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Soliton laser: A computational two-cavity model

P. Berg, F. If, P. L. Christiansen, and O. Skovgaard
Laboratory of Applied Mathematical Physics, The Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 7 November 1986)

An improved computational two-cavity model of the soliton laser proposed and designed by
Mollenauer and Stolen [Opt. Lett. 9, 13 (1984)] is obtained through refinements of (i) the laser cavi-
ty model, (ii) the pulse propagation in the fiber cavity, and (iii) the coupling between the two cavities.
As a result of the coupling to the fiber cavity, stable output pulses of temporal width 7.5 psec from
the laser cavity are narrowed by a factor of approximately 10.

I. INTRODUCTION

In 1980, Mollenauer, Stolen, and Gordon! observed pi-
cosecond pulse narrowing of solitons in optical fibers ex-
perimentally. This observation was used in the soliton
laser proposed and designed by Mollenauer and Stolen>3
in 1984. It was demonstrated experimentally that this de-
vice could produce stable pulses of width 210 fsec and
later* of width down to 100 fsec. Compression in a
second, external fiber has further reduced these pulse
widths to less than 50 fsec, and a reduction by at least
another factor of 2 is considered likely in the near future.’
As illustrated in Fig. 1, the soliton laser is a double-cavity
system consisting of a synchronously pumped, mode-
locked color-center laser’ coupled to an optical single-
mode fiber acting as a control cavity.

An analytical theory based on a single-cavity model of
the soliton laser was proposed by Haus and Islam.® Exper-
imental results,* however, indicate that the two-cavity sol-
iton laser cannot be reduced to an equivalent single cavity.

A simple computational model presented by If et al.’
was able to reproduce the essential features of the soliton
laser dynamics. However, only quasistability of the pulses
and a small pulse-narrowing effect was obtained.

The numerical simulation by Blow and Wood® predicts
the expected final two-soliton state. Here the solitons
have different velocities, giving rise to double-peaked out-
put pulses from the system.

In the present work the model used by If et al.” is im-
proved by (i) a more sophisticated model of the color-
center laser by introduction of saturation through a time-
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FIG. 1. Schematic diagram of the soliton laser.

dependent inversion population, (ii) effective separation of
neighboring pulses on the fiber through introduction of
absorbing boundary layers in the numerical scheme, and
(iii) correct description of the coupling between the two
cavities in the soliton-laser system.

The paper is structured as follows. Section II contains
a detailed description of the laser cavity and the numeri-
cal treatment of the cavity modes. In Sec. III pulse prop-
agation in the fiber modeled by a loss-perturbed nonlinear
Schrodinger equation is treated by perturbation theory
and an improved version of the split-step Fourier method.
Section IV contains our numerical results for the com-
bined system, which finally are discussed in Sec. V.

II. COLOR-CENTER LASER

The laser cavity shown in Fig. 1 formed by the mirrors
M, and M, consists of a lasing medium (an F-center
crystal) and a pair of birefringent tuner plates.” The laser
is mode-locked by synchronous pumping through the mir-
ror M from a Nd:YAG laser (where YAG represents yt-
trium aluminum garnet). The pumping frequency wy,,
tuned to match the cavity round trip time 7., locks re-
gions of the large laser bandwidth onto different polariza-
tion directions. The birefringent tuner plates operate as a
bandpass filter restricting the bandwidth to one region
with a single polarization direction. This allows us to use
the scalar version of the Maxwell-Bloch equations'® as the
model equations for the laser cavity:

&, +E=iLp_ &, 2.1a)
260

g"z—(iAﬁ—yl).@A-#M@?f, (2.1b)

QZYH(@o—-@)—i—%(%”.@*—?*.@), (2.1¢)

where the subscript z denotes differentiation with respect
to z, and the dots denote temporal differentiation. Equa-
tion (2.1a) describes the one-way pulse propagation of the
complex electric field envelope & (z,¢) in the cavity. Here
the vacuum light velocity c¢=(ug€q)~!"?, K is the cavity
decay rate, and w,; is the atomic transition frequency. In
Eq. (2.1b), A=w,, —wy is the detuning of the laser from
an appropriate reference carrier frequency w,.

4167 ©1987 The American Physical Society
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The polarization &, which acts as a source for the elec-
tric field, is governed by Eq. (2.1b). The bandwidth y, of
the color-center laser (CCL) is very large compared with
the signal bandwidth.®> Therefore the polarization is
forced to follow the electric field, i.e., 2 ~0 (the rate
equation approximation!!). Since the laser operates at a
frequency near w,;, the detuning A is small compared
with the laser bandwidth y,. Therefore the factor
—(iA+7,) is approximated by —y, in Eq. (2.1b). As a
consequence, dispersion effects are ignored in this model
of the CCL. Finally, Eq. (2.1c) describes the evolution of
the inversion population &. The relaxation to its equili-
brium value &, produced by spontaneous emission, is
described by the longitudinal relaxation constant y ).

Shifting to normalized variables t/T—t, z/cT—z,
E=%/%, and D=9 /% (see Secs. III and 1V for nu-
merical values), we then reduce Egs. (2.1a)—(2.1¢) to

E,+E=(aD—«'E , (2.2a)

D=yj—vi(1+ | E |*/I,)D . (2.2b)

Here, ' =Tk, y|=Ty|. The gain a=Tw, M P /2€fiy,
and the saturation I;=7y lyHﬁz/ M&3 will be used as
model parameters (see Fig. 2). As seen from Eq. (2.2b)
the system will saturate at a certain field intensity through
a speedup of the relaxation of the inversion to its equili-
brium value.

In an earlier model’ of the CCL, the system saturation
was included phenomenologically in the gain parameter as
a'=aexp(— W /W;), with W being the total pulse energy
in the cavity and W its saturation energy.

In the limit of low intensity, D~0in Eq. (2.2b), we ob-
tain

E,+E=(a'—k")E ,
a'=all+ |E |*/I)7".

(2.3a)
(2.3b)

For small energies the o’ used in the laser model in Ref. 7
is obtained by replacing | E | 2/I, by W/W;.

The synchronized pumped CCL is modeled as an ac-
tively mode-locked system!'! by introducing a modulated
cavity decay rate

K'=ko+ Ap {1 —cos[wy(z —1)]} . (2.4

Here, wp =27 /L., where L, is the normalized unfolded
cavity length.

The action of the birefringent tuner plates is to reduce
the signal bandwidth of the CCL. The center frequency is
equal to the center frequency of the CCL, w,, and the
bandwidth Q, <<y,. In the frequency domain we write
the transfer function of the plates as

B 1—qo
1+ [(@—w0) /D, ]

B(w) > +40 » 2.5)

ignoring possible dispersive effects. The parameter g,
the minimum of the transfer function, depends on the ma-
terial and the number of plates.

Equations (2.2a) and (2.2b) with Eq. (2.4) are solved nu-
merically by expanding the electric field in 2N +1 cavity
modes with mode spacing Aw=27/T,

N
E(z,t)> Y E,(t)exp[ —inAw(z —1)] . (2.6)

n=—N

Approximating the field intensity with its spatial aver-
age, I(t)=(|E(z1)]| %), we obtain a system of coupled
ordinary differential equations for the normalized cavity
modes and inversion

E,=(aD ~K0)Ey +By(Ey 11 —2E, +E, ),
D=yj—yj[1+1() /LD .

(2.7a)

(2.7b)
The bandwidth Q. of the effective mode coupling is ac-
complished in a phenomenological way by

—(nAw/Q,)?
Bn:'LAMe (nAw/Q.)°/2 , 2.8)

and the field intensity is
I~3Y__VIE.]|%.

calculated as the sum
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FIG. 2. Stable pulses produced in the laser cavity from spa-
tial noise after 75 cavity round-trip times. Parameters:
Ro=83%, k9=02454, y=0.1227, Q.=1.473, Ay=2,
q0=0.5, Q,=2.454; (a) a=0.4909, I;,=420, (b) a=2.454,
I, =420, (c) @=0.4909, I,=210. With the time normalization
constant 7 =10 psec, these pulses correspond to temporal out-
put pulses from the laser cavity of a full width at half maximum
(FWHM) of 7.5 psec.
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The cavity modes are advanced in time according to
Egs. (2.7a) and (2.7b) by using a forward finite difference
approximation to the time derivatives.!”> This scheme is
convergent and absolutely stable, if the time step Af satis-
fies

At <min[2/(kg—aD),2/(y ||+ ¥ I /I,)] - (2.9)

In Fig. 2 we show the stable pulses, | E(z,75T,) |, pro-
duced in the laser cavity for different value of the gain pa-
rameter a and the saturation parameter I;. In all cases,
stable pulses result from initial spatial noise, after 75-
cavity round-trip times. The temporal output from the
CCL cavity at the mirror M, (reflectivity Ry < 100%),
z =L, can be calculated as

N
E(L,0)=(1—R{)'? 3 E,(t)explinAwt)
n=-—N

according to Eq. (2.6).
III. OPTICAL FIBER

A. Perturbed nonlinear Schrodinger equation

The appropriate evolution equation for optical pulse
propagation within the fiber is the perturbed nonlinear
Schrédinger equation! (PNLS):

iE,+5Es+ |E |*E+iyE=0. 3.1

Let &(z,t)=(z,t)exp[i (kgz —wpt)] be the electric field in
the fiber, where z is the coordinate along the fiber, ¢ is
time , and ¢(z,¢) is a slowly varying envelope function.
The linear propagation constant is expressed by the trun-
cated expansion k(w)=ko + ki(0—o¢) + Tk (@—wp)
ko=k (wg) is the propagation constant at the carrier fre-
quency wg, k; =0k /0w is the reciprocal group velocity
vg_l, and k,=08%k /3w’ =(Ao/w() d,,g, where A is the vac-
uum wavelength at wy and d, = —d(vg_l)/dk is the

group velocity dispersion. The silica single-mode fiber
has minimal loss at Ay=~1.5 um, corresponding to nega-
tive d,,g and anomalous dispersion.® Introducing the nor-
malized variables T2 |k, |z—z, Tt —z/v,)—t, and
T(p/ | ky | )/ %¢(z,t)~E (z,t), where p=5kono/ny, ny is
the Kerr coefficient in the expression ng(w)+ n,| & |?
for the refractive index, and T is a time scaling parame-
ter, we get Eq. (3.1) for the normalized field, E. The coef-
ficient  in the loss term iyE is given by y=T%vy/ | k; |,
where v is the linear absorption along the fiber. Note
that the normalized variable ¢ is delayed with velocity v,
through a Galilei transformation. The arbitrary time
scaling T will be fixed in the following section.

An example of the relations between the dimensionless
quantities and the corresponding physical variables for a
typical fiber is given in Table I. For short fibers of low
loss the term iyE in Eq. (3.1) can be neglected yielding
the nonlinear Schrédinger equations (NLS) for E (z,?).

B. Solutions to the nonlinear Schrodinger equation

Analytical solutions to the NLS are available to us
through the original work by Zakharov and Shabat,'* who

TABLE 1. Typical fiber data.! With these data we have
y=T21.13x10?! sec™ 2, T$1.09%10° m/(sec V)—E,
Tt —z4.83x 1072 sec/m)—t, T2220.4x10~% sec’*/m —z,
with T being the time normalization parameter.

)\.0 no n, dvg Vo
(uwm) (m/V)? [(psec/nm)/km] (dB/km)
1.55 1.45 1.2-102 —16 0.2

showed that NLS possesses soliton solutions. In particu-
lar, Satsuma and Yajima'® have investigated initial-value
problems for the NLS, using the inverse scattering
transform. Initial pulses of the form

E(0,t)=A sech(t), 4>0 (3.2)

produce N discrete eigenvalues in the scattering problem,
N being an integer satisfying | N —A4 | < 5. The eigen-
values are purely imaginary and given by

Er=inx=i(A—k++), k=1,...,N . (3.3

This is called the N-soliton case, and for Egs. (3.1) and
(3.2) with y =0 and 4 =N analytical N-soliton solutions
exist. For noninteger A4 the solution consists of N solitons
and radiation.!> The radiation is “peeled off” the pulse
during the propagation on the fiber. It is important to
note that the N solitons (N 22) are deeply modulated
pulses which are periodic in z except for a constant phase
shift, returning to the same profile given by Eq. (3.2) for
distances equal to multiples of the soliton period!’

Zp= (3.4)

YR

The results also hold for initial pulses of width T, and
amplitude E,

E(0,t)=Eysech(t/T,) , (3.5)

provided that Eq=A /T, owing to the scaling properties
of NLS. For u real, the NLS is invariant under the scal-
ing

s=t/u, E=z/u? e(£s)=uE(z1). (3.6)

Thus the soliton period resulting from initial pulse (3.5)
with EgTo= N 22 is given by

2o=—"-T% . (3.7)
2

Because z, scales with T, a broader pulse requires a
longer distance in the fiber to complete one period, and to
a given fiber length there corresponds a pulse of definite
width which goes through one period between the fiber
ends. In other words, if the periodicity length of the pulse
can be shortened then the pulse is temporally narrowed.
In Fig. 3, the evolution of the two-soliton solution,
E(0,t)=2sech(t), through one period is shown. The

overall phase shift is 7 /4 for the two-soliton solution.
If the pulse differs slightly from the exact two-soliton
solution the “period” is also changed. The term “period”
refers to the soliton part of the solution. With perturbed
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FIG. 3. Propagation of the two-soliton solution on a fiber of
length equal to one soliton period. | E | = | E(z,t)| is shown.

initial condition the solution to NLS is not strictly period-
ic. This we explain by means of perturbation theory: As-
sume that the E =2sech(#) undergoes a small perturba-
tion:

2sech(z)—2(1+€)sech[z/(1+8)] . (3.8)

Using the scalings (3.6) with u=(1+9) we obtain from
Eq. (3.3) the shift in both eigenvalues An;=Amn,
=2(e+6+¢€b). Since the soliton period is related to the
eigenvalues through'®

T
Zo= , (3.9)
ni—n3
the corresponding period in z becomes
(148) ,
O)=2zp————(——, 3.10)
Zol&0) =20 5+ ed) l

where z, is the unperturbed period given by Eq. (3.4).
From Eq. (3.10) we see that for §=0 the period is either
extended or contracted, depending on whether € <O or
€ >0, while for e=0 every change in pulse width extends
the period, since z4(0,8) has minimum for §=0. If the
input pulse on the fiber has a slightly too high amplitude
(and therefore a period which is too short to match the ex-
act two-soliton period) the period may be changed to the
required value of z, simply by decreasing the width of the
pulse by an amount & found by equating zy(€,86) with z,
in Eq. (3.10). Thus

(3.11)

Note that in order to maintain the existence of the two-
soliton solution the values of € and & must satisfy
|e+8+€8| <+. On the other hand, if the initial pulse
has too low amplitude, i.e., € <0, the period cannot be
changed to z,, since this requires 8 < — 1.

In Fig. 4, we compare numerical solutions of NLS ob-
tained for the exact two-soliton and for a perturbed two-
soliton case satisfying Eq. (3.11) as initial conditions.

C. Split-step Fourier method for the perturbed
nonlinear Schriodinger equation

Consider the PNLS (3.1) with boundary-initial condi-
tions
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FIG. 4. Pulse width, FWHM, (a) and maximum amplitude,

AMPL.TOP, (b), along the fiber for initial pulses
E(0,t)=2(1+4¢)sech[t/(14+8)]. (1) &=8=0, (2) e=0.05,
5= —0.2702.
E(z,t)—0, E/(z,t)—>0 ast—>* o, (3.12a)
E(0,t)=E(1) . (3.12b)

In Eq. (3.1), y is assumed real and independent of z. The
equation can be separated into a linear part

iE,+~+E,=0 (3.13)
and a nonlinear part
iE,+ |E|?E+iyE=0. (3.14)

Equations (3.13) and (3.14) can both be solved exactly.

The solution of Eq. (3.13) becomes
F(z,0)=F(0,0)exp( —i+w?z) (3.15)

in _Fourier space. For Eq. (3.14)
(| E|?),=—2y| E |2 with the solution

| E(z,t) | 2= | E(0,t) | 2e =27,

we easily derive

(3.16)
Insertion of the expression (3.16) into (3.14) yields
E,=[i |E(0,t)|%~"*—y]E ,

from which we find the exact solution of Eq. (3.14)
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E(z,t))=E(0,0)exp[i | E(0,1) | 2(1—e ~%%) /2y —yz] .

(3.17)

In our extension of the split-step Fourier method!®!’

the solution to Eq. (3.1) is advanced one space step Az by
(i) obtaining E (Az,t) from E (0,?) by means of (3.17), (ii)
inserting the Fourier transform of E(Az) as F(0,w) in
(3.15), and (iii) transforming the resulting F(Az,0) back
to ¢ space. For numerical solution of the linear equation,
fast Fourier transform (FFT) is used, which requires
periodic boundary conditions. By choosing the time inter-
val Ty sufficiently large, (3.12a) is replaced by
E(z,—Tg/2)=E(z,Tg/2)=0, thus gaining the necessary
periodicity. This method is accurate to second-order in
Az and all orders in At and is unconditionally stable.'®

Clearly, the scheme also holds if ¥ is a function of z. If
we let

y(t)=voisech?[a(t — Ty /2)] +sech?[a(t +T,/2)1} ,
(3.18)

where y, and a are positive constants, smooth losses are
introduced in layers at the boundaries, see Fig. 5. This
choice of ¥ has the effect of absorbing outgoing radia-
tion'® without violating the periodicity requirement of the
Fourier method. The parameters ¥, and a can be chosen
such that scattering from the “absorption walls” is small
over the range of frequencies used in the FFT, see Appen-
dix.

The effect of the absorbing boundary layers is demon-
strated in Fig. 6. For simplicity, an example of a one-
soliton solution with radiation superposed is chosen as ini-
tial condition

E(0,t)=[140.6cos(7t)]sech(z) . (3.19)

In the case of no absorption, Fig. 6(a), the radiation
cannot escape the system and eventually destroys the one-
soliton solution, while, if the y term (3.18) is included, the
radiation is essentially absorbed at the first passage of the
boundary layer, leaving the one-soliton solution undis-
turbed, Fig. 6(b).

By introducing the y loss in our model we avoid in-
teraction between neighboring pulses. Such interaction
does not occur in the physical system because of its long
repetition period compared with the pulse width.

.. T ..
e * 1=
- 0

tE-T1,/2 1=T,/2

FIG. 5. Absorption function y(z) given by Eq. (3.18) intro-
duces lossy boundary layers at the periodic boundaries
t=+Tp /2. Parameters ¥, and a in Eq. (3.18) must be chosen
such that the scattering from the ‘“absorption walls,”
yosech®[a(t F Ty /2)], is small.

T
',’11,]/"'&",",’!/(, ¥
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" v ’ (‘ﬁ“\\\\\\\\\%{\%\m&?&\}%m
“\\““‘0\%“. _ &\\-W .
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3

&2

(P4
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FIG. 6. Evolution of the one-soliton plus radiation solution,
Eq. (3.19), with dynamics given by (a) classical NLS, Eq. (3.1)
with ¥ =0, (b) NLS with absorption, Eqgs. (3.1) and (3.18). Pa-
rameters: Tp=12.8, y0=20, a=1. Resolution A¢=0.1,
Az =0.005.

IV. DOUBLE-CAVITY SYSTEM

As shown in Fig. 1 the soliton laser is a double-cavity
system, consisting of a CCL cavity bounded by the mir-
rors M, (reflectivity R;~100%) and M, (reflectivity
Ry <100%), and a fiber cavity bounded by M, and the
movable mirror M, (reflectivity R, ~100%). The lens L
focuses the pulse launch into the fiber (transmission coef-
ficient T;). The output from the cavity system is through
the beam splitter S (reflectivity Rg < 100%).

In Fig. 7 the pulses propagating into the laser and out
of the laser are denoted Er; and Ep;, respectively. Simi-
larly, pulses into the fiber and out of the fiber are denoted
Err and Egp, respectively. The coupling between the two
cavities is approximated by the equations

Erp =RoEp +(1—R2)'?R,(e"®Ery) , (4.1a)

Erp=(1—R3)'?RgT, Er; +R23R T (e®Erp) . (4.1b)

Fiber
E rrT lErr
M, reflectivity R, L
transm. T,
Eg E
——
Fr 7
— g S

reflectivity R

FIG. 7. Detailed diagram of the coupling section between the
CCL cavity and the fiber cavity. Relations between the electric
fields in the two cavities are given in Eq. (4.1).
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As expressed in Eq. (4.1a) Ep; is a superposition of the
partially reflected pulse from My,RyEf;, and the pulse
from the fiber reflected by the beam splitter S and
transmitted through My, (1—R})!?Rse'®Err. Here, e'®
is an overall phase factor modeling small dynamical ad-
justments by the mirror M, (shown in Fig. 1). As
described in Ref. 4 this adjustment is needed in the experi-
ment in order to ensure that the pulses Er; and Egp are
superimposed in phase. The stability of the device turns
out to depend on this phase adjustment. The same stabili-
ty requirements are observed in our computational model.

In Eq. (4.1b) the pulse propagating into the fiber,
Eqp, is written as a superposition of Ep; transmitted
through M,, reflected at S, and focused by L,
(1—R3)'V?RgT  Eg;, and Egp reflected at S,M,,S and
focused by L,RgRoRsT; e *Erp, where e'? is again the
overall phase factor. The transmission coefficient T, ap-
proximates the focusing, leading to a two-soliton solution
on the fiber with proper width and energy. The narrow
beam coming out of the fiber goes through the lens with
negligible loss. The spot sizes of the laser mode and of
the fiber mode as seen on the mirror M, are not the same.

In Fig. 8 the results from a simulation with a fairly
long fiber are shown. With the time normalization pa-
rameter T =10 psec, chosen so that the laser emits pulses
with realistic widths, the normalized fiber length in this
simulation, /=0.03125, corresponds to a physical fiber
length of ~150 m, see Table I. The CCL cavity emits
stable pulses of temporal full width at half maximum
(FWHM) of 7.5 psec. When the fiber cavity is connected,
initially these broad pulses perform only a small fraction
of a two-soliton oscillation on the fiber, returning with a
much smaller temporal width [see Fig. 8(b)]. This pulse
adds on to the next pulse from the CCL cavity (in phase
due to the factor ¢'4) to form a new pulse in the fiber with
a smaller temporal width than that of the previous pulse.
In Fig. 8(a) the system is seen to stabilize after approxi-
mately 100 cavity round trips (periods). Then the system
emits stable pulses with a temporal width of 3.5 psec [see
Fig. 8(c)]. According to Eq. (3.5) this width corresponds
approximately to a full soliton oscillation on the fiber.

In Fig. 8(c) the propagation of the pulse along the fiber
in the last period of the simulation is shown. The corre-
sponding FWHM is plotted as a function of z in Fig. 8(d),
indicating that the stable operation of the soliton laser is a
configuration where the two-soliton solution performs a
slightly longer period of oscillation than the actual fiber
length. This period of oscillation is shifted, giving rise to
a pulse at exit from the fiber of width slightly smaller
than the width of the input pulse. The interaction with
the pulse from the CCL cavity then compensates for this
discrepancy.

Simulations with shorter fiber lengths, / =80 m and 40
m, are shown in Figs. 9(a) and 9(b), respectively. The
same qualitative behavior as in Fig. 8 is observed. As a
result we obtain pulses of temporal widths (FWHM) ap-
proximately equal to 1.8 and 0.88 psec, respectively.
Here, as elsewhere in the work, the accuracy of the nu-
merical results was checked by doubling the number of
modes (from 256 to 512) in Eq. (2.6) and, correspondingly,
augmenting the space and time resolution used in the nu-
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FIG. 8. Simulation with normalized fiber length /=0.032.
Ro=83%, Rs=65%, T;=100%, k,=0.2454, y{,=0.01473,
Q.=1.473, Ay=2, ¢o=0.5, Q,=2.454, @=0.4909, and
I,=300. (a) The normalized width (FWHM) of the pulses at
output from the soliton laser versus cavity round-trip times
(periods). The pulse width is compressed by the fiber to the
theoretical width (indicated by horizontal line) (FWHM) 0.35
after 120 periods. (b) First propagation period of the pulse
along the fiber. (c) Last propagation period (after 120 periods)
of the pulse along the fiber, showing the typical two-soliton os-
cillation. (d) Normalized FWHM of the pulse versus fiber dis-
tance, after 120 periods.
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FIG. 9. Simulations showing the normalized width (FWHM)
of output pulses versus cavity round-trip times (periods). Hor-
izontal lines are theoretical pulse widths. Parameters, except I,
RS, and T, as in Fig. 8. (a) Fiber length 80 m. I;=750,

Rs=66%, T, =71%. Width of stable output pulses of approx-
imately 1.8 psec. (b) Fiber length 40 m. I;=750, Rs=66%,
T, =100%. Width of stable output pulses of 0.88 psec.

merical schemes.

An attempt to produce pulse narrowings of a factor
larger than 10 by application of even shorter fiber lengths
failed because of unstable operation of the system. How-
ever, we believe that this difficulty could easily be over-
come by including a larger number of cavity modes in the
numerical calculations.

V. DISCUSSION

A genuine two-cavity numerical model of the
Mollenauer-Stolen soliton laser is developed. In contrast
to the earlier model presented by If et al.,’ the present
work represents the coupling between the laser cavity and
the fiber through a mirror with partial reflectivity, as in
the experimental device. The recent dynamical stabiliza-
tion obtained experimentally by Mitschke and
Mollenauer* is mimicked by an overall phase factor in the
coupling equations (4.1). The energy loss in the focusing
lens is simulated by launching a controlled fraction of the
energy into the fiber.

The saturation in the laser is represented through a
time-dependent inversion derived directly from the
Maxwell-Bloch equations. A further improvement of the
synchronized pumped laser model may be obtained by in-
troduction of a time-dependent relaxation inversion,'®
D (t). Such an improvement, however, is not included in
the present work.

Finally, the introduction of absorbing boundary layers
in the nonlinear Schrédinger equation for the fiber enables
us to reduce the pulse spacings, without introducing in-

teraction between adjacent pulses, in comparison with the
experimental device. In this way a substantial reduction
in the number of modes needed for the numerical calcula-
tions is achieved. )

In the simpler model used by If et al.” an asymptotical-
ly stable state of the widths of the output pulses is not
quite obtained after 400 round-trip times, since a slow
phase drift could not be eliminated. By the refinements,
introduced in the present model, pulse stability is ob-
tained. A pulse compression factor of approximately 10
has been achieved (while only a factor 3 was possible in
Ref. 7). However, in the experimental work?* a pulse
compression factor of 75 was demonstrated. We believe
that this level may also be reached in our computational
model, if 5—10 times as many cavity modes are included.
The corresponding increase of the temporal resolution in
the fiber must also be introduced.

ACKNOWLEDGMENTS

The authors are grateful to L. F. Mollenauer for send-
ing copies of his unpublished papers. J. N. Elgin is
thanked for his continued interest in this work. Financial
support from the Danish Council for Scientific and In-
dustrial Research is acknowledged.

APPENDIX

Assume that the solution E(z,z) to Eq. (3.1) only con-
sists of low-amplitude radiation, ¥(z,t) such that the non-
linear term in Eq. (3.1) can be neglected. For simplicity,
we let the absorbing function be centered at t =0. The
equation for i then becomes a linear Schrédinger equa-
tion with a complex potential, i ygsech®(at),

i, + 3Py +ivosech®(at Y=0. (A1)

For t— — « the wave is a superposition of incoming
and reflected waves, while for 1 — « only the transmitted
wave exists:

¢(z’t)=cei(wt—h)+De—i(a)r+kz) for t— — oo ,

W(z,t)

We calculate reflection and transmission coefficients as
R(w)=|D/C|*and T(w)= | A/C |? respectively, with
R 4T =1 because of the loss.

With 9(z,1) = ¢(t)e ~*** we obtain from Eq. (A1)

¢” +a’[S(S + 1)sech®(at) —g°]¢p=0, (A3)

(A2a)

=Ae" =k forts oo . (A2b)

where S(S +1)=i2yy/a?, q =—iw/a, and the frequency
is @=Vv2k. Using suitable variable transformations,?°
Eq. (A3) can be transformed into a hypergeometric dif-
ferential equation. The asymptotic form of the solution
to Eq. (A3) with the representation given by Eq. (A2) be-
comes

Mg+ D0(G)

~
S~ A N T g +S+1)

4 Fg+1DI'(—¢q) o —iot
TS+ D0(—98) ¢

ast——oo ,

(Ada)
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d(t)~Ae'”" ast—oo . (A4b)
As a result
5 cosX(+78)
R=|TI(g—-ST(g+S+1)] 5 ,
u

, sinh* (7w /a)

T=|T(g—S)(g+S+1)] . :
w

where S=(1+i8y¢/a?,"”? §=—1(1+5), and T is the
gamma function.
A numerical calculation of the sum

R+T=-|T(g—sTg+5+D|>
T

X [cos*(+78) +sinh¥ (7w /a)] (A5)

R+T

17072 |

1707*

I 1

0 16 w 32

FIG. 10. Scattering from potential iysech?(at).
given by (AS) vs w. Parameters: y¢=20, a=1.

R4T

versus w is shown in Fig. 10. Since R + T is less than un-
ity (except for =0 and w= o) the parameters y, and «
can be chosen such that (AS5) is minimized over a broad
region of frequencies.
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