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Analytic solution for fluxons in a long Josephson junction with surface losses

S. Sakai* and N. F. Pedersen
Physics Laboratory I, The Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 24 March 1986)

Analytic solutions for a fluxon in a long Josephson junction in the presence of surface losses (8
term) as well as shunt losses (a term) are obtained by assuming a triangular current-phase rela-
tion. This theoretical result provides exact information on fluxon properties (e.g., the line shape,
velocity, etc.), independent of the magnitude of @ and . We find that if B is smaller than a criti-
cal value, the fluxon behavior is similar to that of the f=0 case, but if 8 is larger, quite different
behavior is observed, particularly in the high-velocity region.

There has been considerable interest in the effect of sur-
face losses on fluxons (i.e., solitons in long Josephson junc-
tions). A recent numerical work' on long annular Joseph-
son junctions demonstrated that new features, not expect-
ed from the perturbation theory,? are created by the sur-
face loss: (i) Lorentz contraction is greatly reduced or
even eliminated, (ii) oscillations may appear on the trail-
ing edge of the fluxon, and (iii) for high bias the fluxon
velocity is not asymptotic to the velocity of light.

In this paper we present an analytical method for 2x-
soliton solutions of the traveling-wave type, and derive
many significant effects of the surface losses. The theory
is based on assuming a triangular current-phase relation
and extending a previously published model calculation? to
a third-order system. The advantage of the theory is that
it does not require small perturbing terms. In physical sys-
tems such large damping has been realized by having resis-
tors together with the long Josephson junction.*

Fluxon motion in the long Josephson junction with uni-
form bias current 7 is assumed to be described by

~¢xxt0utf(®) =n—ap, +Porx . §))

Here f(¢) is the current-phase relation and normally
f(¢) =sing is assumed. The term B¢, describes the sur-
face losses, and a¢, describes the shunt losses. The nor-
malizations and a further description of Eq. (1) may be
found in Ref. 2.

Here we are interested in traveling-wave solutions of the
form ¢=¢(£) where £=x —ut. Equation (1) may be
transformed into the ordinary differential equation
(ODE),

—Budeee+ (1 —upee+aug:—f(p)+n=0 . (2)

With f(¢) =sing, Eq. (2) cannot be solved analytically,
not even with =0. To solve Eq. (2) analytically we will
assume a triangular current-phase relation, i.e.,

k(p—2nr), —n/24+2nn=¢<n/2+2nrm ,
—k(p—n—2nn), n/2+2nr=¢ <3n/2+2nx .
3)

In the later numerical examples, we will set kK =2/n to
have unit amplitudes of f(¢). The current-phase relation,
Eq. (3), is shown in Fig. 1 together with a schematic draw-

f(¢)={
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ing of a topological 27 soliton. As seen from the figure, re-
gion I corresponds to the leading edge of the fluxon, region
III to the trailing edge, and region II to the core. Because
of translational symmetry the joining of regions II and III
may be assumed to happen at £ =0. The joining between
regions I and II happens at £ =¢&, as indicated in the fig-
ure.

The method of solution is the following. In each of the
three regions in Eqgs. (2) and (3) is a linear ODE of third
order. The solutions are found by standard methods and
the solutions for the different regions (¢,, ¢, and ¢3) are
joined at £=0 and &=¢&; by requiring ¢, ¢;, and ¢, to be
continuous. Further, boundary conditions at £— = oo are
imposed to give a unique solution ¢(&).

The linear ODE’s [Egs. (2) and (3)] are solved by find-
ing the roots of the characteristic polynomial P4 in re-
gions I and III, and P - in region II where P + are given
by

P+(x)=Bux*— (1 —u?)x*—aux +k =0 . 4)

These roots are obtained by standard methods.’ In order
to provide qualitative insight, it is convenient to define the
functions A 4 (regions I and III) and & — (region II).

2p°+ (1 —u?)(2p*+3apu?)

h+(u)= , (5)
27p%u?
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FIG. 1. (a) The triangular current-phase relation f(¢). (b)
and (c) Fluxon line shapes with @ =0.02, §=0.01, and k =2/x.
(b) u =0.9 giving n=0.079. (c) u =1.0 giving 7=0.569.
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TABLE I. Roots of the characteristic polynomial, P+ =0 for
regions I and III.
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TABLE II. Roots of the characteristic polynomial, P - =0 for
region II.

k<h+
k>h+

KI|<0
q|<0

q2>0
q2=qq.+iq»

q3>0
q3™=qa —iqp

k<h-
k>h-

rn<o
ry=rq—irp

r,<0
ra=rqtiry

r3>0
r3>0

with p =[(1 —u?)2+3apu?1"2. The roots of P4+(x)=0
are called ¢qi, ¢, and g3. Their properties may be seen in
Table I (g, > 0).

Using the boundary condition ¢; — n/k for £&— oo in re-
gion I and ¢3— n/k +2x for £— — oo in region III, we
find

01 =Alexp(q1§)+—z-, region ] ,
6)
¢3=Czexp(qz§)+C3cxp(q3§)+-z-+27r, region I1I ,

where A, C», and Cj; are arbitrary constants.

We note from Eq. (6) and Table I that ¢, is always ex-
ponentially damped in region I; however, if 24+ (u) <k, it
may contain a damped oscillation at the trailing edge (re-
gion I1I), because ¢3 may be expressed as

03 =2¢exp(g. &) [Re(C3)cos(g,&)
—Im(Cy)sin(gp &) +n/k +2x . (7)

For region II the behavior of ¢ is determined by the
roots, ri, r2, and r3 of P—(x) =0 [Eq. (4)]. Those roots
are characterized in Table II (r, <0). The solution in re-
gion II may be written by

02 =Bexp(r &)+ Brexp(r &) + Biexp(ri&) —n/k +rx .
(8)

The constants B, B, and Bj are determined together
with A, C,, C3, n, and &; by joining the solutions and
their first and second derivatives at ¢(0)=3x/2 and
¢(&,) =n/2. After lengthy calculations, we obtain fairly
simple results. We define the following quantities based
on the roots of Eq. (4),

a;=q2q3+rilga+q3) —rd, i=123,
()]
i 1 2] |3
s 1F1 =121, {31, |1
k 3 1 2
The procedure is now the following. With a and B as pa-
rameters and u as the independent variable, the roots q|,

g2, 93, and ry, ra, r3 to Eq. (4) are determined. &, is deter-
mined as a positive root® to

_rirktai(ri+r) —qf

bi (rj-—r,-)(r,-—rk)

3
Za,-b,-cxp(—r,-é;)*O s (10)
i=1
and n(u ) is determined from
3
Y biexp(—ri&) —1
nk i=1
n=-— an

3
Zbiexp(—rifl)-l'l

i=1

Finally, the constants 4, B, B3, B3, C,, and Cj are cal-
culated by

A1=[§—-—£~}exp(—q1§1) , (12)

B = %——]Zl]biexp(—nél), i=123, (13)
3

Ci= Z cikBk’ l_2a3 B (14)
k=1

with
=iz (- 1)
Cik q,(qj—q,) Py ] 3 N 2 . (15)

Figure 2 shows some examples of calculated fluxon line
shapes with k =2/x. Note that the logarithm of the abso-
lute value of ¢ is shown. Both the front and the tail of the
fluxon show an exponential behavior. For very small g
(=107%) a substantial Lorentz contraction is observed
[Fig. 2(a)]l. With a B term present no Lorentz contraction
occurs [Figs. 2(b) and 2(c)]. For large velocity (high n)
and B losses present [Fig. 2(c)], the spatially damped oscil-
lation on the trailing edge [Eq. (7)] is clearly seen. The
corresponding behavior of the phase is shown in Fig. 1(c).
These qualitative features were also found in the numeri-
cal simulations with a sinusoidal current-phase relation in
Ref. 1.

From Egs. (10) and (11) the n vs u relations are ob-
tained. Figure 3 shows the n vs u curves for a=0.1 and

2 T T T 1
T ~
leading
(c) edge
0 r -
— trailing., (Ab)
N -1 9 -1
s
— \
=4
o T2 [
[}
— (a)
-3 F .
-4 .
-5 1 I Il A 1
-6 -4 -2 0 2 4

FIG. 2. Fluxon line shapes with k =2/x and a=0.02. (a)
B=0.000001, u =0.999 giving 7=0.478; (b) B=0.01, u =0.9
giving n=0.079; and (c) $=0.01, u =1.0 giving n=0.569.
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FIG. 3. Velocity vs bias curves with kK =2/x and ¢ =0.1. g=
(a) 1075, (b) 0.00028, (c) 0.002, (d) 0.01, (e) 0.1, and (f) 1.0.

various values of B. The inset of the figure shows the en-
largement around u =1.

The functions & + [Eq. (5)] are useful to estimate the
qualitative behavior of fluxons. Figure 4 shows examples
for two sets of damping parameters. At ¥ =1 we have

) 3 12
he=h_=—_|21 =p,.
+ 3\/§[ﬂ] 0

Depending on the magnitude of h/k, two cases occur.

(a) For B=4a’/27k? (k =h,) we find a similar qualita-
tive behavior as for the f=0 case>’ such as the following:
(1) no oscillations appear, because q1, g2, and g3 are al-
ways real numbers; (2) at u =u,; (< 1), Nmax goes to 1,
where Npax is the maximum of 7, and u.; is the root of
h—(u)=k. This second feature may be understood from
the following: If h—(u)— k, then r,— r; and |b,| and
|b;,| — o from Eq. (9), which lead to n— 1 from Eq.
(11). Here k =2/r is used again. For u, <u=1, we
have no solutions because actual calculations show that
there are no roots of Eq. (10). The inset of Fig. 3 shows
that, as B increases from 0 to 403/27k?, u.; moves® from
1/ +a?/4k») 2 to 1.

(b) For B> 4a*/27k?* (k > ho) we find changes in the
qualitative behavior such as the following: (1) for u., <u,

(16)
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FIG. 4. h+ vs u relation, where u,; is the root of A —(u) =k
and u., is the root of h+(u) =k. If B=4a/27k? at u =u.,
reaches Nmax=1. If B> 4a%/27k2, at u > u., oscillations appear
on the trailing edge of fluxon line shapes.

oscillations appear on the trailing edge as shown in Figs. 1
and 2, where u,, is the root of h+(x) =k; (2) when u ap-
proaches 1, n does not reach 1. The numerical work' as-
suming the sinusoidal current-phase relation in which a
and B always satisfied B> 4a*/27k?, showed the same
features.

Under the oscillation conditions, our analytical method
can be applied up to the states where the maximum peak
of the oscillation just reaches 52/2. The dashed curve in
the inset of Fig. 3 represents this limit. Note that the
curve u =1 is not related to this limit. For small g (but
B> 4a’/27k?), this limit velocity is very close to 1 but less
than 1. As B increases, it exceeds 1.8 The stability prob-
lem for this region will be treated in a future publication.’
We note here, however, that we found the solution at
a=0.1, B=1.0, and © =1.015 in Fig. 3 stable by direct
computer simulation.

We have investigated fluxon propagation in a long
Josephson junction in the presence of surface losses. By
assuming a triangular current-phase relation it was possi-
ble to obtain an analtyical solution. The behavior of the
solutions to this model is classified into the following two:
If B is smaller than a constant times o, the qualitative
behavior is similar to the 8 =0 case, but if f is larger, quite
different features from the g=0 case (e.g., damped oscil-
lations of the trailing edge of a fluxon) appear.
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sonnel in Physics Laboratory I, Technical University of
Denmark, and for the support of the Science and Technol-
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