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Effect of gain nonlinearity in semiconductor lasers

Niels H. Jensen, P. L. Christiansen, and O. Skovgaard
Laboratory of Applied Mathematical Physics, The Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 9 February 1988)

Semiconductor lasers are modeled by single-mode rate equations with Langevin noise terms and
the influence of nonlinear gain is investigated. For cw operation the probability distribution for the
carrier number and the photon number in the laser cavity is obtained. The corresponding (2+ 1)-
dimensional Fokker-Planck equation is derived and integrated on an Amdahl VP1100 vector pro-
cessor. Above threshold the resulting probability density agrees with the rate-equation predictions.
The case of high-speed modulation is also considered. The nonlinear gain is found to stabilize the

laser.

I. INTRODUCTION

Semiconductor lasers are modeled by rate equations.
Recently it has been shown that inclusion of nonlineari-
ties in the laser-amplification process provides a decisive
impact on the modulation properties of the laser.""? In
the present paper we investigate the influence of gain
nonlinearities on the noise properties of semiconductor
lasers subjected to cw as well as pulsed operation. We
solve numerically the single-mode rate equations with
Langevin noise terms. From the resulting time series we
obtain the probability distributions which give a good
measure of the influence of the nonlinear gain. In the
case of cw operation we also derive the corresponding
Fokker-Planck equation and compare numerically ob-
tained stationary solutions to results obtained by direct
numerical integration of the rate equations. A numerical
algorithm appropriate to obtain stationary solutions of
the Fokker-Planck equation has been developed and im-
plemented on an Amdahl VP1100 vector processor.

The paper is organized as follows. Section II presents
the laser rate equations with Langevin noise terms (Sec.
ITA) as well as the derivation of the corresponding
Fokker-Planck equation (Sec. II B). In Sec. III we inves-
tigate the influence of nonlinear gain on the cw operation
properties (Sec. III A) and we consider the case of pulsed
high-speed operation (Sec. III B). Section V contains our
conclusion. An appendix is devoted to a detailed descrip-
tion of the algorithm used to solve the Fokker-Planck
equation.

II. SEMICONDUCTOR LASER MODEL

A. Rate equations

The semiconductor laser is modeled by the well-known
single-mode rate equations with Langevin noise terms:

%:%(N,SHFN(:), 2.1)
%f—:ch(N,SH-FS(t) . 2.2)

Here @, and @ are the drift coefficients given by
38

<I)N(N,S)=J(t)—$r——G(N,S)S (2.1
and
1 N ’
D (N,S)= G(N,S)—T— S+B—, (2.2"
P s
G(N,S) being the gain function®
G(N,S)=Gyn(N —Ny)(1—eS) . (2.3)

In (2.1)-(2.3) N and S are the carrier number and the
photon number, respectively. 7, and 7, are the carrier
lifetime and the photon lifetime. [ is the spontaneous-
emission factor. J(¢) is the injection current which we
shall give in terms of the threshold current,
Jin=(No+1/Gy7,)/7,. In the gain function, (2.3), Gy
denotes the gain constant, and N, is the carrier number
at transparency. (1—eS) is a suppression factor, € being
the gain nonlinearity parameter.

The terms Fy(t) and Fg(t) in (2.1)-(2.2) are the
Langevin noise terms accounting for stochastic fluctua-

tions in N and S. Thus we have the mean values®
(Fy(1))=(Fgs(1))=0. 2.4)

The second moments of the Langevin noise terms give
the autocorrelations and cross correlations

(Fy(t")Fy(t")) =2Dyy8(t'—t") , (2.5)
(Fy(t')Fg(t")) =2Dpg8(t'—1t"), (2.6)
(Fg(t')Fg(t")) =2Dgs(t' —1t") . 2.7

The diffusion coefficients, 2Dyy, 2Dy, and 2Dgg, are
determined by application of the fluctuation-dissipation
theorem* and the Einstein relations between stimulated
and spontaneous emission.> From Ref. 6 follow

2DNN(N,S)=J(I)+T£+ 23%—G(N,S) S, (2.5")

2Dys(N,S)= — zﬁg——G(N,S) S+BT1 Q.6
s s
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2Dg(N,S)= 2/3—— N,S)—}-;l— s+8X . o7

P Ts

B. Fokker-Planck equation

The Fokker-Planck equation associated with the
Langevin equations (2.1)-(2.7) is’
—aaﬁ —L(N,5)P
where P=P(N,S;t) is the probability density for the
values N and S at time ¢t. The Fokker-Planck operator
L(N,S) can be expressed in terms of the laser drift and
diffusion coefficients as’

(2.8)

L(N,S)=— a‘}@,v(zv S)tas (DS(N s)
+a—2D (N,S)+ i ———==Dps(N,S)
aNz NN ’ aNaS NS
aZ
+3§‘{D55(N,S) . (28a)
Inserting @y, @, Dyy, Dys, and Dgg we obtain
P 3’p a*P
or =Dyy(N,S)— aN? 5 +2DNs(N,S) g aN 3s
+Dgs(N, S) Ced 52 +Dy(N, S)
P a
+DS(N,S)5§+D0(N,S)P ) (2.9)
where we have introduced Dy, Dg, and D as
d 9
Dy(N,S)=2 aNDNN(N S)+28SDNS(N,S)——<I>N(N,S) ,
(2.9a)
Dg(N,S)=2-2 De(N,8)+2-2Dys (N, S ) — (N, S)
S ’ - aS SS aN NS ’ S ’
(2.9b)
and
DNS)—iD N,S i ———=Dps(N,S
0( ’ - N2 NN( ’ ) aNGS NS( )
3’ 9
E)S a3 Dss(N,S)— 3N oy (N,S)
aéiv ®(N,S) . (2.9¢)

This Fokker-Planck equation for the semiconductor laser
appears to be new.

III. RESULTS

The system of two ordinary differential equations given
by (2.1)-(2.7) is solved numerically for initial conditions
obtained as stationary solutions to the rate equations
without noise and injection current J(0). For each
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discrete time value (spaced by At’) it has been shown in
Ref. 6 that the Langevin noise terms can be generated
from a two-dimensional Gaussian distribution having
zero mean value [cf. (2.4)] and obeying the correlation ex-
pressions (2.5)-(2.7). Thus, at the beginning of each time
step, the Langevin noise is included by addition of Gauss-
ian noise factors. The noise factors remain constant
throughout one time step. The numerical integration re-
sults in discrete time series, N(i) and S(i),
i=12,...,Ny,. From the time series we deduce the
noise statistics.

The remaining part of this section is divided into two
subsections. First we investigate the cw operation
[J(¢)=const] and next we investigate the influence of
nonlinear gain on the noise statistics under high-speed
(sinusoidal) modulation. Throughout the text we use
fixed system parameters chosen as representative figures
for GaAs Fabry-Perot semiconductor lasers. The funda-
mental laser parameters are listed in Table I. For the
nonlinear gain parameter we use four values of £ (0,
1x107% 1x1077, 5X10~7). The value of ¢ is given in
terms of a cavity volume of 1X 107! m3. In the calcula-
tions we use time steps of length A¢’' =10 psec.

A. cw operation

Here the injection current is a constant, J(¢)=
From the time series obtained as described above we ob-
tain the two-dimensional probability density function,
P(N,S). The intervals 0 to max{N(i)} and 0 to
max{S(i)} are divided into 1000 and 100 intervals, re-
spectively, and the probability distribution is obtained
simply by counting the frequency of being in a given box
formed by such a grid. The grid parameters (1000 and
100) are chosen in accordance with the relative fluctua-
tions (relative to the mean value) in the carrier number
(small fluctuations) and in the photon number (larger
fluctuations), respectively. In Figs. 1(a)—1(d) we show
our results for the four values of the nonlinearity parame-
ter € (0, 1xX107%, 1x10~7, 5%x10~7). The injection
current is J, =1.4J,,. Results are shown for time series
of length N =6000.

The Fokker-Planck equation (2.9) has a complicated
structure. Because the rate equations (2.1)-(2.7) do not
satisfy the potential condition,” or equivalently the condi-
tion of detailed balance,” no analytical solution to (2.9)
may be found, not even a stationary solution (3P /9t =0).
Therefore, in the Appendix we develop a numerical algo-
rithm by which stationary (and in principle dynamical)
solutions to the Fokker-Planck equation can be obtained.

TABLE I. Laser parameters.

Parameter Symbol Value
Carrier lifetime T 3 nsec
Photon lifetime T, 1 psec
Gain constant Gy 1 10* sec™!
Gain constant N, 1x 108
Spontaneous-emission factor B 1x10~°
Injection current Jy 14 J,
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The problem is solved as a converging initial-value prob-
lem. Referring to Figs. 1(a)-1(d) we apply a Gaussian
profile (A6) as initial condition. The standard deviations
o, and o, are estimated from the distributions in Figs.
1(a)-1(d). In Table II we have listed the values of o, and
o, together with the physical parameters oy and og. In

P

1200

600

5400

2700

8221

the numerical solution of the Fokker-Planck equation we
have used y =0.01 and y3=0.5 [see (A1)] and grid pa-
rameters Ly =64 and Ly =64 [see (A7)]. From prelimi-
nary calculations it was shown that the Fokker-Planck
operator = [see (A10a)], assumes values as high as +10"3
sec”!. As a compromise between stability and minimal

o>

=

il
Wm 1.01
1.00 N/N
A
P
1200
600
1.01
0 1.00 N/N

o>

A
" 0‘.:‘ 1.01

100 N/N

o>

5400

2700
1.01

0 ' 1.00 N/N

55 - 0.5 099

FIG. 1. Two-dimensional probability density functions (a)—(d) obtained from direct numerical integration of the rate equations
(2.1)-(2.7), and (e)—(h) as stationary solutions of the Fokker-Planck equation (2.9). The injection current is J, =1.4J;,. Laser param-
eters as indicated in Table I. The values of the gain nonlinearity parameter ¢ are (a),(e), e=0; (b),(f), e=1X10"%; (c),(g), e=1x10"7;
(d),(h), e=5x10"".
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TABLE II. Estimated input parameters.
107e 10%0, 10°0y /N 10%0, 10°05/8
0 72 1.44 134 134
0.1 55 1.10 118 118
1.0 39 0.78 93 93
5.0 32 0.64 47 47

CPU consumption, the time step At in (A12) is chosen as
At=1x10"" sec. Anyway, this small time step still re-
quires a large number of computations. For each time
step the algorithm developed requires calculation of
(342)Lg+3Ly fast fourier transformations® [see (A9)]
amounting to 512 for the given values of Ly and Lg. For
a computation over, say 1000 time steps, this number is
raised to 512000. We have implemented the algorithm
(A10)-(A12) on an Amdahl VP1100 vector processor at
The Danish Computing Center for Research and Educa-
tion located at The Technical University of Denmark.
For computations we have used a fast-Fourier-transform
(FFT) algorithm from the standard SSLII library’®
(DVRFT1). For comparison a typical calculation was
performed on the scalar machine IBM 3081, by means of
FFT algorithms from the International Mathematical
and Statistical Labraries!® (IMSL) (FFT2C, e.g.). The
vectorization turned out to yield a gain factor of more
than 40 in computing time showing the advantage of us-
ing vectorized FFT algorithms. A typical calculation
over 1000 time steps required only about 40 CPU sec on
the Amdahl VP1100 vector processor. By use of initial
conditions obtained as described above, stationary solu-
tions of the Fokker-Planck equation were obtained after
less than 1000 steps. However, in order to check and en-
sure the stability of the solution, the results were taken
after these 1000 time steps. In Figs. 1(e)-1(h) we show
the numerically obtained stationary solutions of the
Fokker-Planck equation for the same four values of the
gain nonlinearity parameter £ (0, 1Xx107%, 1x1077,
5X10~7) as used previously. The constant injection
current J, (=1.4XJ,) and the laser parameters are also
the same (Table I). The results obtained from direct nu-
merical integration of the rate equations [Figs. 1(a)-1(d)]
are in excellent agreement with the results obtained as
stationary solutions of the Fokker-Planck equation [Figs.
1(e)-1(h)]. As expected the standard deviations o 5 and
o s(proportional to o, and o, [see (A6)]) in the station-
ary regime decrease with increasing gain nonlinearity.
For nonlinearities of physically relevant order!!
(e~1077, relative to a cavity volume of 1X 106 m® we
find, in contrast to the ¢ =0 case, that the fluctuations in
both the carrier number and the photon number are
heavily reduced. The fluctuations are reduced by factors
of 2 and 3 in oy and oy, respectively, when € changes
from O to 5 107, Thus the nonlinear gain stabilizes the
modulation properties of the laser dramatically also in
presence of noise.

Above we have used a constant bias 40% above thresh-
old. However, for application in high-speed modulation
properties the laser is biased below or close to threshold
and then modulated at high speeds. In such cases the
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photon number inside the laser cavity is very close to
zero. Only the spontaneous emission, which is a totally
quantum-mechanical process,'? introduces a photon to
the cavity. Thus, at bias below or close to threshold the
system is described essentially by the spontaneous-
emission terms N /7, and BN /7, [see (2.1)-(2.2)]. In
Figs. 2(a)-2(d) we show results obtained for the same
four values of the nonlinearity parameter € and the same
laser parameters as used before. Here the injection
current is J, =1.04J, i.e., 4% above threshold. We see

P
| (a)
200
=0

|
i
100 |
|
1
|

0

SI5

\
200 em 1070 _ i “;.

I3

300 | ©

200 s= 14077

S5

FIG. 2. Two-dimensional probability density functions ob-
tained from direct numerical integration of the rate equations
(2.1)-(2.7). The injection current is J, =1.04J,,. Laser parame-
ters as indicated in Table I. The values of the gain nonlinearity
parameter ¢ are (a), e=0; (b), e=1X107% (c), e=1Xx10"7; (d),
e=5x10"".
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that the nonlinear gain in this case also stabilizes the dy-
namics. For small € (e < 10~7) the probability does not
look Gaussian as was the case for operation well above
threshold. This is because noise events, strictly speaking,
can only change the number of photons at increasing
rates. For higher values of the gain nonlinearity, the
nonlinear gain has stabilized the system to yield
Gaussian-looking profiles [Fig. 2(d)] due to strong damp-
ing imposed by the gain nonlinearity. For bias at 4%
above threshold the stationary solution to Eq. (2.8) is not
Gaussian in the S direction. As a consequence a more
complicated algorithm (not based on periodic boundary
conditions) must be applied to obtain stationary solu-
tions.

B. Pulsed operation

In Sec. III A we have investigated the influence of gain
nonlinearities on the cw operational properties of the
semiconductor-laser model (2.1)-(2.7). In this section we
investigate the influence of gain nonlinearities on high-
speed pulse modulation of the laser. For simplicity we
use a sinusoidal modulation function given as

J(t)=J, +J,sin(27f 1) , (3.1

where the constant bias term J, and the modulation am-
plitude J, are given in terms of the threshold current
Ju In 3.1), f,, is the modulation frequency, f,, =1/
(N, At'), N, being the number of discrete time steps of
length A¢' in a modulation period.

In order to take account of the low-pass filtering in a
practical receiver, we use a digital filter with the follow-
ing impulse response:

sin’(ra/K), a=0,1,...,K

hla)= 0, elsewhere

(3.2a)

which has the transfer function

KA in(rfKk Ar)

1—(fK At')? Tf

H(f)= exp(—jmfK At') .

(3.2b)

A convolution of the “raw” output data obtained nu-
merically from the rate equations with 4 (a) corresponds
to a multiplication by H(f) in the frequency domain,
thus yielding the desired low-pass filtering. The sampling
number K in (3.2) is determined such that the 3-dB fre-
quency of | H(f)|? corresponds to the modulation fre-
quency. In the following calculations we have used
N, =67 and At'=10 psec yielding f,, =1.49 GHz. From
(3.2) it then follows that K=48. Each pulse is thus aver-
aged and weighted according to (3.2), yielding a vector
containing the weighted pulse values (only the statistics
for the photon number will be considered here). The
peak values are obtained at time slots corresponding to
peak values obtained in a dynamical simulation without
noise. From this vector we deduce the noise statistics:
The interval from zero to maximum of smoothed (weight-
ed) peak values is divided into 100 intervals and the den-
sity of peaks in each interval is obtained to give the prob-
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FIG 3. Probability of the peak values of the photon-pulse
response in the case of 1.49 GHz sinusoidal modulation.
Jy=13Jy and J,=0.25J,. Laser parameters are given in
Table I. The values of the gain nonlinearity parameter € are (a),
e=0; (b), e=1x107%(c), e=1x1077;(d), e=5x 107",

ability density function.

Our aim is to examine the relative probability distribu-
tion p(a), where a is the (smoothed) peak value relative to
the mean value of peaks. Thus @=1. In order to obtain
reasonable statistics (a reasonably large number of pulses)
the number of time steps was chosen as 30000 corre-
sponding to 447 full modulation periods. Initial data
were taken as stationary solutions to the noise-free rate
equations (Fy=F¢=0) and bias J,. Because stationary
solutions do not satisfy a dynamical solution to the rate
equations there will be some transients. In order to
neglect pulses in the transient region we neglect the first
27 pulses (which were proven sufficient) and perform the
statistics on the last 420 pulses only.

In Fig. 3 we show our results obtained for the same pa-
rameters as used before. The current parameters are
Jy=1.3Jy and J,=0.25J,;. We emphasize that (3.1)
with these current parameters corresponds to a first-order
approximation to a 50%-duty-cycle square-wave modula-
tion picture with current switched between 1.1, and
1.5J 4, (approximately).

As the gain nonlinearity is increased we observe a clear
narrowing in the distribution. This shows that the non-
linear gain in the case of pulsed operation also suppresses
the fluctuations and reduces the influence of noise.

IV. CONCLUSION

We have examined the influence of nonlinear gain on
the single-mode semiconductor-laser rate equations with
Langevin noise terms. For both cw and pulsed operation
we found that inclusion of nonlinear gain terms in the
rate equations imposes stabilizing effects on the dynamics
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thus showing the importance of such terms. In the case
of cw operation we derived the corresponding Fokker-
Planck equation. This equation which appeared to be
new was solved numerically by use of a developed finite-
difference—pseudospectral algorithm. Very good agree-
ment between results obtained from direct numerical in-
tegration of the rate equations and from solutions of the
Fokker-Planck equation was found.
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APPENDIX: NUMERICAL SOLUTION
OF THE FOKKER-PLANCK EQUATION

The Fokker-Planck equation (2.9) is a (24 1)-
dimensional partial differential equation. For proper
boundary and initial conditions we shall obtain stationary
solutions and expect solutions comparable to the distribu-
tions obtained by direct numerical integration of the laser
rate equations. From these results we expect P to be zero
except in a limited region near the mean values N and S.
We thus examine a two-dimensional region around the
mean values and apply periodic boundary conditions

P((1—ayyy)IN,S;t)=P((1+ayyy)N,S;t),
(1—ys)S<S<(1+y5)S
(A1)

P(N,(1—agyg)S;t)=P(N,(1+asy5)S;t) ,
(1—yyIN<N<(1+yyN

for all values of ay and ag between zero and unity. The
parameters y y and Y g are fixed constants less than 1.

As an initial condition we use a two-dimensional
Gaussian distribution

(§—S)*
20%

T2
ﬁ(N,S;O)cxexp _(N—i\’) —
ZUN

(A2)

In order to apply a Fourier spectral method'? to compute
the partial derivatives in the N and S coordinates we sim-
plify the problem by the introduction of new variables

S—(1—y5)§
2']/S§

N—(1—yy)N
X = =

2yNJV ’

(A3)

The Fokker-Planck equation (2.9) is transformed into

ou RO, % o
== _D % _o% 2%
a1 ,‘x(x,y)ax2 +2D,,(x,y) ax 3y —&-D},y(x,y)ay2
ou ou ~
+D,(x,y)——+D,(x,y)——+D(x,p)u , (A4)
ox ay

where 7 =4 (x,y;t)=P(N,S;t) and
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Dyy(N,S)
Dxx(x’y)=NN——2
(2yyN)
Dys(N,S)
D, (xp)=—" (Ada)
4y nYsNS
Dy(N,S)
Dyy(x’y)z—is—:—?_'
(2y5S)
Dy(N,S)
D, (x,y)=—"—
2y yN
D¢(N,S)
Dy(x,y)=——"—7=— (A4b)
2y¢S

D(x,y)=Dy(N,S) .

The boundary conditions (A1) and the initial conditions
(A2) become

dlay,y;t)=u(l—ay,y;t), 0<y<l1

(AS5)
U(x,ag;t)=u(x,1—agz;t), 0<x<l1
and
S(x.5:0) (x—1? (p—1r
u(x,y; exp | — — ,
Yyl exp 202 202
o o
o,= N_, o,= 5. (A6
2'}/NN 2'}/SS

which clearly satisfy (A5).

In order to solve (A4) subjected to the boundary condi-
tion (AS5) and the initial condition (A6) we use a Fourier
spectral method'? in the x and y coordinates and a finite-
difference approximation in time ¢, i.e., a combined
finite-difference—pseudospectral method. We discretize
the unit square [0,1[ X[0,1[ in Ly and Lg mesh points as
follows:

(k—1)
Xk LN y k=1>2’ 7LN
(A7)
(1—-1)
y=po 1= L

For a fixed value of / (and fixed time ) we introduce

VLN(xk )=a(xk,y[;t) ’

I,t fixed , k=1,2,...,Ly . (A8

The discrete Fourier transform of the continuous func-
tion % for fixed y (corresponding to y;) and fixed ¢ thus
has the form!

Ly
Vi (xk)= 2 a,exp

n=1

— 27

(k—l)n
LN ’

k=1,2,...,Ly (A9)

where
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.(n—1)
Ly k

’

n=1,2,...,Ly (A9b)

where i is the imaginary unit.

Let Fy denote the expansion in x space (A9b) and Fy'
denote the inverse expansion (A9a). Similarly we define
Fs and Fg! for the corresponding expansions in y space.

Ex2158) =Dy (g oy I =g Fy [V ()Y 1210, 1)

We thus write the discritized form of the Fokker-Planck
equation as

aﬁ(xk,yI;t)

+2D,, (i, v { Fy Uik Fa(Fs ik Fs (VL 0D Waz12, ) =12 8 )

+Dyy(xk»yl)(7§1{—kr%ngs[VLS(yl)]}k=l,2 ,,,,, L)
+D, e,y NIy — ik, PV (01, )
+D, g,y N Fs =ik Fs[VL 0D N k12

+D(xk,y[ )ﬁ(xk,yl;t), k=1,2, e ’LN’ = 1,2,‘. .. ’LS .

In (A 10) we have introduced the wave numbers'?
2m(n—1), n=12,...,Ly/2
k,= 10, n=Ly/2+1

2m{Ly—(n—1)], n=Ly/242,Ly/2+3,...,Ly

2mim—1), m=12,...,Ls/2
k,=10, m=Lg/2+1

3 —=xeyit),
k=1,2,...,Ly, I=1,2,...,Lgy (A10)
where the right-hand side is given by
)

N

S

_____ L)
(A10a)
(Alla)
(Al11b)

2r[Ls—(m—1)], m=Lg/2+2,Lg/2+3,...,Lg

which reflect the periodic boundary conditions (A5).

For the derivative in time we discretize the time ¢ in
tj=jAt, j=0,1,..., and apply a second-order finite-
difference approximation. Thus the final algorithm be-
comes

Uyt ) =u (x5t ) +2 At ZE(x,y558)

k=1,2,...,Ly, 1=1,2,...,Lg, j>1. (Al2a)

I

For the first time step we use a first-order finite-difference
approximation

U, yst)=u(xg,p500)+ A E(x4,p5580)

k=12,...,Ly, I=1,2,...,Lg . (A12b)
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FIG. 1. Two-dimensional probability density functions (a)-(d) obtained from direct numerical integration of the rate equations
(2.1)-(2.7), and (e)—(h) as stationary solutions of the Fokker-Planck equation (2.9). The injection current is J, =1.4J,,. Laser param-
eters as indicated in Table I. The values of the gain nonlinearity parameter ¢ are (a),(e), e=0; (b),(f), e=1x10"%; (c),(g), e=1x 1077;
(d),(h), e=5x10"".
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FIG. 2. Two-dimensional probability density functions ob-
tained from direct numerical integration of the rate equations
(2.1)-(2.7). The injection current is J, =1.04J,;,. Laser parame-
ters as indicated in Table I. The values of the gain nonlinearity
parameter € are (a), e=0; (b), e=1x10"5% (c), e=1x10"7; (d),
e=5x10"".



