
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

General rights 
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners 
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. 
 

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. 
• You may not further distribute the material or use it for any profit-making activity or commercial gain 
• You may freely distribute the URL identifying the publication in the public portal  

 
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately 
and investigate your claim. 

   

 

Downloaded from orbit.dtu.dk on: Dec 17, 2017

Plane-wave scattering from half-wave dipole arrays

Jensen, Niels E.

Published in:
I E E E Transactions on Antennas and Propagation

Publication date:
1970

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Jensen, N. E. (1970). Plane-wave scattering from half-wave dipole arrays. I E E E Transactions on Antennas
and Propagation, 18(6), 829-831.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Online Research Database In Technology

https://core.ac.uk/display/13720535?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://orbit.dtu.dk/en/publications/planewave-scattering-from-halfwave-dipole-arrays(a086c89f-1866-4ce1-9708-32f5d0bed297).html


CO1IXlCKIC1TIONS 829 

plot.ted. Parameters for t.his case are 

47 = 0 
+$ = 0 
4t = 0 
8, = 0 

b / a  = 200 
b,’X = 0.170 

81 = 0 

where the geometry of Fig. 1 applies. 
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Plane-Wave Scattering from Half-Wave Dipole Arrays 

Abstract-A matrix  equation for determination of plane-wave 
scattering from arrays of thin  short-circuited dipoles of lengths 
about half a  wavelength is derived.  Numerical and experimental 
results  are presented  for  linear, circular, and concentric circular 
arrays. 

Recently, Sledge [I] has investigated plane-n-ave scat,tering by 
linear arrays of thin center-loaded dipoles by solving integral 
equations for the induced current.s. When  t,he array consists of 
shorbcircuited  thin dipoles of lengths about half a aavelength,  an 
analysis based upon  network t.heory may  be applied. The purpose 
of this communicat.ion is to present  theoretical and experimental 
results  in  such cases. 

The  theoretical model is shorn  in Fig. I(a)  and consists of an 
array of :V short-circuit.ed t.hin dipoles of 1engt.hs [L&,- - -,L,vJ 
illuminated by a  plane  electromagnetic field E‘“’? of wavelength x. 
The dipoles are  located  parallel to  the z axis with  the terminals 
in the ry plane. The induced current  distributions on the elements 
are assumed to be sinusoidal. When open circuited, the scat.tered 
field from  a thin dipole is negligible when L N- Ai2  [2], so the 
open-circuit induced volt.ages [ V I , V Z , - .  *,VN] in the elements  are 
given by [a] 

(1) 
where hieff is the effect.ive height [a] of element. i when iodated 
from t.he other elements of the  array; E i i n c  is t,he incident, field a t  

V .  1 -  - E . i o e . h i e f f ,  I i = 1,2,. . .,,x: 
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(a) (b 1 
Fig. 1. (a)  Theoretical  model of dipole  array. (b)  Experimental  setup. 

element. i. When  shortcircuiting the dipoles, the  terminal  currents 
[11,12, - - -,l.v] follow from t.he ,V-terminal network  theorem [3 J 

where 2 , ~  is t.he mut.nal impedance beheen  elements m and 1. 
This  equation is essentially identical 1vit.h [I, eq. l O J .  Similar 

equations  have been derived by Richmond [5J for arrays of in- 
finite long cylinders. and Larsen [6] for interconnected array 
elements. 

Assuming ident,ical  surroundings for all the elements, ;,he  self and 
mutual impedances are  calculated  on  a  digital  computer  from the 
forn~ulas in L’i] and [SI which apply well to  the dipoles considered. 
The integrations  in [SI are carried out. numerically using Romberg’s 
method [SI. Once the element currents  are determined  from (2), 
the reradiation pattern  and backscattering cross sect,ion u follow 
by  standard techniques.  Calculations show that  the reciprocity 
theorem is fulfilled to a high degree of accuracy. 

The  experiments were carried out  in a microwave anechoic 
chamber at, X-band frequencies using the cancellation  method, 
and t,he setup  is shown schematically in Fig. I(b). Using single 
sideband (SSB) modulation with a  modulation frequency of 1 kTlz, 
a  frequency shift of 1 kHz is obtained in  t.he backscattered signal 
which is linearly detected  in a  balanced mixer. The  out.put should 
be proportional to the  amplitude of the reflected signal and in- 
dependent of its phase. Nonideal SSB modulation causes depend- 
ence on the phase, and  each measurement consisk of several re- 
cordings for various settings of the LO phase shifter. Generally 
phase sensit.ivities of +0.2 dB were observed. 

The dipoles, made  from I-mm diameter brass, were mounted in 
a thin  acryl disk which was suspended  in three 0.2-mm diamet.er 
nylon strings. Rot.at,ion and translat.ion (used when measuring 
absolute values of u) were possible. The equipment proved capable 
of measuring u of st,eel spheres down t.0 a 5-mm diameter ( u / h 2  N 

within k0.5 dB, and  the presence of spheres down to a 3-mm 
diameter ( , / x n  ‘v 5 - IO-<) could be  detected. 

Varying N and L for different. linear, circular, and concentric 
circular array configurations, a large number of arrays  with up to 
26 elements  have  been  investigated. Representative results are 
present.ed in  Figs.  2 and 3. Fig.  2(a) shows the H-plane  backscat- 
tering from a simple  circular array of four X/2 dipoles and Fig. 
2(b) from an  array of two concentric  circular arrays with dipoles of 
unequal  lengths. In  Fig. 3, H-plane backscatt.ering patt,erns  for 
linear  arrays  with four elements are  shoan. Comparing Figs. 3(a) 
and (b), one  notes the Yagi-like enhancement of the backscattering 
from the  array  with different dipoles when looking toward the 
shorter dipoles. Similar effects Rere observed in concent,ric arrays 
where umma./X2 for  a 2 X 10 elements array (ka.1 and kaz as in Fig. 
3(b)) could be changed from 4.0 with equal length dipoles to 10.1, 
by short.ening the out.er elements to L/‘h = 0.4. 

The agreement, between experiments and  theory is  seen to  be 
very  satisfactory, t.hus confirming the usefulness of t.hk simple 
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Fig. 2. Theoret,ical ( X )  and  experimental  H-plane  backscattering  patterns.  (a)  Circular  arrav ka = 4.0 Four  elements of 

length of four inner  elements is 0.51X. 
equal  lengths, 6 = 0.50X. (b) Concentric  circular  array. kal = 2.04. kat = 4.08. Length o f ' h r  outer' elements  is 0.46X, 

I 

ia)  (b) 

Fig. 3. Theoretical ( X )  and  experimental  H-plane  backscattering  patterns.  (a)  Linear  array kd = 2.04. Four elements of 
equal  lengths, L = O.5lX.  (b)  Linear  array, kd = 2.04. Four elements of unequal  lengths. LI I 0.61X. L, = 0.56X. La = O . 5 l X ,  
L, = 0.46X. 
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Effect of Electroacoustic Wave on the Radiation of 
a Plasma-Coated Spherical Antenna 

Abstract-The radiation  from  a  spherical antenna covered by a 
finite layer of lossy hot plasma is  studied.  When  the plasma is 
cold, the  antenna radiation  can be recovered or enhanced when the 
plasma  frequency is  increased beyond the  antenna frequency. 
When  the plasma is hot, in addition to the phenomena  for the 
cold plasma  case, an electroacoustic wave may  be excited in  the 
plasma  layer and  lead  to  some resonances. The electroacoustic 
resonances  may  lead  to a  very strong  antenna radiation. A good 
agreement  was obtained  between  theory and experiment. 

I. ISTRODUCTION 
Recently Messiaen and Vandenplas [l] studied  the  radiation of 

a  spherical antenna covered by a layer of lossless cold plasma and 
observed that  after  the  antenna radiation suffers cutoff, the an- 
tenna  radiation can be recovered or enhanced n-hen the plasma 
frequency exceeds the ant.enna  frequency.  Chen and Lin [Z] ob- 
served experimentally a similar phenomenon of enhanced radiation 
from a cylindrical antenna covered by  an overdense plasma.  Lin 
and  Chen [SI also invest,igated a  spherical antenna covered by 
a layer of lossy cold plasma and obtained  somewhat different re- 
sults from that of hlessiaen and T‘andenplas. All these st.udies are, 
however, based  on oversimplified models of plasma. 

The present study was motivated  by  this new phenomenon of 
enhanced radiation.  In  the present. study, a more realistic and 
complicated model is used. A spherical antenna is assumed to be 
covered by a finite layer of lossy hot plasma with  an approximate 
plasma sheath esisting beheen  the  antenna surface and  the plasma 
layer. The  antenna  radiation is studied as a  function of plasma 
paramet.ers and  antenna dimensions. It was found that t.he antenna 
radiation suffers the usual cutoff phenomenon, but  it  can be re- 
covered or even great.117 enhanced when the plasma  frequency 
exceeds the  antenna frequency. It. n-as also found t.hat  the electro- 
acoustic wave excited by  the  antenna  in  the plasma  layer  can 
cause some resonances and  may lead to a strong  antenna radiation. 
An experiment was conducted to  confirm t.he t.heoret.ical results. 

work was supported by the NSF udder Giant GK-2952. 
Manuscript received February 2 1970’ revised April 13,  1970. This 

The results obt.ained in this  stttdy are different from t.he work of 
Messiaen and  Tandenplas [l] because the loss and  temperature 
effects are  included in the present  st,udy. The work of Wait [4] 
assumed a similar antenna model, but his antenna was imbedded 
in an infinite antenna so that entirely different results were obtained. 

11. THEORY 

The geometry of the problem is shown  in  Fig. 1. A spherical 
antenna of radius a is covered by a vacuum layer which approxi- 
mates the plasma sheath.  The  outer surface of this vacuum sheath 
is a t  1’ = b. Over the vacuum  sheat.h there is a  spherical layer of 
uniform, lossy, and  hot plasma with a t.hickness of (c - b) .  Beyond 
this plasma  layer is t,he free space. The spherical antenna is 
perfectly conduct,ing except  for a narrow equatorial  gap between 
~ / 3  - el 5 0 5 ~ i 2  + tJ1. Across this  gap  the  ant,enna is driven 
by a constant voltage  generator  with  a  voltage of 1’ and  an angular 
frequency of o. The  total space excluding the  antenna is divided 
int.0 three regions. Region I is the vacuum  sheat.h, Region I1 is 
the lossy hot plasma layer, and t.he rest of the free  space is Region 
111. The  time dependence of exp ( j o t )  is assumed in the analysis. 

A .  Fields in  the VacllunL Sheath-Regia I (a  5 F 5 b )  

The plasma sheath formed on t.he antenna surface is approxi- 
mated  by a  layer of vacuum  sheath. &Iaxwell’s equations in this 
region lead t.o an  equation for the HI field as 

(T’ + fi0’)Hl = 0 (1) 

where po2 = wzpoeo and HI is the magnetic field in Region I. With 
the  rotational  symmetry, (1) can be solved to give 

HI, = F~ P,‘(cos e)[=lnH,+(~:~)(’)(Bor) + R n H n + ( ~ / z ) ( ~ ) ( f i o ~ ) I .  (2)  
1 “  

n- 1 

H,,, Hls, and El6 are zero while El, and EIR can be calculated based 
on (2). 

B. Fields in the  Plasma  Layer-Region. ZZ (b  5 r 5 C )  

Region I1 is a layer of uniform hot plasma n&h an ambient 
electron density of no, an elect.ron thermal velocity of CO, an electron 
plasma frequency of wP,  and  an electron collision frequency of v. 
The basic equat,ions for t,his region are that  for the magnetic field 
Hz and t.he perturbed elect.ron demity m. They  are  as follows: 

(V2 + ke2)Hz = 0 (3) 

where 
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