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Perturbation treatment of boundary conditions for fluxon motion in long Josephson junctions

O. H. Olsen,* N. F. Pedersen, M. R. Samuelsen, H. Svensmark, and D. Welner
Physics Laboratory I, The Technical University of Denmark, DK-2800 Lyngby, Denmark
(Received 10 June 1985)

The sine-Gordon equation governing the motion of fluxons in the long Josephson junction is in-
vestigated by transforming it into a relativistic-particle equation of motion and using a perturbation-
al approach. The effects of a finite junction length, an external magnetic field, as well as the effects
of fluxon-antifluxon collisions are included in the calculations. All theoretical results are compared
to numerical simulations in order to investigate the validity of the approach. Good agreement is

found in most cases.

I. INTRODUCTION

Recently there has been an increased interest in soliton
propagation in various physical systems. One of the sys-
tems where soliton propagation is most accessible for ex-
perimental measurements is the long Josephson junction,
as is well described in the recent book by Barone and Pa-
terno.! Further reviews of the topic have been given in
Refs. 2 and 3. In the Josephson junction the physical
manifestation of a soliton is a fluxon, i.e., a quantum of
magnetic flux ®=h/2e. The simplest and most direct
way of measuring moving fluxons in the long Josephson
junction is to measure the so-called zero-field steps in the
dc IV curve. The first zero-field step (ZFS) is explained
as a resonant motion of a single fluxon along the junc-
tion.* Higher-order steps are numbered according to the
total number of fluxons and antifluxons. This motion is,
in general, governed by a perturbed sine-Gordon® equation
subject to boundary conditions determined by such factors
as the geometry, the current distribution,® the loading, and
the external magnetic field.” If the junction is sufficiently
long the size of the fluxon can be neglected. The dynam-
ics of the fluxon is then governed by a relativistic particle
equation of motion that may be derived from the sine-
Gordon equation. In that case the driving forces are
determined by the current.? The boundary conditions af-
fect the fluxon’s particle motion in three ways.” Primari-
ly, the reflections at the ends determine the fluxon fre-
quency and therefore (through the Josephson frequency-
to-voltage relation) the voltage. Secondly, this voltage is
modified by reflection losses and energy inputs and out-
puts due to applied magnetic fields. Thirdly, a phase shift
due to the mutual attraction of a fluxon and a (virtual) an-
tifluxon gives a further correction to the voltage.

It is the purpose of this paper to derive closed analytical
expressions (based on a perturbation treatment) for the
first ZFS with different current injections, and to compare
these results with corresponding full numerical simula-
tions of the basic perturbed sine-Gordon equation. We
also treat the case of externally applied magnetic fields
and compare those results to a numerical solution of an
equation such as the relativistic particle equation of
motion. For both types of comparison, excellent agree-
ment is achieved.
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This paper is organized in the following manner: Sec.
II describes the model and the basic equations. In Sec. III
perturbational methods are applied to those equations.
Section IV and subsections discuss the various geometries
and finally Sec. V contains the conclusion.

II. THE MODEL

The dynamics of a long Josephson tunnel junction is as-
sumed to be governed by a perturbed sine-Gordon equa-
tion®

bxx —Pu =sing +ad, +7n(x) , (1

where ¢ is the phase difference between the two supercon-
ducting films. The spatial variable is measured in units of
the Josephson penetration depth A;=(#%/2edpo/)'/?, and
the time in units of the reciprocal plasma frequency wg ',
where wo=(2eJ /#C)'/2. Here, J is the Josephson current
density, d is the magnetic thickness of the barrier, and C
is the capacitance per unit area. The loss parameter a is
defined through the relation a =G (#/2eJC)'/?, where G
is the shunt conductance per unit area. 7(x) is the nor-
malized density of the current distribution along the
Josephson junction, i.e., 7(x)=1(x)/WJ, where the width
W satisfies the relation W <«<A;. 7(x) depends on the
geometry and the details of the bias current injected into
the junction.

With an applied magnetic field H, perpendicular to the
length of the junction and parallel to the plane of the bar-
rier and/or with a current injection through the ends of
the junction, the boundary conditions for the phase differ-
ence ¢ at the ends (x = +//2) are'®

¥ %,t =K1, =Kt Kex - (2)

t¢x

k is the normalized current input through the ends and
Kex: is the normalized magnetic field k. ,=H,/JA;. [ is
the normalized length of the junction (/=L /A;). Ac-
cordingly, the total current I through the junction is given
by

172
1=3Wh, 2+ [ aoiax |=swLn, . 3)
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In this equation the parameter 7; is the normalized total
current.

The problem considered here can be reformulated be-
cause part of the boundary condition Eq. (2), can be
transformed into 8-function singularities in 7(x) at the
ends (or vice versa).!"!? For instance, Eq. (2) could be re-
placed by

/

Ox i;’t =0 4)
if n(x) in Eq. (1) is replaced by 1'(x) given by
7' (x)=7(x)+2Kkd x+é +2K,8 |x —%
=7(x) +2(K £ Key )0 xi% (5)

1 and 7’ differ only by the singularities at the ends of the
junction.

III. PERTURBATION APPROACH

The relativistic equation of motion for the fluxon—
which is a 27 kink in the phase difference ¢—is most
easily derived from the soliton momentum p (Refs. 8 and
13),

p=—1 [ bxtdx, ©®)
which for the pure sine-Gordon equation is given by’
p=uy(u), (7

where u is the normalized velocity and
y(u)=(1—u?)"1/2, The standard normalizations used
here may be found in Refs. 2, 3, and 5. By differentiating
Eq. (6) with respect to time and using Eq. (1) one obtains
the equation of motion for a +27 kink,

dp _ ud
o apt 4 n(x) . (8)
Equation (8) is expected to be valid if the spatial variation
of 7(x) is negligible over the width of the 27 kink (~A,).
The approximation then consists of setting p equal to the
pure sine-Gordon value in Eq. (7). Equation (8) is the rel-
ativistic equation of motion for a particle with the current
acting as the force.

The boundary conditions are treated conveniently by
considering the energy H,

H=1 [ (161 + 36} +(1—cosd)ldx , 9)
which for the pure sine-Gordon equation is

H=y(u). (10)

Owing to the boundary condition, Eq. (2), an energy in-
crease AH, is obtained when a 27 kink at x =[//2 is re-
flected as a —2m kink (and by symmetry when a —27
kink at x = —//2 is reflected as a 27 kink). AH is given
bylo
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FIG. 1. Function f(u) from Eq. (12) determined numerical-
ly.

l T, _
AHI i? =?(K+K¢xt)- (11)

Furthermore due to intrinsic losses in the collision process
itself, there will be an additional (negative) energy input
per reflection, AH,, given by”>!!

AH2=—1Z—‘1f(u). (12)

The function f(u) is shown in Fig. 1. This latter energy
contribution may formally be included in Eq. (11) by re-
placing k with k'=«x—maf(u)/2. Since u is normally
close to 1 we will use f(u)=1 in the remainder of this
work.

The last effect of the boundary is the phase shift due to
fluxon-antifluxon attraction.”!” This phase shift may be
accounted for mathematically by decreasing the normal-
ized length of the junction with an amount 8, given by

8=—2(1—u®)"21nu . (13)

Thus, to include all boundary corrections, one first calcu-
lates an average velocity u;, from Eqgs. (8) and (7) by us-
ing the energy inputs, Egs. (11) and (12), at the ends. Sub-
sequently, the phase shift corrected average velocity u,, is
obtained from

—1

1__§ ) (14)

/

'
Uagy=U,y

where 8 is given by Eq. (13) with u =u,,.

IV. FIRST ZERO-FIELD STEP

From the perturbation theory developed in the preced-
ing section we now calculate the first zero-field step for
different current injections and with an applied magnetic
field. Common for all of the cases treated is that 7(x) is a
constant (=7). The momentum of the fluxon, p, then re-
laxes exponentially towards the power-balance value
p=mn/4a.
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A. In-line junction

In this case, all of the current is fed through the ends of
the junction [7(x)=0] making an exact solution with the
perturbatlon approach possible. The only change from a
previous treatment of this problem!° is to include the re-
flection losses to find uj, [see Eqs. (11) and (12)]. u,, is
determined by

ismh al
ra T 2
K—Tf(u)-_—' 2 172 (15)
tanh
2u,,
—1

al
nh _
ta )

Equation (15) is only a translation of waf(u)/2 of the re-
sults of Ref. 10 along the « axis (the current axis). The
phase shift corrected average velocity u,, is then found
from E. (14). If the fluxon velocities in the two ends
differ too much Eq. (13) should be replaced by’

5= —(1—u))"An(u)—(1—u3)"n(u,) , (16)

where u, and u, are the velocities in the two ends (or

equivalently before and after the reflection). They are
determined by
u;,=tanh aoi:%l- ) an
where a is found from
al al
tanh {@g+— |=tanh |— /t nh (18)
2 2 U,

In Fig. 2 we show the result of the perturbation calcula-
tion for the current x versus the voltage u;, with a=0.1

0.2 /
/
7
S _
e
e
0 L 1 1

UA !

FIG. 2. IV characteristic of an in-line junction with a=0.1
and ! =10. (a) Equation (15) with f(%)=0. (b) Includes the re-
flection loss [Eq. (15)] and (c) includes the reflection loss and the
phase shift, Eqs. (16) and (14). Circles are full numerical re-
sults. The dashed curve shows the overlap case without reflec-
tion loss [Eq. (25)].

and /=10. The two corrections [Egs. (15) and (14)] are
shown explicitly. For comparison the result of a full nu-
merical solution of Egs. (1) and (2) is also shown. Except
for the lowest current values the agreement between the
perturbation calculation and the full numerical simulation
is excellent. With an externally applied magnetic field we
may also solve the problem analytically for the first ZFS.
In that case the starting point is the analytical solution,
Eq. (28) of Ref. 10, without reflection loss and phase
shift; then the translation k—k'=k—maf(u)/2 (reflec-
tion loss) is made and finally Eqgs. (14) and (15) are used
(phase shift correction). Since the analytical expression is
rather large, and since no numerical simulations exist for
comparison, we do not present the result here.

B. Homogeneous overlap

In this case all of the current is uniformly distributed
and 7(x) is constant. The reflection loss has the same ef-
fect as a negative current input through the ends as can be
seen from Egs. (11) and (12). Thus, we can simultaneous-
ly treat the reflection loss and some in-line contribution to
the current. However, it must be remembered that the
negative contribution from the reflection loss does not
contribute to the current.

The perturbation problem considered is equivalent to a
relativistic particle moving with damping in a periodic
force field with the spatial period / (with magnetic field
the period is 2/). The periodic force is given from Eq. (8)
with the periodic continuation of Eq. (5). [The « in Eq.
(5) should be substituted with «’' to include the reflection
losses.]

Below we will show that for a given amount of work
per period the average velocity u;,, will be maximum if
7(x) is constant, Kk =k.;=0 and the reflection losses are
neglected. Hence, all perturbations will lower the average
velocity. We note from Egs. (7) and (10) that

%:Z—i’ . (19)

When the fluxon motion becomes stationary (periodic),
AH per period is zero. Including the singularities at the
ends we may obtain from Eqs. (8) and (19) the general ex-
pression

172 172
_ni T
[opax=[, de=ql—=pl. (0
[with an external magnetic field the spatial period is dou-
bled and [ should be replaced by 2/ everywhere in Eq. (20)
and in what follows]. The temporal period is

_ I 7 odx
T= u;v_- iy (21)

If we now assume a constant 7'(x) =7 and make a change
in 17'(x) by an amount A7n(x), such that An(x) adds no ex-
tra work, i.e.,

12
f mAn(x)dx =0 (22)

then Eq. (21) can be written as follows:
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ret
uBV
2 11 9 |1 1 3% |1 2
= = |= = |= d
“J-2lu 9 |u +2 dp? ‘u ]( )’ |dx
I 13 |1 172 2
RET :]f_m(Ap)dx, (23)

since from Eq. (22) f Apdx is zero. Because p =uy(u)
we have

62
ap?

showing that any change of 7'(x)=7 fulfilling Eq. (22)
yields an increase in T (decrease in u;,) which is quadra-
tic in the change in %’(x). This proves the statement
made in the beginning of this section that the time period,
T, is minimum in the absence of perturbations. Thus, the
velocity u determined from

1

_ Q4uh1—u?)
u - 3

u

>0, ifu>0 (24)

- =7 25

p=uy(u) . (25)

is the maximum velocity obtainable from any current dis-
tribution 7’(x) for which

172
-;— f_m'q'(x)dx =7 (26)

and this maximum is obtained only if 7’(x) is constant
and thus equal to 7.

On the basis of the considerations above it is easy to
derive analytically the IV curve of the homogeneous over-
lap junction taking the reflection loss into account. This
was done in Ref. 9 and will not be repeated here.

C. Overlap with some in-line character
and magnetic field

The technique used in Sec. IV B to show that a con-
stant bias yield the largest average velocity for a given
average “force” [Egs. (23) and (24)] will now be used to
derive perturbation expressions for u;, in the most gen-
eral case with some in-line current feed, reflection losses,
and an external magnetic field.

The problem is now reduced to determining Ap as a
function of x in the stationary case with energy inputs,
Egs. (11) and (12), at the singularities. The time period T
is then calculated from Eq. (23). From Eq. (8) it follows
that the momentum p relaxes exponentially towards the
equilibrium value 77 /4a; however, with the results of the
preceding section in mind the deviation Ap should be
measured relative to the average momentum py=my/4a,
where 1) is defined by

2%

770='r]1-—1f*f(u), nNr=n+ i (27)

The time variable in the solution Ap(¢) is eliminated by
setting ¢ =x /uq, where u, and p, are related through Eq.
(25).

The result of this rather lengthy calculation is

1 _._1_+l(2+“‘2’)(1_“‘2’)2
up, 4o 2 uy
ey | al I
ext a a
h
X 2(11 ZuOtan 2“0
N !
TK a a
-— ———coth [— | —1 , 28
+ 2al 2u ° 2u, ] 28)
with
x'=x—f’—2‘if(u) ) (29)

The first term in Eq. (28) is the same as the magnetic
tuning term in Eq. (19) of Ref. 10. The second term in
Eq. (28) is almost the same as Eq. (14) of Ref. 9. The
difference—apart from the fact that Eq. (28) is more
general—is that in Ref. 9 the expansion was carried out
around 717; where we here use 7o. The latter gives better
results in a comparison with numerical solutions.

In Fig. 3 the result of the perturbation calculation Eq.
(28) is shown together with a numerical solution of the
equation of motion for k.,;=0. Reflection losses are as-
sumed absent [f(u)=0] but an in-line current com-
ponent, described by the parameter y, is taken into ac-
count. a=0.1 and / =10. We show the average velocity
u,,, with the average force 7, as a parameter versus y.
The quantity p is the fraction of the total current which is
fed homogeneously into the junction.®i.e.,

————t —_—————

av

05

FIG. 3. Dashed curve is the average velocity u,, from Eq.
(28) vs y, with a=0.1, =10, f(4)=0 (no reflection loss) and
Ke=0. y =nl/2(x'+7l) is the fraction of the current which is
spatially uniform. Thus, y =0 correspond to the in-line case
and y =1 to the overlap case. The solid curve is a numerical
solution of the same problem. The parameter is the total bias

Mo
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S — (30)
2(«"+nl)

Consequently (1—y) is the fraction of the total current in
the spikes at the ends. The dotted curves in Fig. 3 are the
results of the perturbation calculation and the full curve is
obtained from a numerical solution. We note the good
agreement especially for larger currents 7o. Also we note
that u,, is rather insensitive to the way in which the
current is fed into the junction. The inclusion of reflec-
tion losses can be seen also from Fig. 3, because it is
equivalent to a negative in-line current contribution
(y >1). For instance, the result for the homogeneous
overlap junction with reflection losses is obtained from
Fig. 3 by making the following changes [see Eq. (27) with
flu)=1]:

y

Ta
Y Ino
and
m=no+1’7°i . (32)

The y values corresponding to this are shown by the ar-
rows in Fig. 3. The numerical part of the solution (solid
curve) also shows the annihilation of the fluxons. (ug,
goes to zero abruptly in the right side of the diagram.)
The effect of a magnetic field is demonstrated in Fig. 4.
This figure shows for ¢=0.1 and / =10 both the pertur-
bation calculation and the numerical solution for the

1
Yav

03

0.8 P

0.7
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0.3

0,2

0.1

ext

FIG. 4. Overlap junction: The dashed curve is the average
velocity u,, from Eq. (28) vs ke with @=0.1, [ =10, f(u)=0
(no reflection losses), and k=0. The solid curve is a numerical
solution of the same problem. The parameter is the total bias
7o-

-~

03 P

02~

01

FIG. 5. IV characteristic of a overlap junction with a=0.1
and /=10. (a) is Eq. (25), (b) includes the reflection loss, Egs.
(27), (28), and (29) with f(u)=1. (c) includes reflection loss
[f(u)=1] and phase shift Eq. (14). (d) includes velocity-
dependent reflection loss and phase shift. Circles are full nu-
merical solutions of Eq. (1).

homogeneous overlap case and external magnetic field.
k=0 and f(u)=0 (no reflection losses). Again good
agreement is observed and the insensitivity of u,, to the
actual shape of the average force is noted. The termina-
tions corresponding to fluxon annihilation are observed as
in Fig. 3.

Common to Figs. 3 and 4 is the insensitivity of u, to
the shape of the force. Thus, the main effect of the reflec-
tion loss is the translation along the current axis [Eqgs. (27)
and (29)]. The second-order correction may be found
from Figs. 3 and 4 or calculated directly from Eq. (28).

Eventually when u,, has been determined, Eqs. (14)
and (13) are used to include the phase shift correction. In
Fig. 5 we show the result of this procedure for a homo-
geneous overlap junction with reflection losses together
with the result of a full numerical solution of Egs. (1) and
(2). The agreement is seen to be good.

V. SUMMARY AND CONCLUSION

It was demonstrated in this paper that the use of the
perturbation approach is feasible for a number of prob-
lems relating to soliton propagation on the Josephson
transmission line. Thus, the finite length, different
geometries, collisions, and magnetic fields could be taken
into account, all at the same time. The dynamics could be
understood from a simple model of a relativistic particle.
However, there are still a number of interesting unsolved
problems for which the perturbation theory may give the
answers. Some of the unsolved problems that deserve at-
tention are (i) qualitative behavior at boundary conditions
with ¢,-40, (ii) a calculation of the height of zero-field
steps, (iii) bunched fluxon propagation, (iv) the effect of
an applied microwave field, and (v) complicated behavior
in a large magnetic field. We hope to deal with some of
those problems in a future publication.
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