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Perturbation analysis of a parametrically changed sine-Gordon equation
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A long Josephson junction with a spatially varying inductance is a physical manifestation of a
modified sine-Gordon equation with parametric perturbation. Soliton propagation in such Josephson
junctions is discussed. First, for an adiabatic model where the inductance changes smoothly com-
pared with soliton size, transmission or reflection of the soliton is described using a simple energy
analysis. Next, the soliton propagation is solved on the basis of a perturbation theory constructed by
McLaughlin and Scott. Radiation as well as soliton trajectories are presented numerically. Agree-
ment between such solutions and the results of direct numerical integration by means of a finite-

difference method is excellent.

I. INTRODUCTION

In this paper, a parametrically changed sine-Gordon
system is investigated. As is known well, a good physical
manifestation of the sine-Gordon system is a long Joseph-
son junction.! The parametrically changed system treated
here corresponds to a long Josephson junction whose in-
ductance is a spatially varying function. To examine soli-
ton behavior in such a system is quite significant not only
in fundamental studies but also in practical applications,
because reflection or trapping of a soliton in the
inductance-changed sine-Gordon system is an attractive
object for data-processing applications which have been
proposed since the 1970s.2 In a recent experiment on a
fluxon device, the inductance-changed long Josephson
junction was made a potential well for a fluxon losing its
velocity by means of an external shunt resistor.’

In this paper, the soliton propagation is described on
the basis of perturbation analysis. First, a simple energy
analysis is performed for the adiabatic model. Next, by
applying a general perturbation theory constructed by
McLaughlin and Scott* to our system, not only time
modulation of soliton parameters (i.e., the velocity and
position parameters) but also the radiation (the first-order
correction of the perturbation) are evaluated. The results
are compared with results of direct numerical integrations
of the partial differential equation. The agreement is ex-
cellent.

II. SYSTEM DESCRIPTION

If the loss terms of the junction are neglected, the fun-
damental equations for describing a long Josephson junc-
tion (Josephson transmission line or JTL) with the induc-
tance /(x) are given by

w_ o8I

ax = (x) ar (1a)

al ar .

= ar —sing , (1b)
36

éﬁ:V, (1c)
at

where the following normalized units are used: V is the
voltage across the junction normalized to (#l/2eC)'/?, I
is the current flowing along the line normalized to
(#ily/2eL)"?, ¢ is the phase difference between two su-
perconducting electrodes, x is the distance measured
along the JTL normalized to (%/2eL I,)!/?, t is the time
normalized to (#%C /2el,)!’?, C is the capacitance of the
junction per unit length, I is the maximum supercurrent
per unit length, and L, is the inductance per unit length
as x—— . The function /(x) is assumed to have
asymptotic values at x—* o, and is normalized to the
asymptotic value, L at x— — oo, i.e.,

1(x)— ll as x— — oo , ?)
ly asx—o0 .

We get, from Egs. (1a) and (1c),
b =—1(x)I 3)
and from Eqgs. (3), (1b), and (1c),

1

l(x)d’x

+, +sing=0 . (4)

— Y%

Hereafter in the present paper, partial derivatives are
designated such as 9, 4 or A4,, etc. One approach to the
perturbation analysis is that we rearrange Eq. (4) as

Ly

l(x) @)

_¢xx +¢rt +Sin¢: _d)xx +ax

and treat the right-hand side of Eq. (4') as the perturba-
tion. Then it is natural that the trial function (or the
zeroth-order solution in the perturbation series) is chosen
as

x —X (1)

— | > (5)
[l_uZ(t)]l/?.

¢=4tan " exp
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X ()= fo'u(z’)dt’+xo(t),

where slow time modulations of the parameters u and x
are allowed. Equation (5), which includes the asymptotic
form as x — — o, however, never includes the following
asymptotic form as x — oo:

ly
l—loufz

172
(x —Uft -—xl)

’

¢=4tan"'exp

where u, is a final velocity and x; is a constant.
To avoid this defect, a variable transformation is per-
formed, i.e.,

dz =1(x)"%dx . 6)
Then, Eq. (4) is expressed as
—¢.; +, +sing= —39,[Inl (x)]8, . v

Since the perturbing term of Eq. (7) approaches zero as
z—t 0, Eq. (7) indicates that the “two media problem
with transient region” is replaced by “impurity problems
in one medium.” It is apparent that in this case the trial
function expressed by z and ¢, corresponding to Eq. (5),
fulfills the asymptotic condition as z— oo.

III. ENERGY ANALYSIS

Before discussing the perturbation analysis, the simple
energy analysis is described. Since the energy stored in
the inductance is a function of x, the total energy H of the
system is expressed as

H= |~
I”,

1
12 —— 2 11—
>¢7 + 21(x)¢"+1 cos¢ |dx (8)

or

H= f°° l(x)~ 172 [%¢f+%¢f+1——cos¢ dz . (8

Let us consider the system where /(x) varies slowly com-
pared with the spatial size of a soliton. In that system,
the energy of a soliton is conserved, because radiation can
be neglected and the system is nondissipative. So, for
such an adiabatic model, simple energy analysis is possi-
ble.

If a soliton has an initial velocity v; and exists at z <<0,
the solution is

d=4tan"lexp[y(v;)(z —v;t —2z,)] , 9)
where the Lorentz factor y is a function of velocity v as
yw)=(1—p?)~172 (10)

and z, is a constant. Putting Eq. (9) into Eq. (8"), the ini-
tial energy H; at z <<0 is*

H, =8y (;) . (11a)

If the soliton is transmitted to the region at z >>0, the
final energy H, with the final velocity v, on the z axis is
obtained similarly as

Hy=815""2y(v) . (11b)
Thus the condition that the soliton is transmitted is

yw)s 15 2y0)=1517? (12a)
or

vr>1—1,, (12b)

which leads to the following summary.
(i) When Iy>1, a soliton with v;(0<v; <1) is always
transmitted to the region, z >>0.

(ii) When O<ly<1, two cases occur, i.e., if
v; >(1—19)'”?, the soliton is transmitted, but if
0<v; <(1—1p)'/% it is reflected. From H;=H/, the ve-

locity relations between the initial and final states are for
the transmission case,

ve=[1—1g ' (1—v?)]"? (13a)
and for the reflection cases,
vp=—v; . (13b)

It is obvious from Eq. (6) that the velocity u on the x axis
is connected to v on the z axis for the limits at x =+ « as

v atxX=—o0 , (14)
u=
IV atx = .

IV. PERTURBATION ANALYSIS

When /(x) is not a slowly varying function of x, a more
general treatment is needed, because radiation (e.g., the
distortion of soliton shapes, tailing or reflection) exists.
The general perturbation theory reported by McLaughlin
and Scott* is applied to our system.

A. McLaughlin and Scott theory

In this section, the perturbation theory in Ref. 4 is re-
viewed. The purpose of this review is to elucidate the re-
lationship between the theory and the actual numerical
treatment described in Sec. IVB. The formalism is writ-
ten for a single soliton case in spite of the fact that the
theory* is more general.

1. Preparation

Another representation of Eq. (7) is

o, —1|1¢ 0
O tsin(- ) 3, | o | lef] (15)
zzZ t t
where €f is the perturbation and in this case
ef =—19,[Inl (x)]¢, (16)

and the solution col(¢,d,) is of the form

p #© (N

¢r = ¢([0) +e€ ¢;1) + (17)

Here the first term of Eq. (17), which is the zeroth-order
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perturbing term, expresses the soliton profile where soli-
ton parameters are allowed to modulate slowly as a func-
tion of ¢, i.e.,

#© 4 tan~ lexp6
#9 | = | =2y [0 (0] (D)sechd (18)
with
O=ylv()][z—-Z ()], (19a)
Z(t)= fo'v(t’)dt’+zo(t). (19b)

The second term of Eq. (17), being the first-order correc-
tion, must fulfill the following equations using the zeroth-
order solution:

3, —1] 40 F,
3, 4+cosd® 3, ||V |T |Fy | (20
where
dv dz
04V | 4o 4“0
F, 0 18 e Ty
= —— 21
BT V18017 | jody | 0420 b
w dt IZO dt
with
9 —2y2v0sechd ,
d)‘z(;): —2y sech@ ,
(22)

9 =2y3echO(v20tanhf—1) ,
i) = — 2y v sechf tanh6 .

Equation (21) consists not only of f[¢°'] but also of the
effective source induced by the time modulation of the
soliton parameters. In Eq. (21), ¢\”’ and ¢0’ means that,
|

Wt (z, )W, (z',t")

von_ T Lo AdA
GC(Z,t |2 N )= 4 f_w a2<)\') \P?'(Z,t)\PF(Z’,t')
W+ are the solution to
[3,, — 8, —cos¢' O IWF =0 27
and satisfy the boundary conditions
‘Pi—>*l)—:exp{ Tilk(Mz +0(Ai]} asz—F oo, (28
.
with
1
k(AM)=2A——,
(A) Ty
1
o(A)=2A+ T (29)
w*=k241 .

—WH(z,t) ¥ (z',t")
—W(z,) W (z',t)

when differentiating ¢'®’ and ¢\°’ with respect to v, Z (1) is
fixed.

2. Time evolution of the soliton parameters

The modulation of the soliton parameters can be evalu-
ated without the knowledge of the soliton of the first-
order term, Eq. (20). According to the theory in Ref. 4,
the parameters are modulated to avoid linear growth of
¢V with the increase of ¢. This is realized when f is or-
thogonal to the discrete null space of the adjoint operator
L *, where

3, 3,,—cos¢'®

+
L7=-14 3,

(23)

and for a single soliton case, the discrete null space has
two bases, i.e., col[¢y,, —4,”'] and col[¢;)), —¢{>']. Con-
sequently, soliton parameters obey the following coupled
ordinary differential equations (ODE):

dv 1 ©

—=—€— f[6"@]sech8dz ,

a o I~ (24)
dzO v © (0)

e waf[d} ]6sech@ dz .

3. The first-order correction

After the time evolution of the soliton parameters is
known, the first-order correction can be evaluated by

¢(])
(1
¢;"

- fo’d;' f_”w dz'G,(z,t |z',t)F(z',t'), (25)

where
F =C01(F1,F2)

and

’ . (26)

I

After the correction of typographical errors appearing in
Ref. 4, the solutions for a single soliton case are expressed
explicitly: W™ are given by

1 A*+£%—2)& tanhd

+_ _.
v ——Trk ()\_+§)2 exp{ l[k(}\,)z +a)()x)t]}
(30)
and
__ 1 A24£42)ftanhl .
Y= (A+8)? exp{i[k(M)z + ()]} ,

(31)

with
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a(M)=(A—EA+E)T,

172 (32)
i | 1—u
§_4 1+u
I exp{ —i[k(M(z —z")+ (M)t —1")]}
Ce=4mi ffmd)‘ ME—A2)?
where

A =52+ A?—2A¢ tanhO(z,1)
B =iwC —2iriw(§) sech®0(z',t') ,
C=E*4+A*4+2)¢ tanh6(z',t")
D =—iwA +2iAw(E)sech?®0(z,1) .

(36)

B. Application of the McLaughlin and Scott theory

The theory described in the last section is applied to
our system.

1. Time evolution of the soliton parameters

Putting Eq. (16) into Eq. (24) and using Eq. (19b), we
get the ODE for the soliton parameters:

dv _ 1 f= 5 (inl(x)]sech?0dz ,

dt 4y Y-

iz (37
as Y [ 2

=0 + ) 9,[Inl (x)]@sech“6dz .

Next, we give two concrete functional forms for /(x) and
investigate the time modulation of the soliton parameters
for each case.

(i) When /(x) changes abruptly from 1 to [/, at x =0, as
shown in Fig. 1(a), we have

3,[Inl (x)]=(Inly)8(z) , (38)

resulting in

20F
1.5k Lo
al /b (¢
=10
0.5+
0 | | 1 1 1 1
-2 -1 0 1 2 3 4

FIG. 1. Spatially varying inductance, /(x). Curve a is a func-
tion with a step change at x =0. Curves b and c are gradually
changed /(x) obeying Eq. (42).

0z, t)=y(u )Nz —u.t —z.), (33)
u.=ul(t), z.=Z(t)—u.t . (34)

Accordingly, G, is given by

AB — AC
DB —DC | (35)
|

dv 1 2

Ly - Z),

it 4?/(lnlo)sech (yZ)

(39)
az

5, =V —nloyZ sech’(yZ) .

In Figs. 2 the velocity parameter v (#) versus the posi-
tion parameter, Z (t)= ffw vdt'+2z0(t), is shown for
various initial velocities. Figure 2(a) is the result when
lo=1.5 and Fig. 2(b) is the result when /,=0.6. As
shown in the figures, the soliton always propagates to the
right side for /o=1.5, but for /;=0.6, if the initial veloci-
ties are small, the soliton is reflected. These results are

10 T T T T T T T T T

0.8r 3

0.6

v(t)

0.4

0.2

v(t)

Z (1)

FIG. 2. v(t) vs Z(z) when [(x) is a step function. (a) lo=1.5
and (b) l[o=0.6. The number denoted in each curve is the initial
velocity.
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the same as those of the adiabatic energy analysis in Sec.
III. Figure 3 shows the relation on the x axis between the
velocity parameter u (¢) and the position parameter X (¢)
for [p=1.5, where X (¢) is connected to the position Z (¢)
on the z axis by

Z(t) for Z<0or X<O,
15'2Z(t) for Z>0o0r X >0 .

—
~
~

(40)

Since the ratio of —¢!? to ¢\* is generally a function of x,
u (t) must be defined carefully. Here we define u as that
ratio at the soliton position, i.e.,

¢

0
40

v for X<O.

_ —172, _
=Ix) v= IV for X >0 .

u=

x=X()

(41)

As shown in Fig. 3, for /o > 1, we find that (1) there exist
abrupt changes of u resulting from the jump of /(x); (2) a
soliton with high initial velocity has a decreased final ve-
locity but, on the other hand, a soliton with low initial ve-
locity has an increased one. The energetic point of view
similar to that in the adiabatic model [Eq. (13a)] is still
helpful in order to understand this fact. In Fig. 4 the
time dependence of the soliton position resulting from the
perturbation analysis is shown (solid curve). Solid circles
(@) in Fig. 4 are the result of direct numerical integration
of the partial differential equation, Eq. (4). Good agree-
ment is found. Here, the numerical integration is per-
formed by a standard finite-difference method based on a
stabilized leapfrog scheme. The abrupt change of /(x) is
treated as 1/1(0)~(1+4+1/1p)/2 and 03,[1/1(x)]|x -0
~(1/lg)—1)/Ax, where Ax is the spatial stepsize
(=0.0025). The time step is equal to the spatial stepsize.
The soliton position is taken from the x value at which
¢ /1(x) has the maximum.

(i) Next, let us consider the case where /(x) changes
gradually as shown in curves in Figs. 1(b) and (¢). It is
practically convenient to choose /(x) so that Egs. (37) is

10 T T T T T T T T T

0.8r .

0.6 -

u(t)
o
n

X (1)

FIG. 3. u(#) vs X(t) when I(x) is a step function and
lp=1.5. The number denoted in each curve is the initial veloci-
ty.

integrable by z. One example of the integrable form is

1 for x <0,
172

l(x)= kl-—gx for 0O<x <a , (42)

ly fora <x,
with

h_2
a

(1—I15"%).

Using Eq. (42) and integrating dz /dx =1(x)""?, we get
the relation between z and x
x forx<0 orz<O,

z= —zln

h

1§°x +b —al}?

forO<x<a orO<z<b, (43)

l—gx

fora <xorb<z,

where
bh=Inl, . (44)
Thus,
0 forz<O,
19,[Inl (x)]= g for 0<z<b , (45)
0 for b <z

is obtained, and the right-hand side of Eq. (37) is integrat-
ed as

D _ R {tanh[y(Z —b)]—tanh(y2))
4y

dr —

dz hv

as _ hv . o oz
dt U+47, y(Z —b)tanh[y(Z —b)]—yZ tanh(y Z)

cosh(yZ)

. 4
cosh[y(Z —b)] 46)

+1n

From this example, we can see how the soliton propaga-

5 T T T T T T ‘ T T T T T T
- ~
= o _
- TS WS U R N TR SN SN SN NN NN N S
50 5 10 15

FIG. 4. The soliton position X as a function of time for the
abruptly changed /(x), where u,=v;=0.7 and l,=1.5. The
solid curve is the result of the perturbation analysis and the solid
circles (@) are those of the direct numerical integration of Eq. (4)
by means of the finite-difference method.
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tion depends on the smoothness of /(x). Note that Eq.
(46) includes both the abrupt limit [Fig. 1(a)] and the
smooth limit (adiabatic model). The former is easily
found [Eq. (39)] by taking 5—0 and holding bh =Inl,
(constant). Figure 5 shows the velocity versus the position
on the x axis for various values of a. The result is reason-
able, i.e., the overshoot of the velocity around the tran-
sient region is small with smoothing /(x).

2. The zeroth-order energy

Let us consider the zeroth-order energy, H'?(¢) calcu-
lated from the zeroth-order solution. Inserting Eq. (18)
into Eq. (8') we get

HO()=4y? [* 1(x)~"*sech0dz . 47

As already discussed in Sec. III, H'” is proportional to

the Lorentz factor ¥ as t—* 0, i.e.,
HO(— o)=8y[u(—)],
(48)
HO0)=8l5"*y[u(w)] .

As far as discussion is limited at t— * o0, it is enough to
investigate y instead of H'®). From Eq. (37), we get

dy _ 3,40 _ Y = 2
¥ e f_waz[lnl(x)]yv sech“0dz .

dt
Using
d,(tanh@) =sech?d Zveﬂ— ﬂ —yv sech?0
! - VU T ar 4
and Eq. (37) again, we get
2 (ny)=—13, [* 3, [Inl(x)]tanhod (49)
g m)==39 J " ,[Inl (x)]tan z .

In the condition that a soliton is transmitted, we have
tanh6—1 and /(x)—1 when t— — «, and tanh6— —1,
and /(x)—Iy when t— «. So, the integration of Eq. (49)
leads to

ylu(—oo)]=I15"*y[u(e)] .

This means from Eq. (48) that
HY— 0)=H%%w) .

When the soliton is reflected, tanh6—1 and /(x)—1 as
t— 0. We get Y[u(—oo)]=v[u(w)], ie.,
H9(— ©)=H% ). So, the asymptotic values of the
zeroth-order energy as t— o are preserved, regardless of
function shapes of /(x) and the conditions of transmission
or reflection. However, this surprising result does not
|

10 T T T T T T T
a
o8 \ ;b -
C

o6l i
04t -
02t -

1 1 L 1 1 1 1

S 0 2 4

X (1)

FIG. 5. Soliton trajectories [u () vs X (¢)] in JTL’s with grad-
ually changed /(x) as Eq. (42) where /p=1.5 and u; =v,=0.7.
The curves a, b, and ¢ are the results for the three different
lengths of the transient region, i.e., a =0, 0.5, and 3, respective-
ly.

mean that there are no radiations at t— oo. In fact, the
direct numerical integrations of Eq. (4) show that there
exist radiations. Figure 6 shows the reflected radiation
energy versus [, for various initial velocities, #; when the
abrupt change of /(x) at x =0 is assumed. Here the
reflected radiation energy is defined by the integration of
the energy density from — o« to O well after the soliton
passes through the boundary, x =0. Figure 6 suggests
that, in spite of getting the relation, H'9(— o )=H (),
we need discussions including the higher-order corrections
as will be treated in IV B 4.

However, the fact that, whatever function /(x) is, the
zeroth-energy order is preserved at two limits, — + 0, is
convenient practically, because without calculating not
only the first-order correction but also the zeroth-order
ODE [Eq. (37)] we may know the final velocity of the
zeroth-order soliton trajectories using the simple adiabatic
model described in Sec. III.

3. The first-order correction

The numerical example described here is for the model
that /(x) changes abruptly at x =0 as shown in Fig. 1(a).
The calculation procedure for the theory reviewed in
IVA2 is as follows. By changing the order of integra-
tions in Egs. (25) and (26) and by changing the variable
from A to k, we obtain

$» ) l exol —ilk(z —z" o AB —AC | |F,
1 re Lo g, pl—ilk(z =z )+ ow(t —1t')]}
ngn = f_wdk fodt f—wdz Im w(E2—22) DB —DC | |F, ) (50)
I

with As found in Egs. (21) and (38) there is a & function on the
A=1[k (k241172 z axi_s, corre'sponding to the jur_np of I(x.) at x =0. Thps
(51) the integration of this &-function part in Eq. (50) with
o=(k>+1)"?*. respect to z' and ¢’ is replaced by the integration with
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Hgeft

Lo

FIG. 6. Radiation energy obtained from the direct numerical
integration of Eq. (4). The figure shows /, dependence of the
reflective component of the radiation energy, whose definition is
found in the text. The parameter denoted in each curve is the
initial velocity.

respect to ¢’ only. The remaining parts are integrated us-
ing a computation routine DBCQDU (Ref. 5) for twofold
integration, where z’ and ¢’ are divided in small segments.
The integration ranges of this are determined by neglect-
ing the ranges where |F(z',t')| (from which the 6-
function part is eliminated) is smaller than a threshold
value. Finally, Eq. (50) is integrated by the wave number,
k, using a mathematical routine DCSQDU.> It can be said
in general that, if k is much larger than the spatial size of
a soliton, the contribution to col(¢'V,¢!!) is negligible.
Thus appropriate limits, +k., exist for the integration by
k. The validity of the integrations of Eq. (50) is assured
by the fact that the results are unchanged even after
changing the integration ranges for z’, ¢’, and k, and also
the sizes of the segments Az’, At’, and Ak.

Figure 7 shows the results of the first-order correction,
¢V and ¢!V at I;=1.5 when Z(0)=—6 and v(0)=0.7.
The segment sizes, Az’, At’, and Ak are 0.25, 0.25, and
0.20, respectively. The upper and lower limits of the in-
tegration by k are 6 and —6, respectively. As shown in
the figure, while a soliton passes around z =0, radiations
begin to occur. These are not damped, and, roughly
speaking, are classified into the distortion part of the soli-
ton, the reflection part and oscillatory part staying around
z =0.

In Fig. 8, the results of the perturbation analysis are
compared with that of the direct numerical integration of
Eq. (4) under the same condition as in Fig. 7. The solid
circles in Figs. 8(a) and (b) show ¢'V+¢'V and
— (9 +¢V), respectively, of the perturbation analysis.
The solid curves in Fig. 8(a) and (b) show ¢ and —¢,, re-
spectively, of the direct integrations of Eq. (4). The agree-
ment between the solid circles and the solid curves is
surprisingly good.

4. Energy of radiations

Putting Eq. (18) into Eq. (8'), H is also expressed by a
series as

H:H(0)+GH(1)+62H12)+ cee (52)

where
HO — f_w l(x)_‘/zf%[¢‘,°’]2+%[¢‘Z°)]2+l—cosgb‘o’}dz ,
(53a)
B e
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FIG. 7. The first-order radiative correction (a) ¢'" and (b) ¢!"
as a function of z at various times. The abrupt changed
I(x)(lp=1.5) is assumed and v;=0.7, Z(0)= —6.0. The arrow
found in each curve indicates the position of the soliton [i.e., the
value of Z (1)].
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H(l)z fw l(x)_1/2[¢£°)¢5“+¢§0’ §1)+¢(I)Sin¢(0)]dz ,
(53b)
and

H(Z): f°° I(X)_]/z[ ';“((IS;”)Z"—%( (zl))2+%~¢“)005¢(0)

+¢§0’¢(,2)+¢(ZO)¢22)+¢(2)sin¢>(0)]d2 .
(53¢)

Equations (53) indicate that, if col(¢,¢,) is solved up to
the order of €, there remains uncertainty of 0(¢?) in H. In
general, if it is solved up to the order of €, there is uncer-
tainty of O(¢'*!). Since the system is lossless, H at any
time should approach, more and more, the initial energy
with taking into account of up to higher-order terms of
the series-expanded col(¢,¢,). Remember the equality re-
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— s raes
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FIG. 8. (a) ¢(z) and (b) —¢,(z) at 1 =13.0. Solid curves are
numerical integration results of Eq. (4) Solid circles (@)
represent the perturbation analysis results including the first-
order radiative corrections. The initial conditions at t =0 of
both methods are v; =0.7 and Z (0)= —6.0.

lation of the zeroth order as t—*too,H'V(— )
=H'"(s), obtained in IVB2. This comes from the fact
that orthogonality conditions to avoid the linear growth of
#'" in the McLanghlin and Scott theory are applied to
our lossless system. So, this relation does not conflict
with the order consideration result of energy discussed
here.

A good estimation of radiation is to observe the radia-
tion energy of the ‘“reflection component,” which is
defined by integrating the energy density in the range
from z =— « to z =0 at some time well after a soliton
passes at z =0, meaning that the soliton tail is negligible
for the range of z <0. At this time, since ¢'“~0 and
¢‘,0)20 between z = — o0 and z =0, we get H{% ~0 and
H{}{ ~0 from Egs. (53a) and (53b), where H\} is the left
half (or the reflection) energy of the ith order. Therefore,
H{% is the lowest order of the nonzero reflection energy.
Since, as is clear in Eq. (53c), ¢'%, ¢!*, and ¢'* appear in
the product forms of the zeroth-order solutions, these are
neglected. Thus the reflection energy can be estimated
from the first-order solutions even though the energy is
second order.

Figure 9 shows the /; dependence of the reflection ener-
gy, where the initial velocity is 0.7, the soliton position at
t =01is —6.0, and the energy observation time is around
t =14-15 at which point the soliton is far away from
z =0. In the figure, open circles are the results of the per-
turbation analysis and plus signs (+ ) are those of the
direct numerical integration of Eq. (4). Agreement for
1 <ly < 1.5 between two cases is perfectly good. The rela-
tive deviation at /o=2 is still as small as 0.01.

V. CONCLUSION

A modified sine-Gordon equation with a parametric
perturbation, which is a mathematical model of a lossless

Lo
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20949 2o

FIG. 9. [, dependence of the reflective component, H . of ra-
diation energy normalized to the initial soliton energy, H;,. Sym-
bols (O) and (+ ) are the perturbation analysis results and the
numerical integration results of Eq. (4), respectively. The initial
conditions are v;=0.7 and Z(0)= —6.0. H, is calculated from
Eq. (11a).
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Josephson transmission line with a spatially varying in-
ductance /(x), has been investigated. The functions /(x)
with the asymptotic values as x—>=* o have been as-
sumed. We have found that in such cases the variable
transformation, dz =1(x)'?dx, is effective. First, for an
adiabatic model where /(x) changes very slowly compared
with the soliton size, we have obtained the conditions of
whether a soliton is transmitted or reflected from discus-
sions of energy conservation. Next, for nonadiabatic
cases, the perturbation theory of McLaughlin and Scott
has been applied to our system. For two cases of an
abruptly changed /(x) and of a gradually changed /(x),
the time evolutions of the soliton parameters (the velocity
and position parameters) have been solved. Radiations

have also been evaluated by solving the first-order equa-
tion of the perturbation. Not only radiation wave forms
but also radiation energies have been compared with those
of the direct numerical integration of the original partial
differential equation. Agreement between them is surpris-
ingly good.
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