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A two-dimensional classical spin model of nuclear antiferromagnetism is studied by Monte Carlo
computer simulation techniques as well as by mean-field calculations. The model includes nearest-
neighbor dipolar and exchange interactions and a single-ion term. The phase boundary of the anti-
ferromagnetic phase in the external-field—temperature plane exhibits sections of both first- and
second-order transitions separated by a tricritical point. Particular attention is paid to the isen-
tropes of the phase diagram, which correspond to the thermodynamic paths of constant entropy fol-
lowed in experimental studies of nuclear magnetism using adiabatic demagnetization methods. It is
found that, although fluctuations reduce the transition temperatures by 40%, the isentropes are re-
duced by less than 10% relative to those calculated by mean-field theory. The dynamics of the or-
dering process following constant-temperature or constant-magnetic-field quenches into the antifer-
romagnetic phase is found at late times to obey the classical Allen-Cahn growth law. The qualita-
tive features of isentropic quenches and the nonequilibrium ordering phenomena during controlled
heating treatments at constant rate are discussed in relation to recent experimental observations
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from neutron scattering experiments on nuclear antiferromagnetism in Cu.

I. INTRODUCTION

Extremely low temperatures can be reached by adia-
batic cooling of a nuclear magnetic system. In the case of
Cu,! temperatures near 30 nK (1 nK =10"° K) have been
obtained. Both by static susceptibility measurements, !
and very recently also by neutron scattering experi-
ments,? the nuclear moments in Cu have been found to
order antiferromagnetically at around 60 nK, with an in-
triguing phase diagram as a function of magnetic field H
and entropy S.

The nuclear magnetic systems are much purer with
respect to the interactions than the usual electronic mag-
nets. Thus, the Hamiltonian parameters can be calculat-
ed accurately from first principles® and there are, for ex-
ample, no magnetoelastic effects. From a thermodynam-
ic point of view, knowledge about phase transitions, mag-
netic order and phase diagrams are usually available only
in terms of the variables (H,T) for a system in equilibri-
um at a constant temperature 7, set by a heat bath. For
the nuclear magnet the spin system is an isolated system,
not in contact with a heat bath, and it is better character-
ized by its entropy. In order to appreciate the ideal mod-
el systems of nuclear magnetism it is, therefore, impor-
tant to understand the similarities and differences for a
system described isothermally in the (H, T) plane and adi-
abatically in the (H,S) plane. It is the purpose of this pa-
per to elucidate this question.

In the adiabatic cooling process, the nuclear spin sys-
tem in the paramagnetic phase is almost fully polarized
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by the application of a large magnetic field H at a temper-
ature T, thus the corresponding entropy S =S is small.
When the spin-lattice relaxation time 7 is much longer
than the spin-spin relaxation time 7 there is no heat ex-
change dQ between the nuclear spin system and the lat-
tice on the time scale of interest, which is of the order 7.
Therefore, the entropy is constant since

dS =dQ /T =0 . (1)

Hence, when the field is removed adiabatically the system
lowers its temperature T'(S,), while conserving the entro-
py. It is of considerable interest to understand how the
spontaneous antiferromagnetic (AFM) order evolves
from the field-induced, ferromagnetically aligned state.
We wish to determine the temperature 7 (S,) reached at
H=0 for a given entropy S, as well as the ordering dy-
namics and domain pattern formation of the formed
AFM structure. Previously the relation between temper-
ature and entropy has relied on mean-field theory' which
neglects correlation effects. It is important to understand
their influence on T'(S,), in particular for Cu which has
large fluctuations because its spin system is essentially a
frustrated nearest-neighbor (NN) antiferromagnet with a
fcc lattice.

In order to study the effects of correlations and fluctua-
tions as well as the question of domain formation in none-
quilibrium, we have applied Monte Carlo computer simu-
lation techniques to a simple two-dimensional (2D) spin
model, for which fluctuation effects are particularly large.
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The model, which includes nearest-neighbor dipole and
isotropic exchange forces between classical spins and a
fourth-order, single-ion anisotropy term, leads to AFM
order described by a two-dimensional order parameter.
Hence, there are four degenerate types of ordered
domains. The order-parameter degeneracy is discrete.
The phase diagram as a function of field exhibits both
first-order transitions and second-order (continuous) tran-
sitions separated by a tricritical point. It thus allows an
investigation of constant entropy lines (isentropes) cross-
ing both first-order as well as second-order phase lines.

The experimentally studied nuclear spin system of Cu
is governed by the dipole-dipole interaction and a dom-
inant (NN) isotropic Ruderman-Kittel (RK) interaction.*
Since the spin is I =3 there is no fourth-order anisotro-
py. Consequently, the mean-field AFM ground state is
continuously degenerate with respect to linear combina-
tions of ordering wave vectors and polarization directions
of the spins.4 Thus, an infinite number of different
domains is possible. Yet, quantum fluctuations reduce
the degeneracy to that allowed by the crystal symmetry,®
i.e., typically 4 or 8 types of domains. In our classical
model the problem is simplified by the anisotropy term
and we study the competition of only four types of
domains. The long-range nature of the dipolar and RK
interactions manifests itself in particular at long wave-
length (k=0) and is not important for the antiferromag-
netic order. For the classical spin system the entropy
tends to minus infinity for 7=0, whereas for the quan-
tum system the entropy vanishes. Despite these
differences we expect that a number of qualitative
features of the model will be useful as a guide for the un-
derstanding of Cu.

The paper is organized as follows. We will first discuss
the calculated equilibrium properties and compare the re-
sults of the Monte Carlo simulations with mean-field
theory. In particular, we calculate the isentropes in equi-
librium. Subsequently the dynamics of the transition is
studied using quenches both in constant field and temper-
ature. We also attempt to simulate a constant-entropy
quench by guiding the system along an isentrope. Final-
ly, the effect of heating the ordered spin system at a con-
stant heat exchange rate is simulated.

II. THE MODEL

Let us consider a two-dimensional square array of size
N =L? of classical spins interacting via the following
Hamiltonian:

H=J 3 [8;"S,—2S;2,)(S;T;)]
ij

~-P3 (Sh+Sy)—H 3Si )

where T;; is a unit vector connecting nearest neighbors.
The interaction J in combination with the anisotropy
P(=2J) favors at low temperature an antiferromagnetic
order of aligned spin chains in either the x or y direction,
forming four possible domains (see Fig. 1). The relative
magnitudes of the exchange and dipolar interactions have
been chosen so that the interaction strengths along and

i e B N
— o~

.

(1) (2) (3) (4)
X DOMAINS Y DOMAINS

FIG. 1. The four possible antiferromagnetic domains in the
ordered phase at H=0.

between the chains are equal. At high fields H there is a
transition to an x,y paramagnetic state polarized along z,
perpendicular to the plane. For P—0, the model belongs
to the class of isotropic XY models in two dimensions for
which it is known that there is no true long-range order.®
The limit P—0 in two dimensions will therefore not be
appropriate for a simulation of Cu. This limit must be
studied using a three-dimensional model. The advantage
of using the two-dimensional system is that it is easy to
visualize the domain distributions and that one can study
much larger systems than practicably possible in three di-
mensions. Furthermore, the fluctuation effects are large,
but limited when P is finite.

III. STATIC PROPERTIES

The equilibrium properties of the model are calculated
by the mean-field theory and by Monte Carlo computer
simulation using Glauber dynamics.” In most runs the
spins are visited sequentially and the statistics generated
ranges up to 3000 Monte Carlo steps per site (MCS).
Several different system sizes, N =20%, N =642, and
N =200?% are considered in order to evaluate finite-size
effects. The thermal properties (per spin) calculated
directly include the magnetic enthalpy E, the components
of the AFM order parameter, i.e., the staggered magneti-
zation M |, the induced ferromagnetic magnetization M,,
the specific heat Cy, and the ferromagnetic susceptibility
X&, viz.

ikT

Ml:2<e 'jSix>/N,
MZ:ESiZ/N’ (3)

Cy=(H*)—(FH)})/(NkyT?) ,

= [( [2 Si ]2>—<§S,,>2 ]/(NkBT) .

On the basis of these quantities the phase diagram is con-
structed using standard principles.” By choosing units
such that J =kg=1 and S=1 all quantities on the plots
are dimensionless for simplicity. In the AFM ordered
phase, equilibrium is obtained by starting at H=0 from a
single-domain configuration at a given T and subsequent-
ly increasing H in steps up to a high field H,. The system
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is equilibrated after each step.

Figure 2 shows the calculated staggered magnetization
M and the induced magnetization M, as a function of T
and H for two different system sizes. Despite the finite-
size rounding effects it is clear that the phase transition is
of first order at low temperatures. The first-order jump
in M, at T=0 and M, (0, H) are calculated exactly, yield-
ing some exact borders on the phase diagram. The first-
order transition manifests itself as a clear change in slope
dE /dH of E versus H at constant 7. Similarly, the jump
AM, in M, in Fig. 2 is well resolved, whereas it is
difficult to follow the corresponding jump in M,. On Fig.
3 is shown the temperature variation of dE/dH and
AM , which consistently idicates that the transition
becomes of second-order at the tricritical point T*
~0.5J/kg.

In order to calculate the entropy we use the fundamen-
tal thermodynamic relation between the induced magne-
tization M, and the Gibbs free energy F per spin:
M,=—0F/0H. At high fields the free energy F(T,H,)
can be calculated very accurately using mean-field theory.
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FIG. 2. The staggered magnetization M, and the induced
ferromagnetic component M, obtained by Monte Carlo simula-
tion for two systems (@) N =207 and (O ) N =64%. Some finite-
size rounding effects are evident, but also a clear indication of a

first-order transition. An exact calculation yields M,(H) at
T=0.
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FIG. 3. The first-order transition and the tricritical point T*
is determined from the change at the phase boundary in the
slope dE /dH of the magnetic enthalpy E =(H ) and the jump
in the staggered magnetization AM, =M (AFM)— M (PARA).

By numerical integration one can then derive the free en-
ergy at a lower field H

F(T,H)=F(T,Hy)— [ M,(T,H")dH" . ()
0

We have used H,=30J, which for all relevant tempera-
tures gives a magnetization M, (T, H ) deviating less than
5% from the saturation value 1. The entropy at a given
temperature can then be calculated from the relation
F =E — TS, which gives

1 H ’ ’
=7 E(T,H)—F(T,H0)+fHoMz(T,H)dH )

The magnetic enthalpy E =(% ) /N and the induced
magnetization M, (see Fig. 2) are calculated by the
Monte Carlo method for a grid of (T, H) points for fields
up to H =H,;=30J. The entropy at constant field as a
function of temperature is then found by interpolation.
The result is shown on Fig. 4. The interpolation allows
more information to be extracted from the data than indi-
cated by the points (O ). At H=8J there is an indication
of a very small jump in the entropy corresponding to only
a very small latent heat at this first-order transition. We
return to this feature below. For completeness we also
show on Fig. 5 the uniform susceptibility along the field,
X§, calculated partly directly and partly from the data on
Fig. 2. It is evident that the nature of the transition is
not easily obtainable from X§, and also that the AFM
transition in low fields is only very weakly visible. These
conclusions, which are consequences of the fact that X7 is
not the ordering susceptibility, are expected to be true
also for the real Cu system.

To construct the line of phase transitions, Ty(H), we
have used primarily the data on Fig. 2, supplemented by
the calculated Cy. The result is shown in Fig. 6. The
first-order line obtained by analyzing dE /dH is indicated
by a dashed curve. The second-order line is indicated by
the solid curve. The thin lines indicate the calculated
isentropes obtained by interpolation of S (T, H) data cal-
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FIG. 4. The entropy S vs temperature at different values of
the field. The transition is of first order at H=8J and shows a
small discontinuity corresponding to a small latent heat. The
arrows indicate the transition temperatures.

culated equidistantly at kT /J =0.1,0.2,...,1.1.

By inspection of Fig. 6 we notice an interesting proper-
ty of the model. By the adiabatic removal of the field,
i.e., by following an isentrope, one reaches the lowest
temperature at or above the phase boundary, and the
temperature increases again in the ordered phase. The
physical reason for this phenomenon is the anisotropy
term P in Eq. (2). This term contributes little to the
enthalpy in the ferromagnetically polarized state, polar-
ized along the z direction, but it contributes significantly
with the onset of the AFM order in the XY plane. At
high temperatures the effect sets in already before reach-
ing the phase boundary, clearly showing the influence of
the onset of AFM short-range order. We also notice that
the isentropes pass the second-order phase boundary with
no noticeable change in slope within the available accura-
cy. At the first-order phase boundary, small discontinui-
ties in the isentropes are observed indicating that a small
latent heat is accompanying this transition. It is interest-
ing that our model, for example, at kzgT/J=0.1 shows
that the entropy is actually higher in the AFM ordered
phase than in the paramagnetic phase at the transition
point, which is counterintuitive.

For comparison we show on Fig. 7 the phase diagram
and the isentropes calculated for the model, Eq. (2), by
means of the mean-field theory. We notice that the re-
sults of Figs. 6 and 7 are nearly identical at low tempera-
tures, kT <0.3J. In particular, the isentropes show a
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FIG. 5. The uniform susceptibility along the field X§. The
arrows indicate the transition temperature. One notices that
neither the temperature nor the order of the transition is well
determined by X§.

similar discontinuity towards lower T in the ordered
phase. The reason is here more clear. It is simply a
consequence of the fact that the first-order boundary ini-
tially increases with temperature, clearly visible in Fig. 7,
but also noticeable in Fig. 6. At the point where the
boundary is horizontal (independent of T) there is no
discontinuity in the entropy and no latent heat at the
first-order transition. This phenomenon has previously
also been found in other models. It follows from the
Clausius-Clapeyron equation for the slope of the phase
boundary H =H (T), which can be written

dH(T) _ _ _S(AFM)—S(PARA) ©)
dT |1y M,(AFM)—M,(PARA) ’

At higher T in Fig. 6 there is a small latent heat and a
small discontinuity in the isentropes towards higher tem-
peratures in the ordered phase. This corresponds to a
lower entropy in the ordered phase at constant T, which
is intuitively more obvious. The discontinuity vanishes as
the tricritical point is approached.

By analytic expansion of the mean-field (MF) free ener-
gy the tricritical point is found to be kg7 ¥g=0.3J,
which is lower than kzT*=0.5J found by the Monte
Carlo simulation, Fig. 3. The fluctuations, therefore,
enhance the first-order nature of the transition. On the
other hand, the ordering temperature at H=0 is strongly
reduced by fluctuation effects, TMY(H =0)=1.5J/kjp,
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FIG. 6. The phase diagram obtained by Monte Carlo simula-
tion on systems of size N =642, The isentropes are calculated
by integrating M,(H) from high fields. One notices small
discontinuities at the first-order boundary, but no change at the
second-order boundary. Short-range order effects persist far
above the phase boundary giving rise to the bending of the isen-
tropes at high T.

whereas TMC(H=0)=0.95J /ky. Judged with respect to
the phase boundaries the isentropes behave strikingly
different in the mean-field theory and the Monte Carlo
simulation. The mean-field isentropes show an increasing
temperature dependence right at the phase boundary,
with a sharp kink at the second-order phase line. In the
Monte Carlo simulation the increasing temperature
dependence occurs at approximately the same (7, H) lo-

T T T T T T T
== 1 st order
——— 2nd order
— Isentrope

-3 -25 -2 -1.5

MAGNETIC FIELD H
o
T

0 02 04 06 08 1.0 1.2 1.4
TEMPERATURE T

FIG. 7. The phase diagram calculated by the mean-field
theory including directly calculated isentropes. A comparison
with Fig. 6 shows that the phase boundary is much reduced by
fluctuations, whereas the isentropes remain quite accurately de-
scribed by the mean-field theory for T < TMF(H=0).
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cation, but now well above the phase boundary at high 7.
This shows that the short-range order effects set in ap-
proximately where the mean-field theory predicts the on-
set of long-range order. In the Monte Carlo simulation
we do not see any sharp change in the isentropes when
crossing the second-order lines, with the present (7,H)
grid. It is concluded that the isentropes on an absolute
(T,H) scale are quite accurately calculated by means of
the mean-field theory, except very close to the true phase
boundary. The phase boundary is, however, significantly
renormalized in temperature. We expect this conclusion
to be applicable also for Cu, where T, is reduced by fluc-

tuations to 0.25TaF.?

IV. DYNAMICS OF THE ORDERING PROCESS

The ordering of the individual spin in its local magnet-
ic field is a very fast process on the experimental time
scale. Conversely, the dynamics of the nonequilibrium
domain-boundary network, which is formed during the
global ordering process, is much slower. When the sys-
tem is taken across the phase boundary in Fig. 6 into the
antiferromagnetic phase, domains of all four thermo-
dynamically equivalent types of order in Fig. 1 are nu-
cleated simultaneously. At late times, the ordered
domains cover the whole system and they start compet-
ing. The consequences of this competition is domain
growth and it may be described via the dynamics of the
random network of boundaries which separate the
domains. It is the interfacial energy associated with the
curvature of the domain boundaries which provides the
driving force for the growth.?

There is currently a strong experimental and theoreti-
cal interest in characterizing possible universal aspects of
domain-growth kinetics.® Of particular interest is to
study the dependence on the ordering degeneracy, p, and
the nature of the conservation laws. The adiabatic order-
ing process provides in this context an interesting situa-
tion which has not been studied before. The antiferro-
magnetic order of our model has p=4 and the ordering
process in the experimental system is subject to the
unusual law of entropy conservation. We are unable, in a
computer simulation of the models of the type studied
here, to rigorously enforce a constant-entropy law.
Therefore, we have simulated a quasiconstant-entropy
annealing process by guiding the system through a series
of nonequilibrium states close to an equilibrium isen-
trope. Furthermore, we have performed constant-
temperature and constant-field quenches without any
conservation laws imposed.

Firstly, we describe the results of constant-temperature
and constant-field quenches for systems with N =642
Both types of quenches have been performed to two
different points within the ordered phase
(T,,H,)=(0.7J /kg,0) and (T,,H,)=(0.4J/kg, 4J).
The constant-field quenches are started from equilibrium
configurations  typical for initial temperatures
kgT;/J=1.5. The constant-temperature quenches are
started from H;=11.0J. The quenches are carried out by
suddenly assigning the new values of the independent
thermodynamic variables, and the growth process is then
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monitored on a time scale of MCS using standard tech-
niques.” For convenience, we focus on the time-
dependent inverse excess energy

AE~Yt)=[E(t)—E(T,H)]"'~R (t)~t", (7

which scales as the average linear domain size, R (t) as
discussed by Sadiq and Binder.!® E(t) is the nonequili-
brium energy at time ¢ and E (T, H) is the equilibrium en-
ergy at the point towards which the quench is directed.
AE(t) is a measure of the total nonequilibrium internal
energy associated with the entire domain-boundary net-
work. It is convenient to use AE ~'(¢) as a measure of
linear scale since it is a self-averaging quantity!!' which is
easy to obtain with good statistical accuracy. We have in
Eq. (7) anticipated that at late times the domains will
grow according to a simple power law.’ The data for
AE (t) for both types of quench are obtained as an ensem-
ble average over ten independent quenches realized using
different initial configurations and different random-
number sequences.

In Fig. 8 we show the results for AE ~'(¢) for the
different quenches. It is seen that all sets of data are con-
sistent with a power law at late times and that the ex-
ponent is the same in all cases, independent of field and
temperature and independent of whether the quench is
performed in field or temperature. The arrows indicate
where finite-size effects start to be important
[R(t)=~0.4L].'"" Data obtained for the N =200* system
confirm this power law and finite-size effects set in only at
a later time. The value of the exponent, n ~0.50, is con-
sistent with the classical value predicted theoretically by
Lifshitz'? and by Allen and Cahn® for systems with non-
conserved order parameter. This result is furthermore in
accordance with recent finite-temperature quench studies
of a general class of two-dimensional anisotropic XY
models'® to which the present model belongs. This class
of models is characterized by its capacity of supporting
“soft” domain walls which, however, at finite tempera-
tures give rise to the same kinetic growth exponent as
hard-wall Ising and Potts models. Our results thus give
further testimony to the wuniversal classification of
domain-growth kinetics. '*

We then turn to our attempt to perform a quasi-
isentropic quench. We chose to study one isentrope

S = —3.0kp crossing a first-order transition line and one
isentrope S = — 1.4k crossing a second-order transition
line. The quench is simulated by guiding the system

along the path by successively assigning corresponding
values of T and H in the direction towards the ordered
phase. The quench along S = —3.0k; was performed in
13 steps starting from (T, H)=(0.35J /kg,14.1J) down to
(0.35J /kg,0). For the quench along S =—1.4ky ten
steps were used starting from (7T,H)=(0.8J/kg,9.5J)
down to (T,H)=(0.8J /kg,0). The steps were equidistant
in H. At each step the system was allowed to equilibrate
for 300 MCS. In principle, this procedure does not strict-
ly follow the isentrope since the system is never allowed
to come to equilibrium. However, by choosing appropri-
ate equilibration times at each step along the path we ex-
pect that the degree of local ordering obtained at each
point reflects faithfully the entropy at that point, except
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for the entropy AS associated with the domain boun-
daries. This can be approximated by AS =AE /T, where
AE is the excess energy of the system relative to that in
thermal equilibrium. In the studied constant entropy
quenches we found that AS is quite small AS <0.1S com-
pared with the total entropy S. Hence, we are following
the isentrope very closely, but are at the same time allow-
ing for a nonequilibrium domain distribution. The an-
nealing of this distribution is slow on the time scale
chosen for the isentropic quench. By comparing the final
domain distribution and morphology after an accumulat-
ed number of 13X300 or 10X 300 MCS with that ob-

1wk T T T ]
T=04, H=11—4

03 -

T

01

L’ -

< o T=07, H=11—0
03 .
- 1 .
o1 | .
< <
1.0 L o =
T=15--07, H=0 |
03 ]
L 1 4
01+ 20, 3

1 1 1 1 1 1 1

10 100 1000
TIME (MCS)

FIG. 8. The time dependence of the excess magnetic enthal-
py, AE(t), after a rapid quench is indicative of the characteris-
tic domain growth behavior. At the bottom are shown
quenches in field and temperature across the second-order
boundary to (T,H)=(0.7J/kg,0) and at the top similar
quenches across the first-order boundary to
(T,H)=(0.4J /kg,4J). Quenches in both field and temperature
behave similarly and are consistent with the classical domain

growth law, Eq. (7), with n =1. The solid lines are guides to

2
the eye with slope n =1 through the data points at t=100
MCS. The arrows indicate the time at which the domains have
grown to a size where finite-size effects set in. The data are
averaged over ten different runs. The “error bars” indicate the

maximum deviation of the various runs.
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tained by similar either constant-field or constant-
temperature step-by-step quenches to the same point,
(T,H)=(0.35J /kg,0) or (0.8J/kg,0), we find no
significant differences. This seems to indicate that quasi-
isentropic annealing does not lead to any peculiarities re-
garding the domain structure of the antiferromagnetic
phase.

V. SIMULATION OF THE EFFECT OF HEATING

A nuclear spin system, with a low spin temperature T
relative to the lattice temperature 7, is on a time scale
longer than 7 heating at an approximately constant heat
exchange rate. Furthermore, in a neutron scattering ex-
periment the interaction with the neutrons will contrib-
ute to a constant influx of heat into the spin system. It is
therefore very relevant for the experimental situation to
illustrate the effects of heating at a constant rate by
means of a computer simulation. A system in equilibri-
um at a temperature 7 (.S) increases its entropy S by the
amount dS =dQ /T (S) when heated by a heat pulse dQ.
The new equilibrium temperature is then T (S +dS).
Since the temperature is not a linear function of entropy,
as can be seen on Fig. 4, the spin temperature does not in-
crease linearly with time when the system is heated at a
constant rate. In particular, at a first-order transition,
with a discontinuous jump in entropy, the temperature
remains constant for a while during the influx of the la-
tent heat. In general, the increase in temperature AT in a
time interval At is

AT =T(S+AS)-T(S), (8)
where the entropy decrease is obtained from the relation
S +AS e [81]dQ
J. T Tsnds = [T Ndr O)

Heating with a constant heat exchange rate dQ /dt corre-
sponds to increasing the temperature such that the area
under the T'(S) curve increases at constant rate.

To simulate the experimental situation we first quench
the system rapidly to the ordered state at a given (T, H)
and then let the system attempt to find the equilibrium
state at the temperature T, during a time interval Az, by
performing a number of Monte Carlo steps. After this
time interval, global equilibrium is usually not attained.
We then start heating the system at a constant rate by as-
signing a higher temperature after every elapse of a time
interval At. For simulating a fast heating rate we use
Ar=200 MCS with Az, =200 MCS and for a slow rate
we use Ar=300 MCS with Az, =1800 MCS. In the fast
process the time intervals are not sufficient for the system
to reach equilibrium. In the slow process the system is
closer to local equilibrium at all times. Figure 9 shows
the results of the simulated heating process at constant
rate for Hy=0 and H,=8J, crossing the second- and
first-order boundaries, respectively. At the top is shown
the nonlinear increase in temperature, obtained from Fig.
4, corresponding to the same constant heat rate, the bold
step indicates the transition temperature.

Let us now follow the development of the magnetic or-
der by calculating the magnetic structure factor S(k),
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FIG. 9. Results of simulation of heating at constant rate
across a second-order line (H=0) (left), and a first-order line
(H=8J) (right). The temperature increase as a function of time
t in units of Monte Carlo steps per site is calculated from the en-
tropy, Fig. 4. (O) indicates the intensity of the structure factor,
and (0O) and (V) indicate the powers s; ! and 5572 of the two
first moments of the structure factor, respectively. In the fast
heating process the system is allowed to equilibrate after the
quench only for a short time interval At., =200 MCS, it is then
heated by a heat pulse at every Az=200 MCS. In the slow pro-
cess At.;=1800 MCS and the heat pulse is induced at every
Ar=300 MCS. The data are averaged over x and y domains and
are for the fast runs further averaged over two different runs.
The slow run represents a single, but reproducible and typical
event.

which can be measured by neutron scattering. In Fig. 9
we show the intensity I = fS(k)dk and suitable powers,
sl_‘ and s{l/z, of the moments s,,=fS(k) |k |"dk/I.
These powers, which are related to the width of S(k),
have dimensions of length and measure the average size
of the ordered domains. The results from crossing the
second-order line for H=0 are shown to the left. At the
bottom is shown the slow heating process. The width
s !is almost constant up to Ty and then increases when
the long-range order is replaced by short-range order.
The intensity decreases towards T, following the de-
crease of the order parameter M,. In the first process,
shown above, the long-range order is not fully developed
at t=0 and the width now clearly decreases with T in-
creasing towards T showing that the domains are grow-
ing more rapidly at higher temperature. The long-range
order (intensity) is initially much smaller than in the pre-
vious, slow case and increases with increasing tempera-
ture because the domains grow, in spite of the decreasing
average magnetization. A similar effect is in fact seen ex-
perimentally in the neutron scattering experiments for
Cu.?

The results of the same heating simulation across a
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first-order boundary at H,=8J are shown to the right.
The effects are quite similar and there is no dramatic
difference between the second- and first-order transition.
This is, of course, due to the very small latent heat
displayed by our model. There may be a weak qualitative
difference in the fact that the peak intensity is somewhat
higher at the first-order transition temperature, indicat-
ing the sharp drop in the staggered magnetization (see
Fig. 2). The conclusion is, however, that the heating
measurements may not be reliable for determining the na-
ture of the transition. The above results are rather
specific for the model studied since T'(S) is not universal.
In cases with larger latent heat we thus expect a more
drastic difference between the heating through the first-
order and second-order transitions.

VI. DISCUSSION

Using a simple two-dimensional dipole model system
we have studied a number of questions of relevance for
the understanding of nuclear magnetism and adiabatic
demagnetization, for example, in Cu. Although the real
system, Cu, is much more complicated we expect the fol-
lowing features found in the model to be of general appli-
cability. The mean-field phase diagram is strongly renor-
malized in temperature., i.e., Ty << TaT, but the isen-
tropes calculated by means of mean-field theory are much
less renormalized for T < TNF. The reason is that the en-
tropy depends on the energy fluctuations which are main-
ly influenced only by the short-range nature of the mag-
netic ordering and, therefore, insensitive to the long-
range order being replaced by short-range order. Details
in the isentropes will, of course, be influenced by the true
phase transition boundary since the heat capacity
Cy =dS /dT is weakly divergent.

It is difficult to judge whether the classical domain-
growth behavior found for the simple model is represen-
tative for Cu, which in the mean-field theory has an
infinite number of domains. It is, in fact, a question
whether true long-range order can actually be reached in
Cu. In quenches we have found that the domain-wall en-
tropy is small and, therefore, the thermodynamic force
driving the system towards equilibrium is small. Hence,
we expect that the time scale needed to reach a one-
domain equilibrium state in a system like Cu to be much
longer than the spin-spin relaxation time 7. If this time
scale approaches 7 this system will heat up before it can
reach equilibrium. A study of the time dependence of the
intensity and the width of the scattering factor S (k) may
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shed light on this question. The qualitative behavior
found in the heating simulations indicates an initial
domain growth during heating in the ordered phase caus-
ing even an increase of the intensity. This phenomenon is
of a simple physical origin and can, therefore, also be ex-
pected to occur in a system like Cu.

The constraint of constant entropy imposed on the or-
dering process in nuclear spin systems opens up for some
new aspects of nucleation, growth and annealing process-
es which are fundamentally different from those usually
encountered in materials science. Specifically, when the
magnetic system is crossing the phase boundary along an
isentrope, the early-time nucleation of the ordered anti-
ferromagnetic phase and the subsequent growth of the or-
dered domains need not lead to an homogeneous equilib-
rium single-domain structure. Rather, it is likely to lead
to a heterogeneous multidomain structure, where the en-
tropy of the domain walls and the domain-wall network
topology is compensated by a degree of antiferromagnetic
ordering within the domains which is higher than in the
corresponding single-domain structure with the same to-
tal entropy. The multidomain structure is also an equi-
librium state of the system with the same free energy and
entropy as the single-domain structure, but with a
different temperature. It will not anneal in time as long
as there is no heat exchange with the environment. This
may provide an additional source for the experimental
observation in Cu (Ref. 2) of a low scattering intensity
immediately after the adiabatic demagnetization and then
a rise in intensity as time lapses and thermal energy can
be exchanged with the environment.

Finally, we wish to remark that the simple model stud-
ied in this paper has by itself an interesting phase dia-
gram with both first-order and continuous transitions.
The first-order transition is at low-temperature endoth-
ermic and the first-order phase boundary has a maximum
at T+0 at a point where there is no latent heat associated
with the transition.
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