, tech report,

295

IBM, Hewlett-Packard, and Computers Assoc., June
2005.

[LAGH09] K. Laghari, I. Griba ben Yahia amd N. Crespi,

“Analysis of Telecommunication Management
Technologies,” International Journal of Computer
Science and Information Technology, Vol. 2, Iss. 2,
pp. 152-166, 2009.

[LEW99] D. Lewis, “TeleManagement Forum Business Process

to TINA-C Business Role Mapping.” FlowThru
Consortium, 1999. [Online]. Available at
http://www.cs.ucl.ac.uk/research/flowthru/content/bmp
-role-map/bmp-role-map.pdf.

[LI05] M. Li and K. Sandrasegaran, “Network management

challenges for next generation networks,” The IEEE
Conference on Local Computer networks, 2005, 30th
Anniversary, pp. 592-598, 2005.

[LOPE00] R. P. Lopes and J. L. Oliviera, “Managing Mobile

Agents with SNMP,” 2000. [Online]. Available at
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.
1.1.96.3028

[M.2301] ITU-T Recommendation M.2301, “Performance

objectives and procedures for provisioning and
maintenance of IP-based networks,” July 2002.

[M.3010] ITU-T Recommendation M.3010, “Principles for a

telecommunications management network”,
November 2005.

[M.3016] ITU-T Recommendation M.3016, “TMN Security

Overview,“ June, 1998.

[M.3020] ITU-T Recommendation M.3020, “Management

interface specification methodology,” July 2007.

[M.3050.1] ITU-T Recommendation M.3050.1, “Enhanced

Telecom Operations Map: The Business Process
Framework (eTOM), “March 2007.

[M.3060] ITU-T Recommendation M.3060/Y.2401, “Principles

for the Management of Next Generation Networks,“
March, 2006.

[M.3100] ITU-T Recommendation M.3100, “Generic network

information model,” April 2005.

296

[M.3120] ITU-T Recommendation M.3120, “CORBA generic

network and network element level information
model,” January 2001.

[M.3190] ITU-T Recommendation M.3190, “Shared information

and data model (SID),” July 2008.

[MacV06] L. MacVittie, “Taking a REST from SOAP,” Network

Computing, Vol. 17, No. 20, pp. 25-26, October,
2006.

[MAGE03] T. Magedanz, A. Hafezi, and R. Wechselberger,

“Practical Experiences in Deploying OSA/Parlay on
Top of UMTS and 3G Beyond Networks—The 1st
Project Opium and the FhG FOKUS 3Gb Center,” in
proceedings of the International Conference on
Intelligence in Networks (ICIN 2003), Adera, 2003, pp.
65-70.

[MAGE06] T. Magedanz, M. Sher: “IT-based Open Service

Delivery Platforms for Mobile Networks: From CAMEL
to the IP Multimedia System”, in Mobile Middleware,
P. Bellavista, A. Corradi (Eds), Chapman & Hall/CRC
Press, pp. 999 - 1026, January 2006.

[MAGE07] T. Magedanz, N. Blum and S. Dutkowski, “Evolution of

SOA Concepts in Telecommunications,” Computer,
Vol. 40, Iss. 11, pp. 46-50, November 2007.

[MART00] J. P. Martin-Flatin, “Web-Based Management of IP

Networks and Systems,”Ph.D. thesis, Swiss Fed. Inst.
Of Technology, Lausanne (EPFL), October 2000.
[Online]. Available at
http://library.epfl.ch/en/theses/?nr=2256.

[MART02] J.P. Martin-Flatin, Web Based Management of IP

Networks & Systems, John Wiley & Sons Ltd, 2002.

[MAUR01] D. Mauro and K. J. Schmidt, Essential SNMP, O’Reilly

Media, 2001.

[MC4J] MC4J Console, mc4j.org/

[McCL91] K. McCloghrie and M Rose, “Management Information

Base for Network Management of TCP/IP-based
Internets: MIB-II,” IETF RFC 1213, March 1991.

297

[McCL99] K. McCloghrie, D. Perkins and J. Schoenwaelder,
“Structure of Management Information Version 2
(SMIv2),” IETF RFC 2578, April1999.

[MIDD97] Middleware white paper, 1997. [Online]. Available at

http://web.cefriel.it/»alfonso/WebBook/Documents/isg
midware.pdf.

[MORA02] L. Morand and S. Tessier, “Global mobility approach

with Mobile IP in “All IP” networks”, in Proceedings of
the IEEE International Conference on
Communications (ICC), 28 April – 2 May, 2002.

[MORI08] The Moriana Group, “SDP 2.0: Service Delivery

Platforms in the Web 2.0 Era,” Sepember 2008.
[Online]. Available at available
http://www.morianagroup.com/.

[MySQL] MySQL http://www.mysql.com/

[NAKA95] N. Nakamura, N. Kashimura and K. Motomura, “CMIP

to SNMP Translation Technique Based On Rule
Description,” in proceedings of the 4th International
Conference on Computer Communications and
Networks (ICCCN '95), 20-23 September, Las Vegas,
USA, pp. 266-271, 1995.

[NARA00] N. Narang and R. Mittal, “Network Management for

Next Generation Networks,” in Proceedings of the 8th
International Conference on Advanced Computing and
Communications, Cochin, India, 14-16 December,
2000.

[NGOSS04] J. Strasser, J. Fleck, J. Huang, C. Fauer and T.

Richardson, “TMF White Paper on NGOSS and MDA,”
version 1.0, BPTrends April, 2004

[NINO] NINO http://nino.sourceforge.net/nino/index.html

[OASIS06] OASIS, “Reference Model for Service Oriented

Architecture,” February 2006.

[OASIS07] OASIS, “WS-SecurityPolicy 1.2,” July 2007.

[OASIS07] OASIS, “Web Services Reliable Messaging (WS-

ReliableMessaging) Version 1.1,”June 2007.

[OASIS08a] OASIS, “UDDI Version 3.0.2,” July 2008

298

[OASIS08b] OASIS, OASIS Telecom: Adopting SOA for Telecom
Workshop, 2008.

 [OECD07] Organisation for Economic Co-operation and

Development, “Participative Web: User-Created
Content,” OECD DSTI/ICCP/IE(2006)7/FINAL, Apr
2007.

[OHNI07] H. Ohnishi, Y. Yamato, M. Kaneko, T. Moriya, M.

Hirano and H. Sunaga, “Service Delivery Platform for
Telecom-Enterprise-Internet Combined Services,” in
proceeding of the IEEE Global Tellecommunications
Conference, GLOBECOM ’07, pp. 108-112, 2007.

[OMA] Open Mobile Alliance,

http://www.openmobilealliance.org/

[OPENNMS] The Open NMS Project, http://www.opennms.org/

[OPENVIEW] HP OpenView,

http://www.managementsoftware.hp.com/

[ORACLE] JSLEE and the JAIN Initiative

http://java.sun.com/products/jain/

[OSA/PARLAY] Open API Solutions

http://www.openapisolutions.com/brochures/OSAParla
yOverview.pdf

[PANT08] H. Pant, C. Kelvin-Chu, S. H. Richman, A. Jrad and G.

P. O’Relly, “Reliability of next-generation networks
with a focus on IMS architecture,” Bell Lab Technical
Journal , Vol. 12, Iss. 4, pp. 109-125, 2008. [Online].
Available at
http://onlinelibrary.wiley.com/doi/10.1002/bltj.20270/pd
f.

[PARLAY4] The Parlay Group, Inc., “Parlay 4.0: Parlay X We

Services Specification,” version 1.0.1, June 2004.

[PAUT08] C. Pautasso, O. Zimmermann and F. Leymann,

“RESTful Web Services vs. “Big” Web Services:
Making the Right Architectural Decision,” in
proceedings of the 17th International Conference on
World Wide Web, WWW 2008, pp. 805-814, 21-25
April, Beijing, China, 2008.

299

[PAV97] G. Pavlou and D. Griffin, “Realizing TMN-like
Management Services in TINA,” Journal of Network
and Systems Management, Vol 5, No.4, pp. 437-457,
1997.

[PAVL98] G. Pavlou, T. Mota, F. Steegmans and J. Pavón,

“Issues in Realising the TINA Network Resource
Architecture,” 1998. [Online]. Available at
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.66
.8217

.
[PAV00] G. Pavlou,”Using Distributed Object Technologies in

Telecommunications Network Management,” IEEE
Journal on Selected Areas in Communications, Vol.
18, Iss. 5, 2000.

[PEL03] A. Peltz, “Web Services Orchestration and

Choreography,” Computer, Vol. 36, Iss. 10, pp 46-52,
Oct 2003.

 [PINU04] H. Pinus, “Middleware: Past, present a Comparison,”

June 2004.

[PRAS04] A. Pras, T. Drevers, R. van de Meent and Quartel,

D.A.C. “Comparing the Performance of SNMP and
Web Services-Based Management”, IEEE
Transactions on Network and Service Management,
Vol.1 (2), pp. 72-82, 2004.

[PRES02] R. Presuhn, J. Case, K. McCloghrie, M. Rose and S.

Waldbusser, “Version 2 of the Protocol Operations for
the Simple Network Management Protocol (SNMP),”
IETF RFC 3416, December 2002.

[POSTGRE] PostgreSQL, http://www.postgresql.org/

[RAMA97] S. Ramaswamy, “TMN Applied to an Integrated

management system for dod communications
networks using military and commercial satellites,” in
MILCOM 97 Proceedings, Monterey, CA, USA, Vol.2,
2-5 November., pp. 922-928, 1997.

[REDL98] J. P . Redlich, M. Suzuki and S. Weinstein, S.,

“Distributed Object Technology for Networking,” IEEE
Communications Magazine, Vol. 36, No. 10, , pp. 100-
111, October 1998.

300

[ROSE90] M.T. Rose and K. McCloghrie, “Structure and
Identification of Management Information for TCP/IP-
based Internets,” IETF RFC1155, May 1990.

[SART95] S. Sartzetakis, C. Stathopoulos, V. Kalogeraki and D.

Griffin, “Managing the TMN,” in proceedings of the 3rd
International Conference on Intelligence in Broadband
Services and Networks: Bringing Telecommunication
Services to the People, Heraklion, Crete, Greece,
October 1995.

[SASA09] K. Sasaki, “Standardization Trends in the

TeleManagement Forum (TM Forum),” NTT Technical
Review, Vol. 7, No. 10, 2009.

[SAXON] Saxon: the Java API

http://saxon.sourceforge.net/saxon7.0/api-guide.html

[SERV] Java Servlet Technology,

http://www.oracle.com/technetwork/java/index-jsp-
135475.html

[SERVICEMIX] Apache Service Mix,
http://servicemix.apache.org/home.html

[SATM09] SatMagazine, “Insight: The Evolution of Network

Mangement,” March 2009. [Online]. Available at
http://www.satmagazine.com/cgi-
bin/display_article.cgi?number=982110919

[SCHO02] J. Schonwaelder, “Simple Network Management

Protocol (SNMP) over Transmission Control Protocol
(TCP) Transport Mapping,” IETF RFC 3430,
December 2002.

[SIEG02] J. Siegel, “A preview of CORBA 3,” Computer, Vol. 32,

Iss. 5, pp. 114-116, 1999.

[SIDH00] S. S. Sidhu and M. K. Sidhu, “Enhanced Services

With Intelligent Networks,” Electronics For you,
Communications, 2000.

[SNMP4J] The SNMP API for Java, http://www.snmp4j.org/

 [STAL98] W. Stalling, “Security Comes to SNMP: The New

SNMPv3 Proposed Internet Standards,” The Internet
Protocol Journal, Vol. 1, No. 3, 1998.

[STAL99] W. Stalling, SNMP, SNMPv2, SNMPv3 and RMON 1
and 2, third edition, Addison-Wesley, 1999.

301

[STRA99] F. Strauss, “A Library to Access SMI MIB Information,”

[Online]. Available at http://www.ibr.cs.tu-
bs.de/projects/libsmi/

[SUBR00] M. Subramanian, Network Management Principles

and Practice, Addison- Wesley, 2000.

[SUN96] Sun Microsystems, “Solstice™ CMIP 8.2

Administrator’s Guide,” 1996. [Online]. Available at
http://dlc.sun.com/pdf/802-5282/802-5282.pdf

[SUNJMS] Sun Microsystems, “Java Message Service,” version

1.1, April 2002.

[SYBA] Sybase, http://www.sybase.co.uk/

[SWIM] SWIM-SUIT, “Identification of Technology and

Services
Options,” D.2.2.1, 2008.

[TARK09] S. Tarkoma and J. Kangasharju, Mobile Middleware:
Architecture, Patterns and Practice, John Wiley &
Sons Ltd, 2009.

[TINA] Telecommunication Information Networking

Architecture, http://www.tinac.com/about/about.htm

[TMF053] TMF, “The NGOSS Technology-Neutral Architecture,”

TMF 053, Public Evaluation, Version 3.0, April, 2003.

[TMF] Telemanagement Forum,

http://www.tmforum.org/browse.aspx

[TOMCAT] Apache TomCat, http://tomcat.apache.org/

[TRIM01] P. Trimintzios, I. Andrikopoulos, G. Pavlou, P.

Flegkas, D. Griffin, P. Georgatsos, D. Goderis, Y.
T’Joens, L. Georgiadis, C. Jacquenet and R. Egan, “A
Management and Control Architecture for Providing IP
Differentiated Services in MPLS-based Networks,”
IEEE Communications Magazine, Vol. 39, Iss. 5, pp.
80-88, 2001.

[VALE99] T. Valeski, Enterprise JavaBeans(TM): Developing

Component-Based Distributed Applications, Addison-
Wesley Professional, 1999.

302

[VALL99] A. Vallecillo, “RM-ODP: The ISO Reference Model for
Open Distributed Processing,” 1999. [Online].
Available at http://www.enterprise-
architecture.info/Images/Documents/RM-ODP.pdf.

[VENI00] I. Venieris, F. Zizza, and T. Magedanz, eds., Object-

Oriented Software Technologies in
Telecommunications: From Theory to Practice, John
Wiley & Sons, 2000.

[VINO97] S. Vinoski, “CORBA: integrating diverse applications

within distributed heterogeneous environments,” IEEE
Communications Magazine, Vol. 35, Iss. 2, pp. 46-55,
1997.

[W3C98] W3 Consortium, “Document Object Model (DOM)

Level 1 Specification,” W3 Consortium
Recommendation, October 1998.

[W3C99a] W3 Consortium, “XML Language (XPath) Version 1.0,”

W3 Consortium Recommendation, November 1999.

[W3C99b] W3 Consortium, “XSL Tranformations (XSLT) Version

1.0,” W3 Consortium Recommendation, November
1999.

[W3C01] W3 Consortium, “Web Services Description Language

(WSDL) 1.1,” W3 Consortium Recommendation,
March 2001.

[W3C04] W3 Consortium, “XML Schema Part 1: Structures

Second Edition,” W3 Consortium Recommendation,
October 2004.

[W3C06a] W3 Consortium, “Web Services Addressing 1.0 –

SOAP Binding,”W3 Consortium Recommendation,
May 2006.

[W3C06b] W3 Consortium, “Extensible Markeup Language

(XML) 1.0,” W3 Consortium Recommendation, August
2006.

[W3C06c] W3 Consortium, Web Services Policy 1.2 -

Framework (WS-Policy),” W3 Consortium
Recommendation, April 2006.

303

[W3C07a] W3 Consortium, “SOAP Version 1.2 Part1: Messaging
Framework,” W3Consortium Recommendation, April
2007.

 [W3C07c] W3 Consortium, “XQuery 1.0: An XML Query

Language,” W3 Consortium Recommendation,
January 2007.

[W3C07d] W3 Consortium, Web Services Coordination (WS-

Coordination) Version 1.1,” W3 Consortium
Recommendation, July 2007

[W3C09] W3 Consortium, “XML Schema Definition Language

(XSD) 1.1 Part 1: Structures,” W3 Consortium
Recommendation, December 2009.

[WALD95] S. Waldbusser, “RemoteNeteork Monitoring

Management Information Base,” IETF RFC 1757,
February 1995

[WARR89] U. Warrier and L. Besaw, “The Common Management

Information Services and Protocol over TCP/IP
(CMOT),” IETF RFC 1095, April 1989.

[WARR90] U. Warrier, L. Besaw, L LaBarre and B. Handspicker,

“The Common Management Information Services and
Protocols for the Internet (CMOT and CMIP),” IETF
RFC 1189, October 1990.

[WEIS07] A. J. Weissberger, “In Search for the Next Generation

Network,” HPC in the Cloud, 2007.
http://www.hpcinthecloud.com/

[WEST00] A. Westerinen and J. Strassner, “Common Information

Model (CIM) Core Model Version 2.4,” DMTF, 2000.

[X.690] ITU-T Recommendation X.690, “Information

technology – ASN.1 encoding rules: Specification of
Basic Encoding Rules (BER), Canonical Encoding
Rules (CER) and Distinguished Encoding Rules
(DER),”ITU, July 2002.

[X.805] ITU-T Recommendation X.805, “Security architecture

for systems providing end-to-end
communications,”October 2003.

[Y.2011] ITU-T Recommendation Y.2011, “General principles

and reference model for Next Generation Networks,”
October 2004.

304

[YATE97] M. Yates, W. Takita, L. Demoudem, R. Jansson and

H. Mulder, “TINA Business Model and Reference
Points Version: 4.0”, May 1997. [Online]. Available at
http://www.tinac.com/specifications/documents/bm_rp.
pdf.

[YOON06] J. H. Yoon, H. T. Ju and J. W. Hong, “Development of

SNMP-XML translator and gateway for XML-based
Integrated Network Management,” International
Journal of Network Management, Vol. 13, Iss. 4, pp.
259-276, 2003.

[ZHAN06] Y. Zhang, X. Qui and l. Meng, L., “A Web services-

based dynamically cooperative network management
architecture,” IEEE Conference in Communications
and Networking.2006.

305

Appendix A : Simple Network Management

Protocol Limitations

A.1 SNMPV1 LIMITATIONS

SNMP v1 has many limitations. Extensive research has been done over

the past years on the SNMP framework [BEN90], [MART00], [PRAS04].

These studies have exposed the weaknesses and limitations of the SNMP

v1 as presented below:

 The security mechanism of SNMPv1 is community based, which is

known as trivial authentication. The community name is not

encrypted; as a result, it can be easily discovered by an

unauthorized person. When the correct community name has been

revealed, the unauthorized person could execute the protocol

operations. For that reason some SNMPv1 vendors do not want to

implement a Set-Request operation. Consequently, SNMPv1 is

more appropriate for monitoring NEs rather than controlling them.

 For retrieving large amount of data, such as an entire routing table,

SNMPv1 is not a good choice because the manager has to send

many requests to the agent in order to acquire these data. This can

lead to bandwidth overhead.

 The SNMPv1 traps, which are the notifications that agents send to

the manager, are unacknowledged due to the use of UDP protocol.

306

A critical message from the agent is not ensured that it will be

received by the manager.

 SNMPv1 does not provide manager-to-manager communication.

There is no mechanism that allows a NMS to be aware of the

networks and devices managed by another NMS.

 SNMPv1 does not define enough error codes. The manager could

fail to recognise the cause of an error. In many cases, the manager

has to successively apply for parts of the original request, in order

to find the problem.

 SNMPv1 is not suitable for managing really large networks due to

the performance limitations of polling. Based on the polling

mechanism, one packet must be sent in order to get one packet of

information back. This type of polling results in large volumes of

routine messages and generates problematic response times that

may not be acceptable.

 SNMPv1 uses a minimal set of protocol operations, and follows a

simplified way of managing the network.

 SNMPv1 has insufficient functions for retrieving bulk information,

which gives performance problems. Accessing MIB tables

containing repeating variables requires successive Get-Next-

Request operations to an agent. If the MIB tables are very large, it

takes lot of time to complete all the necessary transactions. This is

resource-intensive in real time, network bandwidth, and the agent’s

CPU time.

307

SNMPv1 is a lightweight protocol that provides management capabilities

and does not have any impact on the operation of the device or its

performance. In addition, the message size of SNMPv1 is small, which

allows for low network overhead to be achieved. The above limitations are

the primary reason for implementing the successors of SNMPv1.

A.2 SNMPV2

SNMPv2 is a revised protocol, which includes some enhancements to

SNMPv1, but still uses the existing community-based security and the

same message format of SNMPv1 [CASE99]. The following section

describes the enhancements provided by SNMPv2 protocol.

SNMPv2 provides several improvements to SNMPv1, as stated in the RFC

2570 [CASE99]. These improvements are separated into three basic

categories: improvement to SMI, improvement to manager-to-manager

capability and improvement to protocol operations. The SNMPv2 SMI

extends the SNMPv1 SMI into macros that define object types to include

new data types [McCL99]. Another improvement in this category is the

new convention that has been provided in order to create and delete

conceptual rows in a table. The improvements to protocol operations can

be seen in the following bullet points [PRES02]:

 SNMPv2 supports improved efficiency and performance by

introducing a Get-Bulk-Request operation to allow the manager to

retrieve a large amount of data. Especially, it is well suited for

retrieving multiple rows in an MIB table.

308

 SNMPv2 has expanded the data types to be up to 64 bits compare

to 32 bits that SNMPv1 provides [CASE02].

 SNMPv1 does not provide manager-to-manager communication.

SNMPv2 provides manager-to-manager communication by

introducing an Inform-Request operation that is an acknowledged

trap type, in order to facilitate a hierarchical network management

system. The Inform-Request operation enables the manager to

send a trap type of information to another manager.

 SNMPv2 changes the atomic Get-Response operation to a non-

atomic one (Request-PDU), to permit partial responses to a request.

For instance, in SNMPv1 Get-Request operation carries more than

one variable binding; if an error occurs in one of the variable, then

none is returned. Nevertheless, in SNMPv2, the valid ones are

returned and the error index is set to the location of the invalid one

in the variable bindings. The non-atomic Get-Response reduces the

overall management traffic.

 SNMPv2 offers better error handling by defining twelve new error

codes and introducing the concept of exceptions in order the users

to be informed about the cause of a failed operation [CASE96].

Consequently, this improved error handling results in fewer

message exchanges, which are needed to resolve a problem,

between the manager and the agent.

SNMPv2 uses the simple and unsecured password-based authentication,

known as the community feature, provided in SNMPv1. To fix the security

problem, a number of independent groups began to work on a security

309

improvement [HARR99]. In April 1999, IETF produced a set of proposed

standards for SNMPv3. In December 2002, these SNMPv3 specifications

and documentation were standardized.

A.3 SNMPV3

SNMPv3 is the newest version of SNMP. It is actually the SNMPv2 plus

security [HARR02]. This means that it maintains the same management

operations as SNMPv2, but it introduces alignments to SNMP messages

to carry proper security parameters that finally make SNMP a secure

protocol. This allows encryption of management messages and strong

authentication of the senders. The security features added to the third

version of SNMP are based on the Used-based Security Model (USM) that

provides Confidentiality, Data Integrity, and Authentication functions to the

message [BLUM99].

• Confidentiality: Encryption of packets in order to prevent snooping

by an unauthorized source. For encryption, SNMPv3 uses the Data

Encryption Standard (DES) protocol in order to provide encryption

to the encapsulated SNMP packets.

• Data Integrity: Message integrity to ensure that a packet has not

been tampered. SNMPv3 uses message digest algorithm (MD5) in

order to verify the user on whose behalf the SNMPv3 message was

generated and to verify the integrity of the received SNMPv3

message.

310

• Authentication: To verify that the message is from a valid source.

MD5 and Secure Hash Algorithm (SHA) are supported by the

SNMPv3.

SNMPv3 is less vulnerable to security attacks [STAL98]. When the agent

receives an SNMP request, it can determine that an authorized manager

issued the request and that the message was not corrupted by an

unauthorized person. SNMPv3 includes a standardized and modularized

architecture for SNMP agent implementations. SNMPv3 does not

introduce a new specification language. So with SNMPv3, it becomes

feasible to use SNMP for applications that have greater security needs

than monitoring, such as provisioning applications. SNMPv3 has become

much more powerful yet more complex than the original SNMP

specification that appeared almost a decade earlier. This reflects greater

maturity and also increased agent processing capabilities and availability

of more powerful implementation tools. SNMP is the most successful

protocol for network management and is implemented based on the

principles of simplicity, in order to enable widespread adoption.

A.4 SNMP PRIMITIVES (PDU)

The following table (table A-1) illustrates the SNMP primitives that are

implemented by the different versions of the SNMP protocol.

311

Table A-1: SNMP primitives

SNMP SNMP
Primitives Description

v1 v2 v3
GetRequest

SNMP manager requests
information from the SNMP agent
(polls the agent)

Yes Yes Yes

SetRequest

SNMP manager sends a command
to the SNMP agent for
reconfiguration of the associated
network element

Yes Yes Yes

GetNextRequest
SNMP manager requests that the
SNMP agent send the next value in
a table or matrix.

Yes Yes Yes

GetBulkRequest
Manager sends a single request to
generate a response from the agent
containing a large amount of data

No Yes Yes

GetResponse SNMP agent response to a
GetRequest PDU Yes No No

Response

SNMP agent response to a Get type
message, confirmation of a Set
message or a response to an
InformRequest

No Yes Yes

Trap

Message sent by the SNMPv1 agent
to concerning the occurrence of a
given alarm or other predetermined
event

Yes No No

SNMPv2-Trap

Message sent by the SNMPv1 agent
to concerning the occurrence of a
given alarm or other predetermined
event

No Yes Yes

Report SNMP message containing
message in the form of a report No Yes Yes

InformRequest

Trap with an acknowledgement. The
SNMP agent can resend the trap
message if no response is received
in a predetermined time

No Yes Yes

312

Appendix B : Evolution of Middleware

Technologies

B.1 DISTRIBUTED OBJECT TECHNOLOGY (DOT)

Middleware is a software component that resides between the applications

and the underlying operating systems, network protocol stacks, and

hardware. It can be embedded in the application or can be standalone

software [SCHA01]. Its primary role is:

• Functionally bridge the gap between application programs and the

lower-level hardware and software infrastructure in order to

coordinate how parts of applications are connected and how they

interoperate and

• Enable and simplify the integration of components developed by

multiple technology suppliers

Middleware can help to shield software developers from low-level, tedious,

and error-prone platform details, such as socket-level network

programming. It also provides reusable functions and a consistent set of

higher-level network-oriented abstractions that are much closer to

application requirements in order to simplify the development.

A software architecture is an abstraction of the run-time elements of a

software system during some phase of its operation. A system may be

composed of many levels of abstraction and many phases of operation,

each with its own software architecture. As the size of software system

increases, the overall system structure becomes more complex in the

313

issues: communication protocols, synchronization, data access, scalability,

performance, security and etc. Figure B.1 presents the evolution of

software architecture. Before 1980 software architecture was mainly

monolithic mainframe systems that empowered organizations with

appropriate computational resources. These environments had bulky

mainframe back-ends served by dumb terminals at front-end.

In the mid 90’s, distributed object computing transformed the way in which

system is organized. Clients and servers are distributed over computer

network on separate hardware but they both reside in the same system.

This two-tier client-server architecture introduced fat clients, a personal

computer (PC), with intelligence. This allowed the logic and the processing

duties to be performed on separated PC and greatly reduced the cost of

computing. Later the multi-tier client-server architecture is introduced. This

network centric architecture broke the monolithic client executable into

components. The application logic distributed among multiple components

(some residing on clients, others on servers) reduced the deployment

problems by centralizing a greater amount of the logic on servers.

Additionally, the Remote Procedure Call (RPC) technology was

developed, such as Common Object Request Broker Architecture

(CORBA) and Distributed Computing Object Model (DCOM) which allowed

remote communication between components residing separately on the

client workstations and servers. At the same time, the Internet became

the platform for computing due to the introduction of Web browser and the

Web. Web Services are emerged as the new important type of distributed

systems that is based on service-oriented concept. SOA is not a new

314

concept [ERL04] but its popularity has increased over the past few years

due to the wide adoption of Web Services for SOA implementation. It

takes all the best practices from previous architectures and is the next

evolutionary step to the realization of dynamically configurable

architecture.

Figure B.1 The evolution of systems architectures

Distributed Object Technology (DOT) introduced the middleware layer

concept in order to integrate heterogeneous systems. DOT is the merger

of object technology and distributed system technology [PAV00]. This

technology reduces the development time and has modular architecture.

The distributed system technology is based on the idea that systems are

not only networked together as isolated components but they are also

coordinated together in a heterogeneous network environment in order to

carry out small unit of related tasks [SIEG02].

Three established DOT paradigms exist today: CORBA by Object

Management Group (OMG), DCOM by Microsoft and Remote Method

Invocation (Java/RMI) created by Java Soft [CORBA], [COM], [JRMI].

These technologies are used as a middleware layer within the

management architecture in order to provide integration between different

315

systems. This section highlights these middleware technologies that are

available for integrating telecommunication management systems.

B.2 COMMON OBJECT REQUEST BROKER ARCHITECTURE

(CORBA)

CORBA, the most well known integration framework adopted by the

telecommunication industry, was proposed by The OMG. OMG is an

international consortium created in 1989 with the goal to provide solutions

for implementing portable software components and platforms that could

operate under multiple environments [CORBA]. The architectural

approach should interoperate irrespective of the hardware, operating

system and programming languages. The outcome of the OMG consortia

was the CORBA framework that was standardized in 1993. CORBA

implements the concept of interfaces where CORBA objects are

encapsulated and are accessible through interfaces. Figure B.2 illustrates

the CORBA architecture.

Any relationship between distributed objects has two sides: the client and

the server. The server in the CORBA architecture provides a remote

interface called Dynamic Skeleton Interface (DSI), and the client calls the

remote interface. On the client, the client application includes a reference

called Dynamic Invocation Interface (DII) for the remote object. The object

reference has a stub method for remote call. The stub is connected to the

Object Request Broker (ORB). When the stub calls the method it invokes

the ORB’s connection capabilities, which forwards the invocation to the

server. The most central component of CORBA is the ORB that provides

316

the common ground for all object interaction within the architecture. ORB

supports interactions between services, locating objects, and

communication between clients and servers. It is the facilitator for sending

and receiving messages between different objects and components in a

location-independent and platform-neutral manner. On the server side, the

server ORB uses skeleton code to translate the remote invocation into

method call on the local object. The skeleton translates the call as well as

the parameters to their implementation specific format through the DSI

and calls the method that is being invoked. When the method returns, the

skeleton code either transforms the information to results or gives error,

and sends the results back to the client via the server ORB. DSI is used

for dynamically invoking CORBA objects that does not have compile-time

knowledge of the type of object it is implementing. DSI interface resides

on the server side. On the client side, DII is used to allow dynamic creation

and invocation of object requests on the client side.

Figure B.2: CORBA Architecture

317

The ORB objects are accessed through the use of ORB interfaces. ORB

interface contains functionality that is required by the clients and the

servers. These interfaces are defined by the Interface Definition Language

(IDL). This language defines the services offered by objects in a uniform

manner, Client applications can use the IDL as the basis for their object

invocations. Object implementations need to comply with the definitions of

the IDL by implementing the methods defined in the interfaces. In the

CORBA architecture the interoperability between ORBs is critical. The

Internet Inter-ORB Protocol (IIOP) is used as the interoperability protocol

for ORB communication. IIOP uses the TCP/IP protocol to ensure reliable

connection, to maintain message ordering, and to provide delivery

acknowledgment and connection-loss notification. CORBA uses the Basic

Object Adaptor (BOA) API that allows the servers to register their object

implementations. The role of the IDL is twofold: Firstly, IDL allows the

creation of a definition of the interface of the remote system, independent

of any particular implementation and programming language. Secondly,

IDL ‘forces’ the developer to define the system in terms of portable data

types and operations available in the restricted language of IDL. This

guarantees portability because interfaces do not need to be defined

through the system’s implementation language. The drawback of using the

IDL is that there is no guarantee that the service interface will remain

unchanged throughout the lifecycle of the service. Every redeployment of

the service means that the contract (interface) needs to change.

318

CORBA has been adopted extensively by the telecommunication industry

[M.3120]. This architectural approach is implemented within telecom

products and used as an architectural backbone for integration. The use of

CORBA in the TMN environment is studied in various papers [BOHO02],

[VINO97], [ADAM98], [REDL98], [TRIM01] over the last decade. CORBA

is now a mature technology that has a wide range of tools and support that

can deal with heterogeneous systems and integrate legacy systems.

CORBA allows interoperability between objects, between programming

languages, and between ORBs.

CORBA has limited capabilities as it requires that a system communicating

over an ORB must be tight coupled. There is tight coupling between the

client and the server. Both must share the same interface, with a stub on

the client-side and the corresponding skeleton on the server-side. The

management architecture for Next Generation Networks, on the other

hand, must be built up as decoupled distributed systems in order to be

able to provide flexibility and scalability for the demands of NGN’s

heterogeneous environment. From this perspective, service providers and

Independent Software Vendors (ISVs) have recognized that CORBA

cannot be relied upon as the integration backbone for the NGN

management [SIEG02]. Moreover, the IIOP protocol, which is the heart of

CORBA objects communication, does not offer the characteristics required

to access the Internet. A solution to overcome this difficulty is to use HTTP

tunnelling, which encapsulates IIOP messages in HTTP frames. This

technique has been developed by certain companies such as Sybase

[SYBA] and Borland [BORL] but is still immature and has not been

319

standardized by the OMG. In addition, this solution forces the

communicating parties (other organizations) to use CORBA ORB in their

infrastructure in order to make possible the communication.

B.3 DISTRIBUTED COMPONENT OBJECT MODEL (DCOM)

Component Object Model (COM) technology is the foundation of

Microsoft’s attempt to enable communication between reusable software

components. DCOM is the distributed version of COM that extends the

component over a network environment. Due to COM binary

specifications, DCOM components can be written in various

programmable languages such as Java, C++. DCOM uses the Object-

oriented Remote Procedure Call (ORPC) as its application level protocol

for supporting remote objects. Microsoft Interface Definition Language

(MIDL) is used for defining interfaces and Service Control Manager (SCM)

is used for the location and the activation of an object in the DCOM

architecture. DCOM is a language independent platform but available only

on windows operating platforms. This limitation makes DCOM unsuitable

for cross-platform environments; as a result it is not considered for

managing telecommunication networks [CHUN98].

B.4 REMOTE METHOD INVOCATION (RMI)

RMI is standardized by Java Soft [JRMI] and relies upon the Java

paradigm; it means that both client and server must be implemented in

Java in order to communicate. RMI applications consist of two separate

programs: a server and a client. RMI provides the mechanisms by which

320

the server and the client communicate and pass information back and

forth. Java RMI establishes inter-object communication. If a particular

method is performed on a remote machine, Java provides the capability

through the RMI to make the method appear as it is performed on the local

machine. This technology uses the JRMP (Java Remote Method Protocol)

for remote object communication. Java/RMI is based upon the concept of

Java object serialization that is used to marshal and demarshal objects as

streams, while the Java Virtual Machine (JVM) enables the object location

and activation. Furthermore, RMI can support diverse platforms and

operating systems. By using Java/RMI, the development of distributed

applications is fast and simple. Due to its dependence over the Java

paradigm, it is not suitable for integrating heterogeneous environments.

B.5 LIMITATIONS OF THE DISTRIBUTED OBJECT

TECHNOLOGY (DOT)

The use of distributed object technologies in Telecommunication

management has been the subject of intensive research over the last

years [TRIM01], [ADAM98], [REDL98], [M.3120]. Middleware technologies

such as CORBA, DCOM, and RMI are paradigms for integrating data and

services. The drawback for those technologies is the interoperability

among different system components residing on different platforms that is

weak and difficult to achieve. CORBA and DCOM for example, cannot

communicate unless there is a bridge between them and this is due to the

different communication protocols that they are using (CORBA uses IIOP

and DCOM utilizes ORPC).

321

The following table (Table B-1) shows the differences between RMI,

CORBA and DCOM.

Table B-2: Characteristic of the Distributed Object Technologies

 RMI DCOM CORBA
Programming
language

Operate only with
Java systems. No
support for systems
implemented on
legacy or future
languages.

Support multiple
languages

Support multiple
languages

Interface definition No specific
language for
interface
description

Microsoft Interface
definition Language
(MIDL)

Interface Definition
Language (IDL)

Communication
protocol

Object Remote
Procedure Call

Java Remote
method Protocol

Internet Inter-ORB
Protocol

Object location and
activation

Service Control
Manager (SCM)

Java Virtual
Machine (JVM)

Object Request
Broker for Location
and Object Adaptor
for Activation

Platform
constraints

Independent Operates only in
Microsoft and
Solaris platforms

Independent

ITU has adopted CORBA technology to solve the interoperability problems

that exist due to the multi-vendor environment but CORBA is difficult to

seamlessly traverse firewalls, which is crucial for applications that need to

span across enterprises. A proposed solution is a special security

gateway, which adds an IIOP Domain Boundary Controller component to

the firewall. This approach is not standardized and not widely used

[HENN06].

DOT technologies use message passing in any distributed systems.

CORBA messages are IIOP encoded, DCOM uses Java Remote method

322

Protocol and RMI uses the Object Remote Procedure Call for the

message encoding. The messages underneath are based on the flow of

bytes that are received by TCP/IP and ultimately reformed into a packet

that is sent to a server stub. These messages are based on objects and

method invocations that put restrictions to the higher level requirements

that a service needs to provide. The developer of the stub dispatching

code knows about the higher levels requirements that a service needs to

provide, but he is restricted to objects that are specified by the service.

The code of the distributed objects is tailored specifically to the end

receiving object. The result is that in case of a change in the object

interface, the dispatching code needs to be changed. This shows that the

interfaces in the DOT architectures are tightly-coupled to the objects that a

service provides. When the object changes, then the interface needs to be

coded again both for service consumer and service provider.

323

Appendix C : Service Oriented

Architecture

C.1 FROM DISTRIBUTED APPROACH TO SERVICE

ORIENTED APPROACH

Service-based architectural approach is a natural evolution of application

development. Service-oriented platforms align business processes with

coarse-grained services. Service granularity depends on the functionality

that a service exposes. For instance, in distributed architectures such as

CORBA-based architectures, functionality is exposed as remote objects.

Objects hide the behavior and the data exchanged between applications.

One method calls a particular object that exposes a particular functionality.

Consequently, one object forms a fine-grained service because the

functionality that provides has a small amount of business-process

usefulness. Fine-grained services address a relatively small unit of

functionality or exchange a small amount of data among applications. As a

result, they require multiple invocations of operations to achieve a simple

process but multiple invocations, add extra overhead to the network.

When grouping together large number of objects, although access to

objects is controlled through interfaces, the granularity at the object level

still makes dependencies between them difficult to control in large

systems.

324

In contrast, coarse-grained services abstract large unit of functionality

within a single interaction based on messaging paradigm that formulates

the concept of service orientation.

Coarse-grained services can formulate business functions that when

working together are able to achieve a business goal. The services

participating in an SOA communication exchange messages through

documents based on XML. Document-based services exchange large

coarse-grained documents (messages) among applications that allow

loose-coupling communication. These services can offer business-based

transactions that add value to business needs.

Figure C.1 illustrates the evolution of application development paradigms

over the years. Applications have evolved over the years from tightly-

coupled to more loosely-coupled providing more flexibility and adaptability.

Figure C.1: Application development shifts

325

Table C-1 shows the movement from distributed architecture to Service

Oriented Architecture.

Table C-1: Differences between Distributed Architectures and SOA

DOT-based Approach SOA-based Approach

Function Oriented Business Process Oriented
Designed to Last Designed to Change
Cost Centered Business Centered
Application Block Service Orientations
Tight Coupling Loose Coupling
Homogeneous Technology Heterogeneous Technology
Object Oriented Message Oriented

Coarse-grained services interact with each other via self-contained

messages that minimize the service dependencies and allow loose-

coupling. Loose-coupling deals with the requirements of scalability,

flexibility and fault tolerance [ERL05]. The aim of loose coupling is to

minimize dependencies among applications. With fewer dependencies,

modifications or faults in one system will have fewer consequences on

other systems. The main concept of loose-coupling is that two

communicating parties (systems or services) make minimal assumptions

about each other; the less the applications need to know about each other

to cooperate properly the better. Loosely coupled services can be modified

independently, which means that if changes are made within one service

then the coupled service will not be affected and will not enforce changes.

Loose coupling principles make an integration solution more flexible and

change tolerant due to the fact that it is based on messaging. Flexibility

derives from the fact that connected services do not have to be adjusted

326

after changes are made in one of the systems taking part in the

communication.

Tight coupling systems use local method invocation for communicating

with each other. The local method invocation has restrictions and is not

capable of providing integration capabilities to the implementation. These

restrictions are the following:

• The calling method must be written in the same programming

language as the called method.

• The method must run in the same process.

• Both calling and called method must use the same internal data

representation format.

• The exact number and type of the arguments of called method must

be known.

In table C-2, the differences between tight coupling and loose coupling are

listed.

Table C-2: Tight coupling versus Loose coupling

 Tight coupling Loose coupling
Physical connections Point-to-point Via a mediator
Communication style Synchronous Asynchronous
Data model Common complex types Simple common types only
Interaction pattern Navigate through complex

object trees
Data-centric, self contained
messages

Control of process
logic

Central control Distributed control

Binding Statically Dynamically
Platform Strong platform

dependencies
Platform independent

327

SOA constitutes a very promising approach for integrating enterprise

applications. The most general principles of the term ‘service’ in SOA are:

• Service is a view of a resource (e.g. a software asset, business, a

hard disk), basically anything that provides some capability.

Implementation details are hidden behind the service interface.

• The communication among services is based on messages. The

structure of the message and the schema, or form, of its contents is

defined by the interface.

• Services are stateless. This means that all the information needed

by a service to perform its function is encapsulated in the messages

used to communicate with it.

Services discover and communicate with each other using the publish,

find, bind [ERL05] paradigm. A service publishes its interface definition to

the network, a service consumer finds the definition and by using the

information in the definition, is able to bind (resolve the address and send

messages) to the service. An important aspect of SOA is the just-in-time

integration of applications facilitated by these three operations. In other

words, the interface definition, which describes the form of messaging

combined with facilities for publishing and discovering it, enables late-

binding between entities to create dynamic aggregations of services.

SOA actually provides a high level of scalability and flexibility that is

required in heterogeneous environments. The main drivers for SOA-based

architectures are to facilitate the growth of large scale enterprise systems,

to facilitate provisioning and use services in order to reduce the costs in

the organization’s cooperation. Through these drivers, SOA-based

328

architectures have the ability to scale and evolve, making these

architectures adaptable to the different needs of specific domain or

process. Moreover, SOA encourages the architectures to become more

agile and responsive than architectures built on an exponential number of

pair-wise interfaces [OASIS06]. Therefore, SOA can provide a solid

foundation for telecommunication business agility and adaptability.

According to [OASIS06] SOA is “a paradigm for organizing and utilizing

distributed capabilities that may be under the control of different ownership

domains”. These distributed capabilities are supporting a solution for the

business needs of an entity or other collaborative parties. In this context,

services are the mechanisms by which business needs and capabilities

are brought together. Services are using service description that contains

the necessary information to interact with other services. A service

description describes the service inputs, the service outputs, and the

associate semantics of that service. In general, entities are people and

organizations that offer capabilities and act as service providers. Entities

with needs and are making use of services are referred to as service

consumers. Service description allows potential consumers to decide if the

service is suitable for their needs and establishes whether a consumer

meets any requirements applied by the service provider.

C.2 SOA UNDERLYING TECHNOLOGIES

The technology that enables service-oriented implementations is the Web

Services technology. Web Services are interfaces describing a collection

of operations that can access the network through standardized XML

329

messages. Web Services use a standard, formal XML notion (its service

description) which covers all the details needed to interact with the

service, including transport protocols, message formats and location.

Services can be independent from the software or hardware platform on

which they are implemented and they are independent from the

programming language in which they are written. This happens due to the

fact that the interface hides the implementation details of the service.

Hiding the implementation details allow Web Services to be loosely

coupled, with cross-technology implementations. Web Services perform a

specific task or a set of tasks/operations. They can be used independently

or with other Web Services to complete a business transaction or a

complex aggregation [KREG01]. Web Services provide a way of

communication among applications running on different operating

systems, written in different programming languages and using different

technologies whilst using the internet as their transport.

C.2.1.1 WEB SERVICES

Figure C.2 demonstrates the basic Web Service model and the interaction

between its components [GOTT02].

330

Figure C.2: Find bind and execute paradigm

As can be seen in figure C.2 the Web Services involve three different

interactions. Those interactions use the publish, find, and bind paradigm.

The first interaction is between the service provider and the service

registry. The service provider hosts a network-accessible software module

(an implementation of a Web service). It publishes the service description

(WSDL) for the Web Service to a service registry (UDDI). The second

interaction is between the service requestor and the service registry. The

former retrieves the service description by using the find operation from

the service registry. The last interaction is between the service requestor

and the service provider, in which the former uses this service description

in order to interact with the service provider by using the bind operation.

Due to the fact that the roles of the service provider and the service

requestor are logical constructs, the service can display characteristics of

both.

331

XML, SOAP, WSDL and UDDI, which are the technologies that allow the

creation of Web Services and are the underlying technologies that will

enable the Service-Orientated implementations.

C.2.1.2 EXTENSIBLE MARKUP LANGUAGE (XML)

The XML is a World Wide Web Consortium’s (W3C) recommended

[W3C06b] general-purpose, simple, flexible and text format markup

language for creating special-purpose markup languages, able to describe

many different kinds of data. XML is a method of exchanging information

between applications in documents that simultaneously identifies the data

fields and contains the data in those fields. XML documents have been

widely accepted due to their ability to define documents or schemas for

application domains. The easy readability of XML documents by humans

has also aided acceptance [CARE02a]. The main purpose of XML is to

facilitate data sharing across different systems, particularly systems that

are connected via the Internet. Languages that are based on XML (i.e.,

RDF/XML, SVG, RSS, XHTML and Atom) are defined in a formal way,

enabling programs to modify and validate documents in these languages

without previous knowledge of their particular form. XML documents

represent data objects that have a hierarchical structure. This hierarchical

structure must exist for each XML document and is called XML tree

structure. The XML tree structure consists of nodes also called elements

and the leaves of the tree structure contain other nodes that are referred

to as children nodes. XML can be seen as a concrete syntax for describing

332

such tree structures using mark-up texts. An example of an XML

document is as follows (figure C.3):

Figure C. 3: Sample of a well-formed XML message

Figure C.3 demonstrates a well-formed XML message. There are two

levels of correctness that can distinguish an XML document:

• Well-formedness which applies to documents that obey the

necessary and sufficient syntactic condition for being interpreted as

tree.

• Validity which applies to documents that conform to the additional

constraints described by a schema.

XML is a family of technologies that have been standardized by the W3C.

Figure C.4 illustrates the relationship between the XML specifications.

333

Figure C.4: Relationship between XML specifications

XML Schema Definition Language (XSD) [W3C04], [W3C09] is a data

modeling language for XML documents. XSD provides the structural and

validation-related features in order to describe an XML document. The

schema document expresses a set of rules to which an XML document

must conform in order to be considered valid according to that particular

schema. The XML schema document is flexible and extendible that is

capable of containing multiple schemas documents that can be combined

or individually processed. Each schema can be dynamically extended with

supplementary constructs. This allows schemas to adapt different data

representation requirements.

 Extensible Stylesheet Language Transformation (XSLT) [W3C99b]

performs XML message transformation. It allows for efficient conversion of

XML documents into a number of different output formats. XSLT

manipulates, and filters the XML document data to provide alternative

334

views and versions of information for any number of document

transformation scenarios.

Applications that storing and exchanging information based on XML

messages, require to intelligently query them. One of the great strengths

of XML is its flexibility in representing many different kinds of information

from diverse sources. To exploit this flexibility, XML query is required in

order to provide features for retrieving and interpreting information from

these diverse sources. XML Query language (XQuery) [W3C07c] is a

query and functional programming language that is designed in order to

query collections of XML documents. XQuery is W3C recommendation

that extracts and manipulates data from XML documents.

XML Path Language (XPath) [W3C99a] is the standard language for

selecting nodes in XML documents. It is based on a description of paths,

by series of steps to be followed in order to reach the selected nodes. For

instance, consider the expression: //NetworkElement[Events]/Fault. XPath

considers all the NetworkElement nodes in an XML document, tests

whether these nodes have an Event child node ([…] defines test

expression), and if it is true, output their Faults. Moreover, XPath allows

filters to be applied in these steps. Filter is a Boolean combination of path

expressions, and is satisfied if a node matches the combination. XSLT

uses XPath expressions to match and select particular elements in an

XML input document for copying into an output XML document.

C.2.1.3 SIMPLE OBJECT ACCESS PROTOCOL (SOAP)

335

The communication between services in the SOA concept is message-

based, and it should be standardized so that all services can use the same

format and transport protocol. SOAP is the standard transport protocol for

messages processed by Web Services [BIH05]. This protocol exchanges

XML-based messages over a computer network, using Hypertext

Transport Protocol (HTTP) or Java Messaging Service (JMS). SOAP is an

XML-based protocol that exchange information in a decentralized,

distributed environment. It consists of three parts:

• Envelope: It defines the framework for describing a message

contains and how to process it.

• A set of encoding rules: The encoding rules are used in order to

express the instances of application-defined data types.

• A convention for representing Remote Procedure Calls (RPC) and

responses.

SOAP forms the foundation layer of the Web Services stack, providing a

basic messaging framework that abstract layers can build on. It enables

applications running on different operating systems, with different

technologies and programming languages to communicate. SOAP is

fundamentally stateless and a one way message exchange paradigm, but

applications can make more complex message exchange patterns by

using application specific information inside the SOAP envelope or by

using features provided by the underlying protocols. RPC is the most

common type of messaging pattern in SOAP, where the network node A

(i.e. client) sends a request message to the network node B (i.e. server),

and the network node B immediately sends a response message to the

336

network node A. From a network transport perspective, using the SOAP

over HTTP gives the ability to the SOAP messages not to be filtered by

the network firewalls whereas, using other distributed protocols like DCOM

or GIOP/IIOP the messages are normally filtered by firewalls [W3C07a].

Another method of transporting SOAP messages is through the JMS

protocol that allows asynchronous communication. Next sections present

the use of two different approaches for exchanging SOAP messages.

SOAP messages are contained in the SOAP envelope, which consists of

an optional header, and a body. The header contains extension to the

SOAP protocol (WS-*) or application specific information (e.g.

authentication, payment). The SOAP body contains the actual SOAP

message intended for the endpoint of the message. Figure C.5 illustrates

the SOAP message.

Header block

Header block

Message Body

SOAP Header

SOAP body

SOAP envelope

..

Figure C.5: SOAP message

Figure C.6 illustrates the relationship between XML, SOAP and the

transport protocols such as HTTP or JMS. In this example, Application A

337

sends a SOAP message to Application B. In the application domain the

Document Type Definition or an XML schema define the tags and

structure of the document. XML is the method of exchanging information

between Application A and Application B. The application requires the

support of a processor that uses DTD or Schema to extract data from and

insert into the XML instance document. The XML instance is encapsulated

into a SOAP message between <envelope> and </envelope>. In the

request/response type of application, the SOAP message is transported

by a HTTP request or a JMS request in the body section. Finally, the

message is delivered to the Application B over the network.

Figure C.6: Relationship between XML, SOAP and transport protocols

SOAP uses two application protocols for transporting SOAP messages,

namely, HTTP and JMS. Table C-3 illustrates the modes of transporting

SOAP messages.

338

Table C-3: Modes transporting SOAP messages

 point-to-point publish/subscribe
Synchronous HTTP, JMS JMS
Asynchronous JMS JMS

SOAP over HTTP

HTTP is the most widely used protocol for transporting SOAP messages.

However, HTTP is limited to synchronous communication pattern that

results point-to-point integration techniques. The consequence of using

SOAP over HTTP is that the services do not provide any simultaneous

notification to multiple recipients. In the NGN environment, a management

system may need to notify multiple management systems that a step in a

process has been completed. There is a clear need for asynchronous

communication in an NGN management implementation. Asyncronicity

allows loose-coupling among services that they interact with each other

via messages. HTTP with the synchronous nature waits for a response to

a request, consuming communication resources until it receives one.

Furthermore, HTTP requires both sender and receiver to be connected at

the same time in order for the message to be successfully sent. If the

network or the receiving service is unavailable, HTTP cannot deliver the

message. HTTP offers limited reliability due to the fact that it has limited

set of error codes that can be used to identify error conditions [EGGE03].

The protocol cannot guarantee that a message will be delivered to its

destination. One solution of improving the HTTP protocol’s reliability is to

build additional error handling and recovery techniques into the services

339

themselves. WS-ReliableMessaging standard has been developed by the

Organization for the Advancement of Structured Information Standards

(OASIS) in order to improve the reliability issues of the SOAP message

that uses the HTTP [OASIS07b]. This specification involves coding at the

SOAP layer to provide additional error handling techniques. However,

these measures can be expensive and may introduce additional

complexity to the NGN infrastructure. SOAP messages transmitted over

HTTP lack efficient scalability. HTTP imposes a finite limit on the number

of socket connections that can coexist at a given time. The connections

use significant machine resources and therefore restrict scalability. To

solve the scalability issues, additional capacity is achieved by adding other

hardware equipment such as Web server or applying load balancing

techniques to the resources.

As seen above, adopting HTTP as the transportation protocol for SOAP

message can introduce additional complexity. Moreover, the NGN

infrastructure will require additional development resources to implement a

solution that is based on HTTP. Consequently, the cost of the

implementation will increase.

SOAP over JMS

JMS is a specification that provides a standard application program

interface for exchanging messages. JMS supports both synchronous and

asynchronous communication [EGGE03]. The specification specifies the

methods that messages are delivered, security mechanisms, error

handling techniques and the underlying protocols between clients and

340

servers. JMS has been widely adopted as the messaging transport for

both application integration and SOA [SWIM], [CHAP04]. JMS supports

‘fire and forget’ communication mode that allows the message to be sent

without waiting for reply and placed in a persistent store, or a queue. The

queue enables asynchronous communication in the sense that the

message producer sends the message to the queue and the consumer

acquires the message from the queue and not from the message

producer. Furthermore, JMS supports a publish/subscribe model in which

a provider can communicate with multiple consumers simultaneously.

JMS is more reliable than the HTTP due to the fact that it uses the concept

of queues that ensures message delivery from the sender to the receiver.

JMS in the case of guarantee delivery can resend the messages to the

destinations. Error recovery and retransmission of the messages are built

into the JMS compared to the HTTP and does not require coding into the

application or at the SOAP layer. JMS makes more efficient use of system

resources allowing scalability by using a single connection between the

message producers and the message consumers. This eliminates the

scalability issues that HTTP imposes by requiring a separate socket

connection for each service request and service reply. Occupying less

socket connections can reduce the system’s resources therefore,

improving the scalability. Another difference between JMS and HTTP is

that JMS separates the destination address from the physical destinations.

This independent namespace enables implementations based on JMS

messaging to scale systems dynamically. For instance, the producer

requires only one destination address to connect with multiple consumers.

341

Compared to HTTP, JMS provides better message delivery, flexibility,

reliability and scalability. These capabilities are implemented inside the

scope of JMS specification and do not need to be developed into the

services or at the SOAP layer. Thus, using JMS as the transport protocol

can provide less complexity to the SOA implementation.

C.2.1.4 WEB SERVICES DESCRIPTION LANGUAGE (WSDL)

WSDL is one of the essential parts of the SOA framework for service

description. The service description provides the key ingredient to

establishing a consistently loosely coupled form of communication

between services implemented as Web Services. For this purpose,

description documents are required to accompany any service wanting to

act as an ultimate receiver. The primary service description document is

the WSDL definition. WSDL is an XML-based format that describes

network services as a set of endpoints operating on messages containing

either procedure-oriented or document-oriented information. The

messages and operations are described abstractly, and they are then

bound to a concrete network protocol and message format to define an

endpoint. Related concrete endpoints are combined into abstract

endpoints (services). WSDL is extensible to allow description of endpoints

and their messages regardless of the message formats or network

protocols that are used to communicate. The typical bindings with WSDL

are SOAP, HTTP GET/POST, and MIME [W3C01].

The WSDL file consists of six elements. These elements are:

342

• definitions, defines the name of the Web Service, declares

multiple namespaces

• types describe all the data types used between the server

and the client

• message describe a one-way message such as request or a

response message

• portType, combines multiple message elements to form a

complete one-way or request-response operation

• binding describes how the service will be implemented on

the transport layer

• service. defines the address for invoking the specified

service

C.2.1.5 SOA REGISTRY AND REPOSITORY

Differences between SOA Registry and Repository

In SOA, a registry stores information about services in an SOA. It includes

information that other participants can look up to find out the location of

the service and what it does. A registry may also include information about

policies that are applied to the service, such as security requirements,

quality of service commitments and billing.

A repository Stores all services-related artifacts in the enterprise-wide

SOA implementation. The repository should also provide cooperation

capabilities (the ability to search, modify, etc.) to all the SOA stakeholders.

The repository contains all of the design and development artifacts of

services that the design tools may need at design and build time. The

343

service repository is optimized to store large amounts of assets and to

enable a large user population to make ad-hoc queries to find these

assets. Access to the repository takes place within the enterprise

boundaries.

The registry contains a subset of the repository information that is required

at runtime binding. The registry often needs to be accessed from within

and from the outside of these boundaries. The service registry is optimized

for runtime lookups of services endpoint addresses.

Universal Description, Discovery and Integration (UDDI)

UDDI is a registry, where Web Services can be registered and it describes

the programming interfaces for publishing, retrieving, and managing

information about services. Actually, UDDI itself consists of Web Services.

The UDDI specification identifies services that support the description and

discovers:

• The Web Services they make available.

• Businesses, organizations, and other Web services providers.

• Technical interfaces that are used to access and manage those

services.

UDDI is based on established industry standards, like HTTP, XML, XSD,

SOAP and WSDL [OASIS08a].

C.2.1.6 RESTFUL

Another architectural style for implementing SOA is the RESTful Web

Service [FIEL00]. It is an alternative solution that implements Remote

344

Procedure Calls across the Web. Representational State Transfer (REST)

is gaining increased attention not only because it is used by many Web

2.0 services, but also because it provides a simple API to implement Web

Services. It was originally introduced as an architectural style for building

large-scale distributed hypermedia systems. The REST architecture is

based on the following four principles [FIEL07]:

• Resource identification through URI: The resources of the REST

Web Service are identified by URIs (Uniform Resource Identifier)

[BERNE05], which provides a global addressing space for

resources and service discovery.

• Uniform interface: The REST resources are manipulated by using

fixed set of operations. These operations are influenced by the

CRUD (CREATE, READ, UPDATE, DELETE) operations from the

HTTP protocol. The REST operations follow similar patterns with

the HTTP operations. These operations are: PUT, GET, POST, and

DELETE. PUT operation creates a new resource that can be

deleted by using the DELETE operation. GET operation retrieves

the current state of a resource and the POST operation transfers a

new state onto a resource.

• Self descriptive messages: The resources are decoupled from

their representation so that their content can be accessed in a

variety of formats (e.g. XML, HTML, PDF, etc.).

• Stateless interactions through hyperlinks: All RESTful interacts

with resources statelessly. Stateless applications can be easier to

scale up. In REST stateless means that there is no client session

345

data stored on the server. The server only records and manages

the state of the resources it exposes. If there needs to be session

specific data, it should be held and maintained by the client and

transferred to the server with each request as needed. A service

layer that does not have to maintain client sessions can be easily

scaled as it has to do with less replication in a clustered

environment.

REST/WS are perceived to be simple and provide a lightweight

infrastructure, where services can be built with minimal tooling. This

approach allows the developers to work with inexpensive tools and

develop platforms that can serve a large number of clients with low cost.

C.3 COMPARING SOAP WEB SERVICES WITH RESTFUL

WEB SERVICES

Table C-4 illustrates the differences between RESTful Web Services and

SOAP based Web Services [PAUT08].

Table C.4: REST/WS and SOAP/WS comparison

 REST/WS SOAP/WS

Transport Protocol HTTP HTTP, TCP, SMTP, JMS,
MQ, IIOP

Payload format JSON, XML, RSS XML
Service description Text, XSD, WSDL WSDL, XSD

Security HTTPS HTTPS, WS-Security, XML
security, XML signature

Discovery Resource, identified by URI UDDI

Integration styles
URI with standardized

interface (put, post, get,
delete)

RPC, Messaging

Communication style asynchronous and
Synchronous

Synchronous and
asynchronous

346

Message exchange
patterns Request/response Request/response,

Publish/Subscribe

Architectural focus

Focus on scalability and
performance of large scale

distributed hypermedia
systems

Focus on design of
integrated distributed

applications

Bandwidth consumption Low High
Performance High Acceptable
Complexity Low High

As can be seen from the table above, SOAP allows messages to be

exchanged by using a variety of transport protocols. The WSDL binding

element is used to select the appropriate transport protocol to bind the

operation messages. REST is using only the HTTP protocol for

transporting messages, thus it can only use request/response as a

communication pattern compared to SOAP/WS that can use JMS for

asynchronous communication. REST/WS is capable of serving resources

in multiple representation formats such as JavaScript Object Notation

(JSON), XML, and Really Simple Syndication (RSS) [JSON], [RSS].

SOAP/WS can only use XML for representing resources. SOAP/WS

provides the UDDI registry for service discovery whereas REST/WS

leaves it to the developer to implement service registry. SOAP/WS can be

used as a gateway technology to enable interoperability for applications

that work both over HTTP and other protocols. Moreover, most of legacy

systems are not designed to operate over HTTP protocols, multicast,

asynchronous messaging, etc. SOAP/WS can encapsulate their

information into transport protocols such as TCP and IIOP and make the

integration with other systems possible. Furthermore, SOAP/WS allows

the same interface to be bound to different transport protocols as business

and technological requirements change.

347

REST/WS on the other hand is simpler to develop due to the lightweight

infrastructure and has been supported by major Web 2.0 applications

(Amazon, Google, etc.). REST/WS has better performance compared to

SOAP/WS due to the absence of intermediaries, message wrapping, and

serialization that are required by the SOAP/WS. Due to the fact that

REST/WS is lightweight and the messages that exchanged are less

verbose than SOAP messages, it could be used by portable devices that

have limited bandwidth and processing power. The major drawback of the

REST/WS is that it cannot deliver enterprise-wide capabilities such as

message verification, message validation, message transaction etc. that

are required by enterprise systems. SOAP/WS provides better support for

security, reliable messaging and transaction management [MacV06] that

are vital functions for the back end systems in enterprises. REST/WS are

mostly used for front-end interactions between applications and

consumers. Thus, SOAP/WS are more commonly used for the back-end

systems that require more sophisticated functions that REST/WS cannot

deliver.

348

Appendix D : Enterprise Service Bus (ESB)

D.1 THE ESB IN THE SOA CONTEXT

For the NGN convergence, system integration patterns and strategies are

vital for a long term lasting integration framework. There are two significant

options for system integration: The direct point-to-point integration and the

Bus integration. In the first approach, each connection between

applications is individually designed and cooperatively implemented,

deployed, and administered. The responsibility for the connectivity issues

such as location, naming and security of services is distributed among the

applications. In the Bus approach, the interaction among services is

mediated by a brokering component that is used as messaging backbone

for message propagation. In the SOA context, this component is referred

to as ESB. Each application is designed to interact with the ESB, allowing

it to manage routing and transformation of the messages exchanged

between applications. Figure D.1 shows those two different integration

approaches.

Figure D.1: Comparison of ESB and point-to-point integration

349

ESB is an emerging middleware that provides technological solutions to

intercept messages among services. It provides the fundamental support

for Web Services. ESB incorporates the concept of mediation and solving

the problem of interoperability between clients and data sources in

Information Systems [JOSU07]. An ESB is actually a middleware providing

integration facilities built on top of industrial standards such as XML,

SOAP, WSDL, WS-Addressing, and WS-Security. ESB provides a

communication channel mostly asynchronous (Publish/Subscribe), a

trading service in order to find appropriate services and an orchestration

service [CHAP04]. In addition to transformation functionalities, ESB

provides dynamic routing and dispatch of requests to multiple receivers,

which is an important functionality when using heterogeneous systems

and other QoS management functions such as quality measurement,

tracing, data management, caching or failure detection and recovery.

Moreover, the ESB functionality can be distributed across multiple servers,

which are centrally managed. Other middleware solutions such as ORB

cannot distribute their functionality. ESB provides support for use of

proprietary or custom adapters to connect to legacy and COTS systems.

Implementing ESB in an SOA framework increases the interoperability

among applications due to the fact that ESB allows connected applications

with disparate technologies and data formats to interoperate as service

users and service providers without changing their internal functions.

Moreover, ESB improves the modifiability of the framework by allowing

many types of changes or replacements of service providers without

350

impacting the service users. ESB provides extensibility by allowing service

to be connected with each other easily via standardized and open

interfaces. Thus enterprises can have fast changes according to the

business needs.

On the other hand, there are some issues that need to be considered

when designing an SOA framework that is based on the ESB. First, the

performance may be negatively impacted due to additional message hops

and message transformations performed by the ESB. To solve the

performance issues, ESB functionality can be distributed and implemented

in separate servers. For instance, transformation functions, routing

functions and validation functions can be implemented into different

servers forming a cluster that acts as one service. Hence, the performance

can be improved. Another issue that arises is that adopting ESB may not

be feasible in environments with a small number of applications and

services. ESB should be implemented in environments where there are

many heterogeneous services and applications. The purpose of NGN is to

use different transport technologies in order to provide a unified access to

the service users. As a result, the NGN management plane is a complex

heterogeneous environment that requires the many different services and

applications to be interconnected.

Figure D.2 illustrates the ESB as a Reliable asynchronous Secure

Messaging pipe and the connected services that provide different

functionalities.

351

Figure D.2: Enterprise Service Bus (ESB)

ESB offers the following key features:

• Support of SOAP, WSDL and UDDI, as well as emerging standards

such as WS-Reliable messaging and WS-Security.

• Messaging: asynchronous store-and-forward delivery with multiple

qualities of service.

• Content-based routing.

• Data transformation.

• Platform-neutral: connects to any technology. For example, Java,

.Net, databases and mainframes.

D.2 COMPARING CORBA WITH ESB

Even though CORBA technology has been adopted by real-time mission

critical environments such as air traffic control and military embedded

systems, its adoption is declining over the last years [ABEE06]. The

telecommunication industry as stated in previous sections is shifting

towards the SOA through the use of Web Services. The combination of

352

Web Services with ESB technology can provide solutions to the complex

heterogeneous environments that require today.

Today, CORBA is used mostly to ‘wire’ together components that run

inside the companies’ networks, where communication is protected from

the outside world by firewalls. From an architectural point of view, NGN is

specifying the decoupling of the network from the service functionalities.

NGN tries to make services independent from the underlying technologies

where the enterprises are required to ‘open up’ their boundaries and

operate in an open B2B environment [HENN06]. The open B2B

transactions among enterprises need to conform to open and standardized

interfaces that are loosely coupled in order to minimize the dependencies

between the communication parties. NGN management should facilitate

this decoupling and should offer operational services taking into account

the layers defined by the NGN.

Table D-1 presents the differences between CORBA middleware and

ESB.

Table D-1: ESB and CORBA characteristics

 ESB CORBA
Communication
Infrastructure

SOAP as messaging payload Binary message payload
over IIOP

Interface definitions WSDL IDL
Messaging styles • One-way: (SOAP over HTTP

or SOAP over JMS)
• Request-response: (SOAP

over HTTP or SOAP over
JMS)

• Document-oriented: (SOAP
over HTTP or SOAP over
JMS)

• Publish-Subscribe: (SOAP
over JMS)

• One-way: (IIOP)
• Request-response:

(IIOP)
• Document-oriented:

(IIOP)
• Publish-Subscribe:

(using event
notifications)

Data Validation Custom programming routines SOAP message payload

353

perform validation. can be validated using
XML schemas.

Complexity Easy when using specialized
tools such as WSDL converter.

Complex server-side
programming model

Performance Acceptable performance. CORBA systems can offer
greater performance

Technology adoption Adopted by many industry
leading companies such as
Microsoft, IBM
Technology support: J2EE .Net

CORBA future is
uncertain. If CORBA fails
to achieve sufficient
adoption by the industry,
then CORBA
implementations become
legacy systems.

ESB typically uses SOAP as a messaging payload where messages are

self-describing due to the fact that messages are based on XML. The

payload of the SOAP message is transmitted over HTTP or JMS protocols.

CORBA uses a binary message payload where messages are not self-

described and the payload is transmitted over the IIOP protocol. Both

CORBA and ESB support the same messaging styles but are using

different protocols to achieve it. CORBA has more complex APIs

compared to Web Services. CORBA APIs are far larger than necessary.

For instance, the CORBA’s object adapter requires more than 200 lines of

interface definition code, even though the same functionality can be

provided in about 30 lines [HENN06].

 Another problem is that the language mappings in CORBA are difficult to

implement due to the complex and poorly designed API [HENN06]. On the

other hand, CORBA-based systems can achieve better performance

compared to ESB because they use remote objects and method

invocations for the communication resulting in lower overheads. ESB has

enormous adoption by many enterprises. According to a study conducted

by the AberdeenGroup, involving 120 organizations and their adoption of

354

ESB and SOA technologies concluded that only 7% of large companies

have no plans of using ESB in their SOA infrastructure. The majority of the

medium size and the 80% of small companies have not used ESB yet due

to the fact that they are still in the designing phase of their architecture

[ABEE06]. On the other hand, CORBA fails to achieve sufficient adoption

by the industry; only 29% of the involved organizations were considering

CORBA as an alternative technology for implementing SOA.

355

Appendix E : IMPLEMENTATION CODE

E.1 CORE NMS SERVICE BUS ROUTING RULES

The following code is a part of the Routing Service. It contains the rules to

route the management messages to the specified topic or queue

according to XPath rules.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:rule="http://servicemix.apache.org/eip/1.0"
xmlns:esb="http://esb.com/localhost">

<rule:xpath-splitter service="esb:RRouter" endpoint="RRouterEndpoint"
 xpath="/*/*" namespaceContext="#nsContext">
 <rule:target>
 <rule:exchange-target service="esb:AppInput" />
 </rule:target>
</rule:xpath-splitter>
<rule:content-enricher service="esb:ContentEnrichingFunction"
endpoint="EnrichingEndpoint">
 <rule:enricherTarget>
 <rule:exchange-target service="esb:DecisionPoint" />
 </rule:enricherTarget>
 <rule:target>
 <rule:exchange-target service="esb:TransformationService" />
 </rule:target>
</rule:content-enricher>
<rule:content-based-router service="esb:AppInput"
endpoint="AppInputEndpoint">
<rule:rules>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//NMS1:severity='1'| //NMS1:NMS='1'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:wireTap1"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//NMS2:severity='High'|
//NMS2:NMS='2'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:wireTap1"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//NMS1:severity='2'| //NMS1:NMS='1'"
 namespaceContext="#nsContext"></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:wireTap2"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>

356

 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//NMS2:severity='Low'| //NMS2:NMS='2'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:wireTap3></rule:exchange-target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//NMS1:severity='3'| //NMS1:NMS='1'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:wireTap4"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//NMS2:severity='information'|
//NMS2:NMS='2'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:wireTap5"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//MS1:NMS='1'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:MS1queue"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//MS1:NMS='2'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:MS2queue"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//MS1:NMS='3'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:MS3queue"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//MS1:NMS='4'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:MS4queue"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//MS2:NMS='1'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>

357

 <rule:target>
 <rule:exchange-target service="esb:MS1queue"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//MS2:NMS='2'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:MS2queue"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//MS2:NMS='3'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:MS3queue"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//MS2:NMS='4'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:MS4queue"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//MS3:NMS='1'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:MS1queue"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//MS3:NMS='2'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:MS2queue"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//MS3:NMS='3'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:MS3queue"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//MS3:NMS='4'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:MS4queue"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>

358

 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//MS4:NMS='1'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:MS1queue"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//MS4:NMS='2'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:MS2queue"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//MS4:NMS='3'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:MS3queue"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:predicate>
 <rule:xpath-predicate xpath="//MS4:NMS='4'"
 namespaceContext="#nsContext" ></rule:xpath-predicate>
 </rule:predicate>
 <rule:target>
 <rule:exchange-target service="esb:MS4queue"></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 <rule:routing-rule>
 <rule:target>
 <rule:exchange-target service="esb:SoftAppIn" ></rule:exchange-
target>
 </rule:target>
 </rule:routing-rule>
 </rule:rules>
 </rule:content-based-router>
<rule:wire-tap service="esb:wireTap1" endpoint="wireTapendpoint1">
 <rule:target>
 <rule:exchange-target service="esb:Topic1" />
 </rule:target>
 <rule:inListener>
 <rule:exchange-target service="esb:wireTap6" />
 </rule:inListener>
</rule:wire-tap>
<rule:wire-tap service="esb:wireTap6" endpoint="wireTapendpoint6">
 <rule:target>
 <rule:exchange-target service="esb:Topic1" />
 </rule:target>
 <rule:inListener>
 <rule:exchange-target service="esb:Folder1" />
 </rule:inListener>
</rule:wire-tap>
<rule:wire-tap service="esb:wireTap2" endpoint="wireTapendpoint2">
 <rule:target>
 <rule:exchange-target service="esb:wireTap7" />
 </rule:target>
 <rule:inListener>
 <rule:exchange-target service="esb:wireTap8" />
 </rule:inListener>
</rule:wire-tap>
<rule:wire-tap service="esb:wireTap7" endpoint="wireTapendpoint7">
 <rule:target>
 <rule:exchange-target service="esb:Topic2" />

359

 </rule:target>
 <rule:inListener>
 <rule:exchange-target service="esb:Folder2" />
 </rule:inListener>
</rule:wire-tap>
<rule:wire-tap service="esb:wireTap8" endpoint="wireTapendpoint8">
 <rule:target>
 <rule:exchange-target service="esb:Topic3" />
 </rule:target>
 <rule:inListener>
 <rule:exchange-target service="esb:Folder3" />
 </rule:inListener>
</rule:wire-tap>
<rule:wire-tap service="esb:wireTap3" endpoint="wireTapendpoint3">
 <rule:target>
 <rule:exchange-target service="esb:wireTap9" />
 </rule:target>
 <rule:inListener>
 <rule:exchange-target service="esb:wireTap10" />
 </rule:inListener>
</rule:wire-tap>
<rule:wire-tap service="esb:wireTap9" endpoint="wireTapendpoint9">
 <rule:target>
 <rule:exchange-target service="esb:Topic2" />
 </rule:target>
 <rule:inListener>
 <rule:exchange-target service="esb:Folder2" />
 </rule:inListener>
</rule:wire-tap>
<rule:wire-tap service="esb:wireTap10" endpoint="wireTapendpoint10">
 <rule:target>
 <rule:exchange-target service="esb:Topic4" />
 </rule:target>
 <rule:inListener>
 <rule:exchange-target service="esb:Folder4" />
 </rule:inListener>
</rule:wire-tap>
<rule:wire-tap service="esb:wireTap4" endpoint="wireTapendpoint4">
 <rule:target>
 <rule:exchange-target service="esb:wireTap11" />
 </rule:target>
 <rule:inListener>
 <rule:exchange-target service="esb:wireTap12" />
 </rule:inListener>
</rule:wire-tap>
<rule:wire-tap service="esb:wireTap11" endpoint="wireTapendpoint11">
 <rule:target>
 <rule:exchange-target service="esb:Topic1" />
 </rule:target>
 <rule:inListener>
 <rule:exchange-target service="esb:Folder1" />
 </rule:inListener>
</rule:wire-tap>
<rule:wire-tap service="esb:wireTap12" endpoint="wireTapendpoint12">
 <rule:target>
 <rule:exchange-target service="esb:Topic3" />
 </rule:target>
 <rule:inListener>
 <rule:exchange-target service="esb:Folder3" />
 </rule:inListener>
</rule:wire-tap>
<rule:wire-tap service="esb:wireTap5" endpoint="wireTapendpoint5">
 <rule:target>
 <rule:exchange-target service="esb:wireTap13" />
 </rule:target>
 <rule:inListener>
 <rule:exchange-target service="esb:wireTap14" />
 </rule:inListener>
</rule:wire-tap>
<rule:wire-tap service="esb:wireTap13" endpoint="wireTapendpoint13">
 <rule:target>
 <rule:exchange-target service="esb:Topic1" />
 </rule:target>
 <rule:inListener>
 <rule:exchange-target service="esb:Folder1" />

360

 </rule:inListener>
</rule:wire-tap>
<rule:wire-tap service="esb:wireTap14" endpoint="wireTapendpoint14">
 <rule:target>
 <rule:exchange-target service="esb:Topic1" />
 </rule:target>
 <rule:inListener>
 <rule:exchange-target service="esb:Folder4" />
 </rule:inListener>
</rule:wire-tap>
 <rule:namespace-context id="nsContext">
 <rule:namespaces>
<rule:namespace prefix="NMS1">http://esb.nms1.com</rule:namespace>
<rule:namespace prefix="NMS2">http://esb.nms2.com</rule:namespace>
<rule:namespace prefix="MS1">http://esb.ms1.com</rule:namespace>
<rule:namespace prefix="MS2">http://esb.ms2.com</rule:namespace>
<rule:namespace prefix="MS3">http://esb.ms3.com</rule:namespace>
<rule:namespace prefix="MS4">http://esb.ms4.com</rule:namespace>
 </rule:namespaces>
 </rule:namespace-context>
</beans>

E.2 FILE ARCHIVE SERVICE

The following code is a part of the Archive service that creates folders as

well as the connection points that the routing rules are specified to sent.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:file="http://servicemix.apache.org/file/1.0"
xmlns:esb="http://esb.com/localhost">

 <file:poller service="esb:routingPoller" endpoint="routingEndpoint"

targetService="esb:JMSSender" targetEndpoint="Endpoint"
file="file:Routing_Inbox"></file:poller>

 <file:poller service="esb:AppIn" endpoint="AppEndpoint"

targetService="esb:AppInput" targetEndpoint="AppInputEndpoint"
file="file:App_Input"></file:poller>

 <file:sender service="esb:Folder1" endpoint="folder1Endpoint"
 directory="file:NMS1_F"></file:sender>

 <file:sender service="esb:Folder2" endpoint="folder2Endpoint"
 directory="file:NMS2_F"></file:sender>

 <file:sender service="esb:Folder3" endpoint="folder3Endpoint"
 directory="file:MService1_F"></file:sender>

 <file:sender service="esb:Folder4" endpoint="folder4Endpoint"
 directory="file:MService2_F"></file:sender>

 <file:sender service="esb:Folder5" endpoint="folder5Endpoint"
 directory="file:MService3_F"></file:sender>

 <file:sender service="esb:Folder6" endpoint="folder6Endpoint"
 directory="file:MService4_F"></file:sender>

 <file:sender service="esb:Folder7" endpoint="folder7Endpoint"
 directory="file:Topic1_F"></file:sender>

 <file:sender service="esb:Folder8" endpoint="folder8Endpoint"
 directory="file:Topic2_F"></file:sender>

 <file:sender service="esb:Folder9" endpoint="folder9Endpoint"
 directory="file:Topic3_F"></file:sender>

361

 <file:sender service="esb:Folder10" endpoint="folder10Endpoint"
 directory="file:Topic4_F"></file:sender>

 <file:sender service="esb:SoftAppIn" endpoint="SoftEndpoint"
 directory="file:Type_Soft"></file:sender>
</beans>

E.3 CREATING MESSAGE QUEUES AND TOPICS

The following code is creating four JMS queues and four JMS Topics.

<beans xmlns:sm="http://servicemix.apache.org/config/1.0"
 xmlns:jms="http://servicemix.apache.org/jms/1.0"
xmlns:esb="http://esb.com/localhost">
<jms:provider service="esb:JMSSender" endpoint="Endpoint"
 destinationName="MS" connectionFactory="#connectionFactory" />
<jms:consumer service="esb:JMSConsumerService" endpoint="inQueueReader"
 targetService="esb:RRouter" targetEndpoint="RRouterEndpoint"
 destinationName="MS" connectionFactory="#connectionFactory" />
<jms:provider service="esb:Topic1" endpoint="Topic1Endpoint"
 destinationName="Topic1" replyDestinationName="Topic1"

connectionFactory="#connectionFactory"
pubSubDomain="true" />

<jms:provider service="esb:Topic2" endpoint="Topic2Endpoint"
 destinationName="Topic2" replyDestinationName="Topic2"

connectionFactory="#connectionFactory"
pubSubDomain="true" />

<jmsprovider service="esb:Topic3" endpoint="Topic33Endpoint"
 destinationName="Topic3" replyDestinationName="Topic3"

connectionFactory="#connectionFactory"
pubSubDomain="true" />

<jms:provider service="esb:Topic4" endpoint="Topic4Endpoint"
 destinationName="Topic4" replyDestinationName="Topic4"

connectionFactory="#connectionFactory"
pubSubDomain="true" />

<jms:provider service="esb:MS1queue" endpoint="MS1Endpoint"
 destinationName="MS1" replyDestinationName="MS1"

connectionFactory="#connectionFactory" />
<jms:provider service="esb:MS2queue" endpoint="MS2Endpoint"
 destinationName="MS2" replyDestinationName="MS2"

connectionFactory="#connectionFactory" />
<jms:provider service="esb:MS3queue" endpoint="MS3Endpoint"
 destinationName="MS3" replyDestinationName="MS3"

connectionFactory="#connectionFactory" />
<jms:provider service="esb:MS4queue" endpoint="MS4Endpoint"
 destinationName="MS1" replyDestinationName="MS4"

connectionFactory="#connectionFactory" />
 <bean id="connectionFactory"
class="org.apache.activemq.ActiveMQConnectionFactory">
 <property name="brokerURL" value="tcp://127.0.0.1:61616" />
 </bean>
</beans>

E.4 TROUBLE TICKETING WSDL FILE

The following code illustrates the service contract that has to be used from

external services in order to invoke the Trouble Ticketing System.

<?xml version="1.0" encoding="UTF-8"?>
<wsdl:definitions targetNamespace="http://localhost.com.ws"

362

 xmlns:apachesoap="http://xml.apache.org/xml-soap"
 xmlns:impl="http://localhost/wsdl/TTWebService.wsdl"
 xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
 xmlns:tns1="http://Trouble.Ticketing.dto"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:wsdlsoap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://Trouble.Ticketing.ws">
 <wsdl:types>
 <schema targetNamespace="http://localhost.com"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://schemas.xmlsoap.org/soap/encoding/" />
 <complexType name="ticket">
 <sequence>
 <element name="details" nillable="true" type="xsd:string" />
 <element name="e-mail" nillable="true" type="xsd:string" />
 <element name="ID" type="xsd:long" />
 <element name="SubmitDate" nillable="true"
 type="xsd:dateTime" />
 <element name="event summary" nillable="true"
type="xsd:string" />
 <element name="Location" nillable="true"
type="xsd:string" />
 </sequence>
 </complexType>
 </schema>
 </wsdl:types>
 <wsdl:message name="getRequest">
 <wsdl:part name="status" type="xsd:string" />
 </wsdl:message>
 <wsdl:message name="getResponse">
 <wsdl:part name="getReturn" type="tns1:ArrayOf_tns_ticket" />
 </wsdl:message>
 <wsdl:portType name="TTWebService">
 <wsdl:operation name="getTTs" parameterOrder="status">
 <wsdl:input message="impl:getRequest"
 name="getRequest" />
 <wsdl:output message="impl:getResponse"
 name="getResponse" />
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="TTWebServiceSoapBinding"
 type="impl:TTWebService">
 <wsdlsoap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="get">
 <wsdlsoap:operation soapAction="" />
 <wsdl:input name="getRequest">
 <wsdlsoap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://localhost.com" use="encoded" />
 </wsdl:input>
 <wsdl:output name="getResponse">
 <wsdlsoap:body
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
 namespace="http://localhost.com" use="encoded" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="TTWebServiceService">
 <wsdl:port binding="impl:TTtWebServiceSoapBinding"
 name="TTWebService">
 <wsdlsoap:address
 location="http://localhost:8080/WebService/TTWebService" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

	cover_sheet_thesis
	University of Bradford eThesis

	PhD_Kotsopoulos_UB_05012281
	Chapter 1 : Introduction
	1.1 Statement of the problem
	1.2 Aims and objectives
	1.3 Research contributions
	1.4 Structure of the thesis
	1.5 Publications from Thesis

	Chapter 2 : The Evolution of Telecommunication Management Framework
	2.1 Introduction
	2.2 Drivers for the Telecommunication Management Community
	2.3 An Overview of Telecommunication and Network Management Architectures
	2.3.1 Telecommunication Management Network (TMN)
	2.3.1.1 The TMN Reference Architecture
	TMN Layer Separation
	2.3.1.3 The FCAPS Model
	2.3.1.4 TMN Contributions and Influence

	2.3.2 The Telecommunication Information Network Architecture (TINA)
	2.3.2.1 The TINA Development
	2.3.2.2 The TINA Business Model
	2.3.2.3 TINA Service Architecture
	2.3.2.4 TINA Architecture’s Contribution and Influences

	2.3.3 The Manager and Agent Model
	2.3.3.1 Network Management Agent
	2.3.3.2 Structure of Management Information (SMI)
	2.3.3.3 Management Information Base (MIB)

	2.3.4 IP-Based Network Management: SNMP
	2.3.4.1 SNMP Protocol Structure and Operations
	2.3.4.2 SNMP contribution and influence

	2.3.5 CMISE/CMIP
	2.3.5.1 The CMISE
	2.3.5.2 CMIP-based Communication
	2.3.5.3 Comparing SNMP and CMIP

	2.3.6 Web-Based Enterprise Management (WBEM)

	2.4 ITU Next Generation Network Management Framework
	2.4.1 The NGN Architecture: Service and Transport Strata
	2.4.2 The TMN NGN Management Framework
	2.4.2.1 Business Process View
	2.4.2.2 Management Functional View
	2.4.2.3 Management Informational View
	2.4.2.4 Management Physical View
	2.4.2.5 Security Consideration

	2.4.3 The TMF NGN Management Framework
	2.4.3.1 The Next Generation Operations Systems and Software (NGOSS)
	2.4.3.2 The Enhanced Telecommunication Operation Map (eTOM)
	2.4.3.3 Shared Information Data (SID) Model
	2.4.3.4 TMF’s Architecture Contribution and Influence

	2.5 Conclusion

	Chapter 3 : NGN Management Plane Technology Analysis
	3.1 Introduction
	3.2 The NGN Management Architecture
	3.2.1 The Evolving Management Architectures
	3.2.1.1 First Stage: The Manager-Agent Approach
	3.2.1.2 Second Stage: The OSS/BSS Point-to-Point Architecture
	3.2.1.3 Third Stage: A Distributed Approach with The Enterprise Bus Solution
	3.2.1.4 Fourth Stage: A Distributed Approach with SOA and ESB

	3.3 SOA in Telecommunications Network Management
	3.3.1 An Overview of Telecommunication Network
	3.3.2 IP Multimedia Subsystem (IMS) and the Service Delivery Platform (SDP)
	3.3.3 Managing NGN with SOA
	3.3.3.1 SOA Principles
	3.3.3.2 The SOA-based NGN Network Management Architecture
	3.3.3.3 Global and Local Network Management Functions
	3.3.3.4 Network Management Architectural Layers

	3.4 Conclusion

	Chapter 4 : Network Management Systems
	4.1 Introduction
	4.2 Levels of Management Communication
	4.3 Components of Network Management Systems
	4.3.1 Network Access Protocols Layer
	4.3.2 Core Process Logic Layer
	4.3.3 Network Management Applications Layer

	4.4 Local Network Management System design in an NGN Infrastructure
	4.4.1 Network Management Requirements
	4.4.2 Local Network Management System Design
	4.4.3 Core Process Logic Layer Development
	4.4.3.1 Control Unit
	4.4.3.2 Manager Poller

	4.4.4 Agent Development
	4.4.4.1 SNMP Agent
	4.4.4.2 Agent Processes
	
	4.4.4.3 Initialization Process
	4.4.4.4 Main Protocol Process
	4.4.4.5 Trap Handler

	4.4.5 XML-gateway component
	4.4.5.1 XML-Gateway Functions
	4.4.5.2 Process for Converting SQL data into XML-based message

	4.4.6 Performance Management
	4.4.6.1 Performance management Parameters
	4.4.6.2 Performance function process flows
	4.4.6.3 Performance Information Retrieval

	4.4.7 Fault and Configuration Management
	4.4.7.1 Fault and Configuration Management Process
	4.4.7.2 Status information retrieval

	4.5 Conclusion

	Chapter 5 : Design of the Network Management Middleware Layer
	5.1 Introduction
	5.2 The Network Management Middleware Functional Architecture
	5.2.1 Middleware Requirements
	5.2.2 The Middleware Functional Architecture
	5.2.3 The Message Oriented Middleware (MOM) Concept
	5.2.3.1 Message Producer, Message Consumer and Message Channels
	5.2.3.2 Messaging Models
	5.2.3.3 Message Composition

	5.2.4 Reliability of Management Messages

	5.3 Design of MOM Services
	5.3.1 Messaging Service
	5.3.2 Message Validation Service
	5.3.2.1 Validation XML Schema for Management Messages
	5.3.2.2 Message Validation Service Architecture

	5.3.3 Message Transformation Service
	5.3.3.1 Architecture
	5.3.3.2 The XSLT Transformation Stylesheet

	5.3.4 Message Routing Service
	5.3.4.1 Routing Interfaces
	5.3.4.2 Routing Functions and Routing Rules

	5.3.5 Persistent Storage Service
	5.3.6 Message Archiving Service

	5.4 Conclusion

	Chapter 6 : Implementation, Testing and Evaluation
	6.1 Introduction
	6.2 Service Implementation in the Core NMS Service Bus
	6.2.1 Message Validation Service
	6.2.1.1 Implementation Architecture
	6.2.1.2 Algorithmic Process for the Message Validation Service

	6.2.2 Message Transformation Service
	6.2.2.1 Implementation Architecture
	6.2.2.2 Implementation Process

	6.2.3 Message Routing Service
	6.2.3.1 Implementation Architecture
	6.2.3.2 Routing and Publishing Management Information
	6.2.3.3 Process for Routing Management Message to Topics
	6.2.3.4 Process for Management Service Inter-communication

	6.3 Implementation of the Global Trouble Ticketing System (TTS)
	6.3.1 Implementation Architecture
	6.3.2 Implementation of TTS with J2EE

	6.4 Test Procedure
	6.4.1 Testing Environment
	6.4.2 Software Module Tests
	6.4.2.1 Tests for Message Validation Service
	6.4.2.2 Tests for Message Transformation Service
	6.4.2.3 Tests for Message Routing Service

	6.4.3 Testbed for the NGN Management Prototype platform
	6.4.3.1 Testbed Set up and Objectives
	6.4.3.2 Validation of Core NMS Service Bus Functions
	6.4.3.3 Performance Behaviour of the Core NMS Service Bus
	6.4.3.4 Number of Subscribers

	6.5 Conclusion

	Chapter 7 : Conclusions and Future Developments
	7.1 Summary
	7.2 Fulfilling SOA Design Principles
	7.2.1 Service Reusability
	7.2.2 Services Discoverability
	7.2.3 Service Loosely Coupling
	7.2.4 Service Composability
	7.2.5 Service Autonomy
	7.2.6 Service Statefulness

	7.3 Achievements Derived from the Thesis
	7.3.1 Design and Development of an Agent
	7.3.2 Design and Development of an Event-driven Network Management System
	7.3.3 Design and Development of an XML-based Gateway Component
	7.3.4 Design and Development of a Network Management Middleware Layer
	7.3.5 Testbed Development – Applications and Evaluation

	7.4 Future Work
	7.4.1 Alternative Mechanisms for Message Routing
	7.4.2 Scheduling of Message Queues
	7.4.3 Security, Policy and Co-ordination
	7.4.4 SID Information Model
	SOAP over HTTP

