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Abstract. In traditional channelized multiple access systems, such as
TDMA and FDMA, each user is assigned a fixed amount of bandwidth
during the whole connection time, and the teletraffic performance in
terms of time congestion, call congestion and traffic congestion can eas-
ily be obtained by using the classical Erlang-B formula. However, with
the introduction of adaptive modulation and coding (AMC) scheme em-
ployed at the physical layer, the allocation of bandwidth to each user is
no longer deterministic, but dynamically based on the wireless channel
conditions. Thus a new connection attempt will be blocked with a cer-
tain probability depending on the state of the system and the bandwidth
requirement of the connection attempt. In this paper, we present an in-
tegrated analytical model of multi-rate loss system with state-dependent
blocking to evaluate the performance of multi-class OFDM-TDMA sys-
tems with AMC scheme.

Keywords: OFDM, AMC, performance evaluation, state-dependent
blocking.

1 Introduction

Future mobile communication systems will provide not only speech and low-
speed data services, but also high-speed data services such as wireless multimedia
applications ranging from kilobits to megabits per second. This can be achieved
by operating the air interface with Orthogonal Frequency Division Multiplexing
(OFDM), which is immune to intersymbol interference and frequency selective
fading, as it divides the frequency band into a group of mutually orthogonal
subcarriers, each having a much lower bandwidth than the coherence bandwidth
of the channel. Recently, OFDM-based systems have become a popular choice for
such an endeavor. The IEEE 802.16 standard, for instance, has adopted OFDM-
TDMA and OFDMA as two transmission schemes at the 2-11 GHz band.

The economical usefulness of a system is effectively measured by the Erlang
capacity, which is generally defined as the maximum traffic load the system can
support when the blocking probabilities at the call admission control (CAC)
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level do not exceed a certain thresholds. Many models have been proposed at
separate layers, e.g., Rayleigh, Rician and Nakagami fading models at the
physical layer [8], and queuing models at the data link layer [6]. In traditional
channelized multiple access systems, e.g., TDMA and FDMA, each user is as-
signed a fixed amount of bandwidth during the whole connection time, and the
Erlang capacity can easily be obtained by using the well-known Erlang-B for-
mula. One important assumption for applying the classical Erlang-B formula is
that the capacity of each channel is constant and the capacity assignment for
each connection is fixed. This is true in wired networks such as the traditional
public switched telephone network (PSTN). However, in wireless networks, the
channel capacity of a wireless link is time-varying due to multipath fading and
Doppler shift. Thus the Erlang-B formula cannot directly be used to calculate
the blocking probability. Furthermore, unlike wired networks, even if large band-
width is allocated to a certain wireless connection, the QoS requirements may
not be satisfied when the channel experiences deep fades.

In order to enhance the spectrum efficiency while maintaining a target packet
error rate (PER) over wireless links, adaptive modulation and coding (AMC)
scheme has been widely adopted to match the transmission rate to time-varying
channel conditions. With AMC, the allocation of bandwidth to each user is no
longer deterministic (i.e., a fixed amount of bandwidth), but depends on the
channel conditions in a dynamic way. Outage is defined to occur when the total
number of time slots required by the admitted users exceeds the total number of
available time slots. Therefore, a new connection may be blocked with a certain
probability depending on the state of the system and the bandwidth requirement
of this new connection.

An analytical model to investigate the performance of transmissions over wire-
less links is developed in [1], where a finite-length queuing is coupled with AMC.
However, the authors only concentrate on a single-user case. Reference [2] cal-
culates the Erlang capacity of WiMAX systems with fixed modulation scheme,
where two traffic classes, streaming and elastic flows, are considered. In refer-
ence [3], the authors evaluate the Erlang capacity of a multi-class TDMA system
with AMC by separating the calculation of blocking and outage probabilities.
Performance analysis of OFDM systems has so far been conducted primarily
by simulations. An analytical framework to evaluate the teletraffic performance
in terms of time congestion, call congestion and traffic congestion of multi-user
multi-class OFDM-TDMA systems with AMC scheme is still missing. In this pa-
per to achieve this goal, we propose an integrated analytical model of multi-rate
loss system with state-dependent blocking.

The rest of the paper is organized as follows. In Section 2, we introduce the
system model, which includes OFDM transmission with AMC and calculation
of state dependent blocking probabilities. In Section 3, an analytical model of
multi-rate loss system with state-dependent blocking is presented with relevant
performance measures. Numerical results are given in Section 4. Finally, conclu-
sions are drawn in Section 5.



104 H. Wang and V.B. Iversen

2 System Model

We consider an infrastructure-based wireless access network, where connections
are established between a base station (BS) and mobile stations (MSs). Several
service classes with different data rate requirements are supported in the sys-
tem. Users from each service class arrive at the cell in a random order. The call
admission control (CAC) module decides whether an incoming call should be
admitted or not, based on the current state of the system and the bandwidth
requirement of the call. We assume that the BS has perfect knowledge of the
channel state information (CSI) of each subchannel of each connection. We fur-
ther assume that each subchannel is frequency flat and that the channel quality
remains constant within a frame, but may vary from frame to frame.

2.1 OFDM Transmission with AMC

We consider an OFDM-TDMA system with M subchannels. At the physical
layer, the time axis is divided into frames. A frame is further divided into K
time slots, each of which may contain one or more OFDM symbols. Users trans-
mit in the assigned time slots over all subchannels. Adaptive modulation and
coding scheme is employed to adjust the transmission mode in each subchannel
dynamically according to the time-varying channel conditions.

We assume that each subchannel follows a Rayleigh fading. For flat Rayleigh
fading channels, the received SNR on subchannel m is a random variable γm

with probability density function (pdf) [1]:

pγ(γm) =
1

γm

exp
(
− γm

γm

)
(1)

where γm is the average SNR over subchannel m.
The design objective of AMC is to maximize the data rate by adjusting the

transmission parameters according to channel conditions, while maintaining a
prescribed packet error rate (PER) P0. Let N denote the total number of trans-
mission modes available (e.g., N = 5). Assuming constant power transmission,
we divide the entire SNR range into N + 1 non-overlapping consecutive inter-
vals with boundaries denoted as {Γn}N+1

n=1 . Specifically, mode n is chosen when
γm ∈ [Γn, Γn+1). Therefore, with Rayleigh fading, transmission mode n will be
chosen on subchannel m with probability:

Pm(n) =
∫ Γn+1

Γn

pγ(γm) dγm = exp
(
− Γn

γm

)
− exp

(
− Γn+1

γm

)
(2)

Let PERm,n denote the average PER corresponding to mode n on subchannel
m. It can be obtained in closed-form as [1]:

PERm,n =
1

Pm(n)

∫ Γn+1

Γn

αn exp(−gnγ) pγ(γ) dγ (3)
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where αn, gn are the mode dependent parameters shown in Table 1. The average
PER of AMC can then be computed as the ratio of the average number of packets
in error over the total average number of transmitted packets:

PER =
∑M

m=1

∑N
n=1 Rn Pm(n) PERm,n∑M

m=1

∑N
n=1 Rn Pm(n)

(4)

where Rn is the number of bits carried per symbol in transmission mode n as
shown in Table 1.

The algorithm for determining the thresholds {Γn}N+1
n=1 with the prescribed

PER = P0 is described in details in [1].

Table 1. Transmission modes with convolutionally coded modulation [1]

Mode 1 Mode 2 Mode 3 Mode 4 Mode 5

Modulation BPSK QPSK QPSK 16QAM 64QAM

Coding rate 1/2 1/2 3/4 3/4 3/4

Rn (bits/sym) 0.5 1.0 1.5 3.0 4.5

αn 274.7229 90.2512 67.6181 53.3987 35.3508

gn 7.9932 3.4998 1.6883 0.3756 0.0900

Let Rm be a random variable with probability mass function fm, denoting
the number of bits that can be transmitted over subchannel m in one time slot.

Rm ∈ {sR0, sR1, · · · , sRN}
fm(sRn) = P(Rm = sRn) = Pm(n)

(5)

where s is the number of symbols per time slot.
Let random variable R =

∑M
m=1 Rm denote the number of bits that can be

transmitted over all subchannels in one time slot. Based on the assumption that
the channel quality of each subchannel is independent identically distributed
(i.i.d.), the probability mass function (pmf) of R, denoted as fR, can be ob-
tained by convolving the pmf of each subchannel fm as follows:

fR = f1 ⊗ f2 · · · ⊗ fM (6)

where a ⊗ b denotes discrete convolution.

2.2 State Dependent Blocking Probability

Assume the system accommodates L types of service classes, each of which re-
quires a constant bit rate of ri bits per frame. In multi-class systems, different
service classes with different bit rate requirements need different channel band-
width in terms of time slots. Thus it would be beneficial for teletraffic calculations



106 H. Wang and V.B. Iversen

if we could specify a common channel bandwidth which we may call a unit chan-
nel. The higher the required accuracy (i.e., bandwidth granularity), the smaller
a unit channel we have to specify. Let us define runit be the constant bit rate
of a unit channel and let di = ri/runit be number of unit channels needed to
establish one connection of service class i. Due to the time-varying nature of
wireless channels, the number of time slots occupied by a unit channel can be
modeled by a random variable Dunit = runit/R, with probability mass function
fDunit , which can be easily obtained from fR.

In AMC scheme, the modulation and coding rate is chosen according to time-
varying channel conditions. As a consequence, the number of time slots allocated
to each user is varying on a frame by frame basis. Outage is defined to occur
when the total number of time slots required by the admitted users exceeds the
total number of available time slots. If outage occurs, the admitted users may
not get the prescribed data rate and thus the QoS will be degraded. Suppose that
the system is in state x (x unit channels are currently occupied by the admitted
users), then the total number of time slots required by the x unit channels can be
modeled by the sum of x i.i.d. random variables Dx =

∑x
1 Dunit with probability

mass function fDx :
fDx = fDunit ⊗ fDunit · · · ⊗ fDunit︸ ︷︷ ︸

x times

(7)

and the outage probability in state x can be calculated as:

Poutage(x) = P(Dx > K)
= 1 − P(Dx ≤ K)

= 1 −
∑
i≤K

fDx(i)
(8)

When a new connection arrives at the system, it will be accepted with a cer-
tain probability under the condition that the acceptance of the new connection
will keep the system outage probability below a predefined threshold. Therefore,
the blocking probability of a new connection is a random variable depending on
the state of the system and the bandwidth requirement of the new connection.
Specifically, assume that a new single-channel call arrives at the time instance
when the system is in state x. The call admission control module first checks
the outage probability of current state Poutage(x). If it is larger than the thresh-
old, the new call is always rejected. If it is smaller than the threshold, the CAC
module estimates the outage probability of the next state Poutage(x + 1). If it
is smaller than the threshold, the new call is accepted with probability one,
otherwise, the new call is accepted with probability p ∈ (0, 1). The value of p
is determined under the condition that the estimated system outage probabil-
ity Poutage(x + p) is below the threshold. For example, if a new single-channel
call arriving in state x is accepted with probability p, the estimated outage
probability can be calculated as: Poutage(x + p) = 1 − ∑

i≤K fDx+p(i), where
Dx+p = Dx + Dp =

∑x
1 Dunit + p · Dunit is a random variable with probability

mass function fDx+p = fDx ⊗ fDp , where fDp can be easily obtained from fDunit .
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Let us define the blocking probability of a new single-channel call in state x
as bx = 1− ax, where ax is the acceptance probability in state x, determined as
follows:

ax =

⎧
⎪⎨
⎪⎩

1 if Poutage(x + 1) ≤ OutTh

0 if Poutage(x) > OutTh

max
{
p : Poutage(x + p) ≤ OutTh

}
else

(9)

where OutTh is the predefined outage probability threshold.
For a d-channel call, we have to choose the acceptance probability in state x as

a function of the number of unit channels currently occupied and the bandwidth
request as follows [5]:

ax,d = 1 − bx,d =
x+d−1∏

j=x

(1 − bj)

= (1 − bx)(1 − bx+1) · · · (1 − bx+d−1)

(10)

Notice that bx = bx,1. This corresponds to that a d-channel call chooses one unit
channel d times, and it is accepted only if all d unit channels are successfully
obtained. This is a quite natural requirement as we assume full accessibility. In
the next section, we will see that this is a necessary and sufficient condition for
maintaining the reversibility of the process.

3 Analytical Model

We evaluate the performance of the above mentioned multi-class OFDM-TDMA
systems with AMC scheme by using the classical teletraffic model of multi-rate
loss system with state-dependent blocking.

3.1 Traffic Model

We use the BPP (Binomial, Poisson & Pascal) traffic model in our analysis [6].
This model is insensitive to the service time distributions, thus it is very robust
for applications. Each traffic stream i is characterized by the offered traffic Ai,
the peakedness Zi and the number of unit channels di needed for establishing
one connection. The offered traffic Ai is usually defined as the average number of
connection attempts per mean holding time. Peakedness Zi is the variance/mean
ratio of the state probabilities of a traffic stream when the system capacity is
infinite, and it characterizes the arrival process. For Zi = 1, we have a Poisson
arrival process, whereas for Zi < 1, we have a finite number of users and more
smooth traffic (Engset case). Engset traffic can alternatively be characterized by
the number of traffic sources S and the offered traffic per idle source β. We have
the following relations between the two presentations [4]:

A = S · β

1 + β
Z =

1
1 + β

β =
1 − Z

Z
S =

A

1 − Z

(11)



108 H. Wang and V.B. Iversen

For Zi > 1, the model corresponds to a more bursty arrival process, called Pascal
traffic.

3.2 Algorithms for Calculating Global State Probabilities

The call-level characteristics of multi-class OFDM-TDMA systems with AMC
described in Section 2 can be modeled by a multi-dimensional Continuous Time
Markov Chain (CTMC). As an example, we consider a system supporting two
traffic streams with different data rates. The arrival process of both streams fol-
lows a Poisson process with rate λ1 and λ2 respectively, and the service times
are exponentially distributed with intensity μ1 and μ2 respectively. A call of
stream one requires one unit channel and a call of stream two requires two unit
channels. Fig. 1 shows the state transition diagram for a system with limited
accessibility, where state (i, j) denotes the state of the system (i.e., i and j are
the number of unit channels occupied by stream one and two respectively), and
1 − bx,d =

∏x+d−1
j=x (1 − bj) is the state dependent acceptance probability de-

rived above. From the figure, we can see that the diagram is reversible as the
flow clockwise is equal to the flow counter-clockwise (Kolmogorov’s criteria), but
there is no product form. Due to reversibility, we can apply the local balance
equations to calculate the relative state probabilities, all expressed with refer-
ence to state (0, 0), then normalize the relative state probabilities to obtain the
absolute state probabilities and the relevant performance measures.

Delbrouck [7] developed a general algorithm for calculating the global state
probabilities for multi-rate loss systems with BPP-traffic, which is insensitive to
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Fig. 1. State-transition diagram with state-dependent blocking probabilities for a
multi-rate loss system. The process is reversible as the flow clockwise equals the flow
counter-clockwise [5].



Teletraffic Performance Analysis of Multi-class OFDM-TDMA Systems 109

service time distribution, i.e., the state probabilities of the system only depend on
the holding time distribution through its mean value. Reference [5] extended the
Delbrouck’s algorithm to allow for evaluating individual performance measures
for each service and include state-dependent blocking as shown in Fig. 1. If we
consider a system with C unit channels and L traffic streams, the relative global
state probabilities q(x) for multi-rate loss systems with state-dependent blocking
can be calculated by a generalized recursion formula expressed as follows [5]:

q(x) =

⎧⎪⎨
⎪⎩

0 x < 0
1 x = 0∑L

i=1 qi(x) x = 1, 2, · · · , C

(12)

where

qi(x) =
{di

x
· Ai

Zi
· q(x − di) − x − di

x
· 1 − Zi

Zi
· qi(x − di)

}
· (1 − bx−di,di) (13)

In the above equations, qi(x) is the contribution from traffic stream i to the global
state q(x). The initialization values of qi(x) are {qi(x) = 0, x < di}. The absolute
global state probabilities p(x) and pi(x) can be obtained after normalization.

p(x) =
q(x)∑C
j=0 q(j)

0 ≤ x ≤ C

pi(x) =
qi(x)∑C
j=0 q(j)

1 ≤ x ≤ C

(14)

A numerically stable algorithm is obtained by normalizing in each step of the
iteration [4].

3.3 Performance Measures

Based on the global state probabilities derived above, we are able to get the
performance measures of the system in terms of time congestion, call congestion,
and traffic congestion.
Time Congestion is by definition equal to the proportion of time the system is
blocked for new call attempts. In multi-class OFDM-TDMA systems with AMC
scheme, a call attempt of stream i will experience congestion with probability
bx,di if the system is in state x. Thus the time congestion Ei of stream i is
calculated as follows:

Ei =
C∑

x=0

bx,di · p(x) i = 1, 2, · · · , L (15)

Traffic Congestion is by definition equal to the proportion of offered traffic
which is blocked. It should be noticed that traffic congestion is the most impor-
tant performance measure. The carried traffic Yi of stream i measured in unit
channels is given by [5]:
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Yi =
C∑

x=1

x · pi(x) i = 1, 2, · · · , L (16)

The offered traffic of stream i measured in unit channels is di · Ai. Thus the
traffic congestion Ci of stream i becomes:

Ci =
di · Ai − Yi

di · Ai
i = 1, 2, · · · , L (17)

Call Congestion is by definition equal to the proportion of call attempts which
are blocked. It is said in reference [4] that the call congestion Bi of stream i
always can be obtained from the traffic congestion Ci as follows:

Bi =
Ci

Zi + (1 − Zi)Ci
i = 1, 2, · · · , L (18)

where Zi is the peakedness of stream i.

4 Numerical Results

In this section, we present some numerical results based on the analytical models
developed above. We consider the downlink of an OFDM-TDMA system with
time division duplex (TDD) operation. The total bandwidth is set to be 5 MHz,
which is divided into 5 subchannels with the assumption that the average SNR
γm of each subchannel is the same. The duration of a frame is set to be 1 ms
so that the channel quality of each connection almost remains constant within a
frame, but may vary from frame to frame. The total number of time slots used
for downlink data transmission within a frame is set to be 200, each of which
contains 4 OFDM symbols. We set the number of transmission modes to 5 with
the target PER at 10−4. Three types of service classes with traffic parameters
shown in Table 2 are considered. The target outage probability is set to be 2%,
which is usually considered to be an acceptable QoS requirement.

The results are shown in Table 3. From the table, we can see that for Poisson
traffic (Z = 1), the time congestion, call congestion and traffic congestion are
identical. This is in accordance with the PASTA property. For Engset (Z < 1)
and Pascal (Z > 1) traffic, there is a difference between the three performance

Table 2. Traffic parameters for the case considered. A is the offered traffic in Erlangs,
Z is the peakedness, and d is the bandwidth requirement in unit channels.

Class Offered traffic Peakedness Req. bit rate Channel bit rate Channels
i di · Ai Zi ri runit di

1 20 1 50 bits/frame 50 bits/frame 1

2 30 0.5 100 bits/frame 50 bits/frame 2

3 30 2 50 bits/frame 50 bits/frame 1
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Table 3. Performance measures for the parameters given in Table 2 with state-
dependent blocking

Class Time cong. E Call cong. B Traffic cong. C Carried Traffic Y

1 0.0557 0.0557 0.0557 18.8854

2 0.1132 0.1040 0.0549 28.3544

3 0.0557 0.0604 0.1139 26.5824
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Fig. 2. Traffic congestion versus different traffic loads

measures. From traffic engineering point of view, the traffic congestion is the
most important one.

Next, we analyze how different traffic characteristics and various traffic loads
will affect the performance metrics. The first two traffic classes in Table 3 are
considered, which correspond to voice and data traffic respectively. Fig. 2 shows
the traffic congestion versus different traffic loads in Erlangs of the two classes.
From the figure, We can see that the increase of the traffic load in class two will
increase the traffic congestion in both classes more sharply than class one does.
This is because class two requires higher data rate than class one, thus occupies
more system resources in terms of time slots.

5 Conclusions

Adaptive modulation and coding (AMC) has been widely used to match trans-
mission parameters to time-varying channel conditions. In this paper, we have
developed an analytical model of multi-rate loss system with state-dependent
blocking to evaluate the teletraffic performance of multi-class OFDM-TDMA
systems with AMC scheme. With state-dependent blocking, the process is still
reversible, but the product-form is lost. It has been shown that a d-channel call
has the same blocking probability as d consecutive single-channel calls. So the
blocking probability of a call attempt depends both on the state of the system
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and the bandwidth required. Due to reversibility, we have local balance and may
calculate the global state probabilities by an effective algorithm. The perfor-
mance measures in terms of time congestion, call congestion and traffic conges-
tion are derived with numerical examples.
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