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The equivalence between the discrete self-trapping equation for two degrees of freedom, the
pendulum equation, and the space-independent ¢* equation is demonstrated.

The discrete self-trapping (DST) equation was intro-
duced in Refs. 1 and 2 and has been used to account for
the dynamics of small molecules, molecular crystals, self-
trapping in amorphous semiconductors, and global pro-
teins. In Ref. 3 it was pointed out that the DST equation
is integrable for two degrees of freedom and can be re-
duced to the pendulum equation. However, no details
concerning the reduction to the latter equation were given.

Recently, it has been shown in Ref. 4 that the DST with
two degrees of freedom can be reduced to the space-
independent ¢* equation p =Ap —Bp>. In this Comment
we derive the pendulum equation and demonstrate the
equivalence with the space-independent ¢ equation.

For two degrees of freedom the DST equation

iA+HA =0 (1)
can be written as

id1(8)+y| A1) ]24,(t) +e42(t) =0 , (2a)

idy()+7y] A2(t) | 2A42(1) +e4,(1) =0 . (2b)

Here, A, and A, are the probability amplitudes for
finding an excitation in the two sites of the system in this
case. y and ¢ represent the strength of the nonlinear in-
teraction in the system and the coupling between the two
sites, respectively.

The density matrix p with elements

pik@) =A4;(t)A¢ (1) 3)
can be rewritten as
3
p() =1 |I+ Zlgirj(t)] , €))
=

where I is the identity matrix and g; denote the Pauli ma-
trices. From Egs. (1) and (3) we get

ri(t) =p(t)+p(t) , (5a)
ra(t) =ilp12(t) —p21()] , (5b)
r3(t) =py(t) —pn(t) . (5¢)

Rewriting the matrix H as

3
ﬂ(t)-zlhj(t)gj+-g-[|A1(t)|2+|A2(t)|2]1, (6)
=

we get
hl(t)"s s (7a)
hy(t) =0 , (7b)
h3(t)--§-(|A||2—|A2|2)--§-r3(t) . (7¢)

In Ref. 3 the DST equation (1) was rewritten as
p(t) =ilp,H] . (®)

Substituting (4), (6), and (7) into (8) the following equa-
tions are obtained:

(9a)
iz(t)-yrl(t)rg(t)—Zers(t) , (9b)
F3(1) =2er,(t) , (9¢c)

implying that |F|=(f+r3+r$)"? remains constant
throughout the interaction (as a consequence of unitari-
ty). Note also that Eqs. (9a) and (9b) imply

Fr(t)=— 7r2(t)r3(t) ,

ri(e)= —ﬁrf(t)+const )

Equations (9) are best solved by writing them first in the
form

F1@) +iry () =iyl (0) +ira()1r3() —i2ers (1) .
Integration of (10) gives

@ +irs@ =2t aexp iy f riar’ ), a)

(10)

where a and ¢ are real integration constants.
Since, by (5a) and (5b) r,(¢) and r,(¢) are real, we get

28 ! ' '
n(@® =22 +acosy S, rsnar', (12a)
and
t
ra() =asiny [, r3dr’ . (12b)
Using (12a) and (5a) at t =¢, we obtain
a=p(to) +p21(to) -—2—: . (13)

Substituting (12b) into (9¢) and defining the real vari-
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able g by
t
q-yf,org(t')dt' ,

we get

14)
G =2¢eyasing , (15)

i.e., the pendulum equation.
In Ref. 4 the space-independent ¢* equation

(16)

is derived from the two degrees of freedom DST equation.
Here, p is defined as p=p;(¢) — p,(¢). Thus

p=Ap—Bp’

—] (
r . 17)
P Y
Furthermore, the constants 4 and B are given by
2
A -‘%‘[Pll(lo) "'P22(l'o)]2"482
+2¢eylp12(t0) +p2(to)] , (18a)
and
2
B= Jé— , (18b)

in our notation. (Note that Ref. 4 uses — V instead of ¢,
which is a positive parameter in the DST model.)
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We shall now demonstrate that Eq. (16) is equivalent to
Egs. (15) and (13). Integrating (15) and using (17) and
(18b) we obtain

(19)

where C is an integration constant. From the definition of
p and (14) it follows that C = A is given by (18a).
Substituting Q =sing/2 into (19) we get

Bp?=2eay(2Q?—1)+4 .

Bp*=—2eyacosq+c ,

Differentiation of this equation and use of
0 =(g/2)cos(q/2) = (yp/2)V1—Q?
yields
pl=Ap?— —g;p“+const .

Repeated differentiation now gives

p=Ap—Bp®,
which is the space-independent ¢* equation.
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