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Thermal sine-Gordon system in the presence of different types of dissipation

M. Salerno,* M. R. Samuelsen,* and H. Svensmark'
Modellering Ikke-Lineaer Dynamik og Irreversibel Termodynamik, The Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 30 November 1987)

The effects of thermal fluctuations on solitons and phonons of the sine-Gordon system are investi-
gated in the presence of a a¢, —B¢,,, dissipation. The analysis requires the assumption of a more
general autocorrelation function for the noise than the one used in previous works. We verify that
this leads to the correct results for the average kinetic energies of solitons and phonons in the sys-
tem. We also evaluate the linewidth for a Josephson oscillator in the presence of both a and S dissi-
pation, and lastly we briefly discuss the extension of the theory to more general dissipative terms.

I. INTRODUCTION

The effects of thermal fluctuations both on solitons and
phonons of the sine-Gordon system are relevant in the
description of many physical systems in contact with a
heat reservoir.!~® In the context of Josephson junctions,
for example, it was shown that thermal fluctuations in the
fluxon velocity are directly related to the appearance of a
very narrow oscillator linewidth.*> The coupling of the
sine-Gordon system to the heat reservoir can be schema-
tized as shown in Fig. 1, where A represents an ordered
flow of energy from the system to the heat reservoir (due
to dissipation) and B represents a disordered flow of ener-
gy from the reservoir to the system (thermal fluctuations).
This means that the loss term in the sine-Gordon equa-
tion is intrinsically connected to a noise term (dependent
on temperature) representing the effect of the reservoir on
the system. This scheme leads to the following thermal
sine-Gordon (TSG) equation:

¢Xx*¢tt“8in¢=n+r(¢)+n(x,t) ’ (1)

where I'(¢) represents a generic dissipation and n (x, ) is
the stochastic force associated with the loss. [In Eq. (1) a
bias term 7 which represents ordered energy input into
the system, suitable for many practical applications, is
also included.] In recent papers the TSG equation was
studied by assuming a loss term proportional to ¢, [i.e.,
I'(¢)=a¢, in Eq. (1)], and an autocorrelation function
for the noise given by

SINE - GORDON HEAT
RESERVOIR

SYSTEM

FIG. 1. Schematized representation of the thermal sine-
Gordon system. A represents ordered flow of energy from the
sine-Gordon system to the heat reservoir and B represents
disordered flow from the reservoir to the system.
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kgT
(nix,thn(x",t'))=16a S(x —x")8(t —t') . (2)
0
In Eq. (2) { - - - ) means ensemble average, E, is the rest

energy of the soliton (used to fix the scale in energy), kp is
the Boltzmann constant, and T is the temperature. The
prefactor in Eq. (2) was determined by applying the
fluctuation-dissipation theorem to a soliton with small ve-
locity.® Among other results, it was shown that as a
consequence of the thermal reservoir, solitons have an
average energy of 1kpT per mode.>” This analysis was
also applied to a Josephson junction, leading to an ex-
pression for the oscillator linewidth in agreement with ex-
perimental measurements.’ In the context of the Joseph-
son junction however, besides a loss term proportional to
¢,, it is of interest to include a loss proportional to ¢,,,
which is due to normal surface currents through the junc- -
tion. This kind of dissipation is found to be responsible
for several interesting phenomena such as bunching of
fluxons,’ and appearance of strong deformations on the
fluxon tail.'® The aim of the present paper is to extend the
analysis in Ref. 6 to include this ¢,,, dissipative term.
More precisely we will consider I" in Eq. (1) to be given
by

IN¢)=ad, —Bd, a,BER™T (3)
and assume for the noise the following autocorrelation

function:

kpT
(n(x,0n(x',t"))=16—

8(t —t')
0

X S(x —x') . (4)

aZ
a—Fh Ax?

The effects of the noise term (4) in Eq. (1), will be then
studied in the cases of pure soliton and pure fluxon
motion, respectively, in Secs. IT and III. As a result we
find that the ‘“‘thermal” solitons and phonons will still
have an average energy of, respectively, +kpT and kpT
per mode; however, the presence of the 8 term in (3) will
decrease the diffusion constant of a soliton by a factor
a/(a+B/3). In Sec. III we also relate the above results
to the Josephson junctions by showing that there will be
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no change in the linewidth expression given in Ref. 5 due
to the presence of the B dissipation. Finally in Sec. IV we
give a short summary of the main results, including a
brief discussion on the generalization of the above-
mentioned results to higher-order dissipative terms of the
type " ,a;D¥¢, with @, ER, D, =3/3x, and m EN.

II. THERMAL PHONONS
In this section we consider the TSG equation

¢xx_¢n_Sin¢=n+a¢1_3¢xxt+n(xyt) (5)

in the small-amplitude limit and with no solitons in the
system. Phonon modes i are seen as small oscillations
around the ground state ¢,= —sin~ 'y satisfying the
boundary conditions

¥,(0,6)=¢,(L,t)=0 . (6)

The field ¢(x,¢) in the small-amplitude limit can be writ-
ten as

é(x,t)=—sin~!(n)+(x,t) with ||¢]| << 1 . (7

By substituting (7) in (5) we get the following stochastic
equation for thermal phonons:

Yy =0 — (1 =) Yoy, — By +n(x,8) . (8)
When a=0, =0, and n (x,t)=0, these phonons are just
classical Klein-Gordon modes with energy given by

E
Hyy= ¢ [ dx 42 +92 4201 —7)1 2] ©)

(here L is the length of the system). The general solution
of Eq. (8) can then be expressed in terms of the complete
set ¢, of orthonormal Klein-Gordon modes as

Yx, )= A,(),(x)=V2/LS A,(t)cos(k,x) (10)
with k,=nm/L and V'2/L just a normalization factor.

Inserting (10) in (8) and projecting the resulting equation
along the unperturbed eigenstate we get

Ay o+ (a+Pkl) A, +o} A, =¢,(1), (11)
where

e, ()=V2/L fOLn(x,t)cos(k,,x)dx (12)
and

0r=(1—n)"2 4k} . (13)

By using (4) we obtain for the autocorrelation function
and for the power spectrum of the normal process €,(t)
the following expressions:

=—u

a u B u
—u gf(dsx )de+§f<¢n Ydx

ayl(u)+£

37/%(14)

R, (1—1")=(e,(t)e, (1)

_ 2
=16(a+pk;) E,

8(t—t'), (14)

E,

S, (0)=16(a+pBk]) (15)

By identifying a+/3k3 with a we see that Egs. (11),
(14), and (15) coincide, respectively, with Egs. (3.9),
(2.12), and (2.13) of Ref. 6. One can follow the same
analysis of Ref. 6 to show that the average energy per
phonon mode is

(H,)=kyT . (16)

[This easily follows by solving by harmonic analysis Eq.
(11) and by using Eq. (9).] It is worth remarking that this
result does not depend on the particular boundary condi-
tions used, nor on the smallness requirements of a, 3, and

n.
III. THERMAL SOLITONS

In this section we concentrate on the effect of the a, 83,
7, and n(x,t) terms in Eq. (5) on an unperturbed sine-
Gordon soliton

d=4tan exp[y(u)x —ut)],

17
yw)=(1—u?)~172 .

Note that the 7 in (5) shifts the ground state from O to
—sin~'n; therefore a soliton in our system should be seen
as a 27 kink from —sin~ 7 to 27 —sin~ 7).

An equation of motion for the perturbed soliton can be
easily obtained by defining the momentum

P=-%fj:¢x¢,dx (18)

and differentiating it with respect to time, this giving

P _m @ B
dt ~ 4 + 8 f¢x¢ld‘x+ 8 f¢xx¢xtdx+8(t) ’ (19)

where
e)=—1[""¢,n(x,0dx . (20)

With neglect of thermal noise, Eq. (19) has stationary
27-kink ¢* solutions moving with the power-balance ve-
locity u, for small perturbations, satisfying'!

E41L(1—u(z))m—auo(l—u%)—guo———o 21

and with momentum
P0=uo7/(u0) . (22)

In the stationary case, the integrals in Eq. (19) can be
written as
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where we used Eq. (18) together with ¢y = —u¢%. Equa-
tion (22) defines the functions y,(#) and y,(«) which for
small perturbations (or small velocities) reduce to the
usual Lorentz factor in (17).

By inserting Eq. (23) into Eq. (19) we get for the
momentum the following Langevin equation for P:

dpP _my __m(u)
e L OB (24)

The noise term &(¢) in Eq. (24) introduces fluctuations in
the momentum and, from (22), in the velocity of the kink
according to

Op 3Bu _ w3y : )

3u ot 4 3u Au +e(t), (25)
where Au measures the deviation of the 27-kink velocity
from the power-balance value (21). The autocorrelation
function and the power spectrum of the process &(t) in
(25) are then easily evaluated by means of Egs. (4) and
(21): we write

kgT
’ ____‘ﬂ'_ B Yy
R (t—t")= 2 B, n(u)d(t —t')
26
kT (26)
Se(w)=—— nu) .
€ 2u E,
For small velocities (i.e., =<0) we have from (23),
n(u)@_ﬂ 01-{—ﬁ . 27
T 3
Then Eq. (25) reduces to a Langevin equation for u,
du _ B
= et 3 u—+e(t). (28)

By using (26) and (27), Eq. (28) is easily integrated by har-
monic analysis, this giving

S, (o)
S, ()= . (29)
o'+ |at B
3
from which it follows that
2y _ +°°& _kBT
(u )—R,‘(O)_f_w S Sulw)= 5 (30)

The time average of the kinetic energy in the Brownian
motion of the 27 kink is then evaluated as

(E)=1Eo(u®)=1k,T . 31

From Eq. (29) a diffusion constant D for the 2w-kink
motion can also be derived as

kT

p—-L 87 (32)
EO ﬁ
a—+ 3

which is just the usual relation reported in Ref. 6 with a
identified with a+ /3. The effect of the B dissipation on

the 27-kink motion is then to decrease its diffusion con-
stant as one would have expected. We finally close this
section by showing that the linewidth of a Josephson os-
cillator with B¢, ,, damping will still be given by the same
expression reported in Ref. 6. To this end we return to
Eq. (24) (which is valid for all #) and rewrite it as

d mon, _ du
thu+ 4 3p Au—ap e(t), (33)

this leading to the following expression for the power
spectrum of Au:

d 2 d 2 S (@)
Spl@)= ﬁ "a}T;L : T, (34)
wly |79
4 dp

and by performing the same analysis of Ref. 5, one gets
the following linewidth expression:

mkpT R}
¢5 Rs '’

v=

(35)

where R, «du /9p, Rg <u /p, and ¢, is the flux quantum
h /2e (for details we refer to Ref. 5).

IV. CONCLUSIONS

It has been shown that the effect of a thermal reservoir
on solitons and phonons in the sine-Gordon system in the
presence of a¢, —Bé,,, dissipations gives an average Ki-
netic energy of, respectively, +kz T and by kp T per mode.
The presence of the B term on the soliton is to decrease
its diffusion constant. Furthermore, we showed that the
above analysis in the case of the Josephson oscillators
leads to the same linewidth expression as obtained in Ref.
5.

Finally, in closing the paper, we wish to point out that
the above analysis can be generalized to dissipations of
type &¢, with @ given by the following differential opera-
tor:

N
d= 3 (—1)"a,D}" where D, Ea% . (36)

n=0

In this case we need to replace the autocorrelation func-
tion (4) for the noise n (x,t) by the following expression:

kT
(n(x,n(x",t')) =16 ;

8(t —t')a@d(x —x') (37
0

in order to get the correct results. Indeed one easily sees

that (36) and (37) will give little changes in the above re-
sults except for the substitutions of

(a+Bk})—ag+ S akX (38)

in the phonon case and
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B
3

a,

3
v3(u) 3

+ Zay3u)+ Loy ju)+ -

in the soliton case. The linewidth expression Eq. (35)
remains the same.
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