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Coupling in Reflector Arrays 

IhTRODUCTlON 

For many applications,  such as echo en- 
hancement and satellite communication, re- 
flectors which  have a maximum of reradia- 
tion back in  the direction of  arrival of an inci- 
dent wave are needed. In 1955, Van Atta [ l ]  
proposed a reflector with this property. The 
reflector consists of  antenna elements prop- 
erly arranged  and connected by transmission 
lines. In order to reduce the space occupied 
by a reflector array, it is desirable to arrange 
the  array  antennas as close to each  other as 
possible.  However, in  this case coupling be- 
tween the  array antennas will reduce the re- 
flecting properties of the reflector array. 

The purpose of the present communica- 
tion  is to  demonstrate that this is  true for a 
Van Atta reflector consisting of four half- 
wave dipoles arranged on a line. Sometheoret- 
ical studies of the influence of coupling in 
Van Atta reflector arrays have  been carried 
out previously 121-[4]. In this communica- 
tion, theoretical results obtained by  using the 
methods described in [2]-[4] will  be  com- 
pared with experimental results. In contrast 
to previous experimental results [4] which 
have  been presented as normalized, the re- 
sults described here are absolute. Before the 
experimental results are described, some 
theoretical remarks will be given. 

THEORY 
For a linear Van Atta reflector consisting 

of n parallel half-wave  dipoles,  we  will deter- 
mine the maximum back-scattering cross 
section for an incident wave polarized parallel 
to  the dipoles and propagating  along the 
normal to  the plane containing the dipoles. 
This back-scattering cross section will be 
determined when coupling is  neglected. Then 
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there are  two fields  which add  up  to give the 
cross section. First. the field due  to scattering 
from  the dipoles when they receive the inci- 
dent wave; second, the field due to  the inter- 
connections between the dipoles [1]. If the 
length of the transmission lines is chosen to 
be an unequal  number of half a wavelength, 
these two fields add  in  phase  and we  have the 
maximum cross section for normal incidence. 
It is  well-known that for one dipole, the back- 
scattering cross section of the field due  to 
scattering is 0.20X2 [ 5 ] .  Since the field  intensity 
due to the interconnecting transmission lines 
is of the  same  magnitude as  the field intensity 
due  to scattering, the maximum back-scatter- 
ing  cross section of  one dipole is 4~0.2Oh?: 
Le., the maximum back-scattering cross sec- 
tion for normal incidence  is 0.80n2h? for the 

Van Atta reflector. This result shows that if a 
certain  space is available, the cross section in- 
creases with the  square of the  number of di- 
poles arranged within the space. However, 
the cross section cannot be increased indefi- 
nitely. because coupling will reduce the back- 
scattering cross section when the dipoles are 

Fig. 1. The  experimental  Van  Atta reflector. 

Fig. 2. Back-scatteling  cross  section  for  normal  incidence as a  function  of  the  length of the 
transmission lines. Distance  bctaeen  the  dipoles  equals 8 m. 
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Fig. 3. Back-scattering  cross  section  for normal incidence as a function of the  distance between 
the dipoles. Length of the transmission lines is about 0.40A+pA. 
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arranged  close to each other. In tkis connec- 
tion it  is interesting to find  the  spacing (6) 
between the  dipoles  in  the  case of a  linear 
reflector  if we wish to arrange  them within an 
area A and require  them to possess a  back- 
scattering  cross  section  equal to  that of  a flat 
metallic plate of area A .  Using as the back- 
scattering  cross  section of a flat plate 4irA2/XZ 
it is easily found  that r1%4A/V. Since  one 
half-wave dipole in the  reflector  occupies  the 
area X/Z.d, this means that  the dipoles  should 
be arranged  with  an  interspacing of about 
half a wavelength. In fact, as will be  seen 
below, if the spacing is smaller than half  a 
wavelength, then  coupling reduces the back- 
scattering  cross  section below the  value 
0 . 8 O r ~ 4 ~  derived by neglecting coupling. 

EXPERIMENTAL RESULTS 
Fig. 1 shows the experimental  Van Atta 

reflector  consisting of four  parallel half-wave 
slot-fed  dipoles  with  open-ended  termina- 
tions.  Line  stretchers  are  inserted  into  the 
transmission lines connecting the dipoles. 
This is done  in  order to determine easily the 
length of the  transmission lines for which the 
reflector has a maximum  back-scattering 
cross  section  for  normal incidence. This  cross 
section is measured by using a conventional 
monostatic  radar set  up in  an  anechoic  cham- 
ber.  The  measurements were carried  out at 
3.21 GHz. 

First,  for an equispacing of 8 cm between 
the  dipoles,  the cross section is measured as a 
function  of  the  length of the transmission 
lines. The result is shown  in Fig. 2 and is in 
agreement with the  theory. It is  seen that  there 
is a maximum of reflection  when the length of 
the  transmission lines  is about 0.40h+pX, 
where X is the wavelength and p is an integer. 
As explained in [4], it is due to coupling that 
the  maximum  does  not  occur  for  the  length 
O.jOh+pX. 

Next, with the  length of the  transmission 
lines adjusted to about 0.40X+pX, the  cross 
section is measured  when the  equispacing is 
decreased in  steps of 1 cm from 8 cm to 2 cm 
(i.e., from 0.86X to 0.21X). The  results are 
shown  in Fig. 3. The  main  reasons  for  the dis- 
crepancies between the  theoretical  and experi- 
mental curves are 1)  that  the  reflections  from 
the  transmission lines, including the line 
stretchers. add  to or subtract  from  those 
from  the Van Atta  array,  and 2) that  the  line 
stretchers  introduce VSWRs into  the  trans- 
mission lines. However,  in  agreement with 
theory, it is demonstrated  experimentally that 
when the inter-element spacing  in  a Van Atta 
reflector array is decreased,  then  coupling  re- 
duces the  back-scattering.  Furthermore, it is 
seen that for  some  spacings  larger than half a 
wavelength, coupling may increase the back- 
scattering  cross  section  above  the  value 
1 1 . 1  dBIV found by using the  formula 
0.80rz2h2 derived above when coupling is 
neglected. 

ACKNOWLEDGMENT 
The  author wishes to express  his apprecia- 

tion to  the  Radiation Laboratory,  University 
of  Michigan,  Ann  Arbor,  for the use of  their 
microwave  anechoic  chamber  for  the experi- 
mental  study  carried  out  during his stay at  the 
laboratory. 

J. APPEL-HANSEN 
Laboratory of Electromagnetic  Theory 

Technical  University of Denmark 
Lyngby,_Denmark 

IEEE  TRANSACTIONS ON ANTENNAS  AND  PROPAGATION, NOVEMBER 1968 

REFERENCES 
[I ] L. C. Van Atta. “Electromagnetic reflector,” U. S .  

[21 M. H. Gstfeldt, “Linear army as a passive reflector,” 
Patent 2905  002, Serial no. 514 O N ,  October  1959. 

Theory, Technical University of Denmark, Lyngby, 
Ivl.Sc. thesis, Laboratory of Electromagnetic 

[3] T. Larsen, “Reflector arrays,” IEEE Trans. An- 
1963 (in Danish). 

rennas and  Propagalion, vol. -4P-14, pp. 659-693, 
November 1966. 

[4] J. Appel-Hansen, “A Van  Atta  reflector consisting 
of half-wave dipoles,” IEEE Trans. Anrennas and 
Propagation, vol. AP-14, pp. 694-700, November 
1966. 

151 Y. Y. Hu, “Back-scattering cross section of a 
center-loaded cylindrical antenna,’’ IRE Trans. 
Antennus and  Propagalion, vol. AP-6, pp. 14&14S. 
January 1958. 

A Note on  the  Radiation  Characteristics 
and  Forced  Surface  Wave  Phenomena in 
Triangular-Grid  Circular  Waveguide 
Phased  Arrays 

Abstract-Forced surface wave resonances 
are shown to occur in dielectric-free 45-degree 
trian,&ar-grid circular tvaveguide  phased ar- 
rays. Similar  surface wave  phenomena  were 
observed in an identical grid array of rectangu- 
lar waveguides in  the H-plane of scan. In the 
circular waveguide array, however, the reso- 
nance is observed  in the  E-plane and is shown to 
be an isolated  point. This isolation is further 
illustrated by observing certain vector symme- 
tries in the  radiation  patterns. 

Considerable effort  has  been devoted 
towards developing an understanding of cer- 
tain  anomalous  resonances [1]-[7] which 
occur  in  phased-array  antennas.  These  phe- 
nomena  are  manifested by total  internal  re- 
flection and consequently no radiation of 
power by the  antenna  at particular  angles of 
scan.  While  the existence  of these  phenomena 
was, to  a degree,  expected  for dielectric- 
covered phased  arrays  under  certain  condi- 
tions [ I ] ,  [2], it has been shown  that they can 
also  occur  in  dielectric-free  brick  arrays of 
rectangular waveguides [3], [4] and  in  equi- 
lateral  triangular  arrays of circular wave- 
guides [7]. The brick array of rectangular 
waveguides and  a circular  array with an iden- 
tical grid  both  exhibit  forced  surface wave 
phenomena,  but  in different planes  of  scan. 

The  results to be described were obtained 
by numerically  solving the vector two-dimen- 
sional  integral  equation  for  the  planar  array 
of circular waveguides [7]: 

3 

j = 1  1-1 

We solve  for  the  unknown  tangential electric 
field El at  the  aperture A of the  circular wave- 
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guides. The {aj} and {Wmnp} are, respec- 
tively, the  circular waveguide modes [7], 
[8] and  the periodic  free-space  modes  re- 
quired by Floquet’s  theorem (p=  1 denotes  a 
TE mode, p = 2  a TM mode). The I;. and 
Ymni are  the respective  modal  admittances. 
The  mode  of  excitation  of  the  array is  speci- 
fied  by the {Ai) which are  the amplitudes of 
the incident waveguide modes  (properly 
normalized to the  total  input power). (In the 
results  presented  here, we choose  only the two 
degenerate  circular TEll modes.) 

The reflection  coefficients Rj of  the j th  inci- 
dent  mode are readily  found  from  the  aper- 
ture field solution by 

The  radiated fields  (which are related to the 
far fields  of the singly-excited  waveguide  ele- 
ment  in the infinite array  environment [9]) 
are found  from the  aperture field by 

and 

where  the angles e and 6 are  the  usual  polar 
coordinate  angles  associated  with  the x ,  p: z 
coordinate  system. T, and T, are  the beam- 
pointing  directional  cosines with respect to 
the x and y axis  (the  ground  plane).  The 
transmission coefficients of the  array-scatter- 
ing matrix are  proportional  to  the radiated 
field components 

and 

T+ = \/Yool’/Yl E+, 

when only  a  circular TEll mode is incident on 
the aperture.  The  unitary  condition  for  the 
scattering  matrix  determines  the  proportion- 
ality constants. 

In the  brick  array  analyzed  earlier [3], [4], 
where  only a  single  mode was propagating  in 
the waveguide, surface wave resonances were 
observed in the H-plane of scan. In contradis- 
tinction, however,  when an identical  grid 
array of circular waveguides  is  excited as 
shown  in  Fig. 1 .  we note that  a forced  surface 
wave resonance is present  in the E-plane of 
scan before the first grating  lobe  (denoted by 
the  vertical  arrows)  appears.  (The  magnitude 
of the reflection is plotted versus the differ- 
ential  steering  phases $= or $, along  the x or .” 
coordinates.  They are proportional to T, and 
T, [ 71 .) In the H-plane scan, no such  resonance 
is observed although I R, I is  very  nearly one 
at grazing  incidence  (the heavy arrow).  Small 
changes  in the wavelength do  not greatly  alter 
the results except that  total  reflection ar graz- 
ing incidence is  observed  in the H-plane at 
other wavelengths. 

In addition, it is of interest to  note  that, 
unlike  the results found  for  the  brick  array  of 
rectangular waveguides, the  surface wave 
resonances  found  here (in the  E-plane  here 
arld for  other  planes  in different grids [7]) 
occur at isolated points  in  the scan plane. This 
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