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Soliton annihilation in the perturbed sine-Gordon system
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Fluxon-antifluxon annihilation in the perturbed sine-Gordon equation with loss and driving terms is in-
vestigated. For the infinite line we find a simple analytic expression for the threshold driving term corre-
sponding to annihilation. With the application of the results to a Josephson junction of finite length an ex-
pression for the current voltage characteristic of a zero-field step is derived. The analytical results are in
good agreement with numerical simulations. The method is extendable to other systems.

An important problem in soliton dynamics is the soliton-
antisoliton collision process. For the lossless sine-Gordon
system, the problem is reduced to a calculation of the
resulting phase shift, which may be done analytically. For
the sine-Gordon system with loss and driving terms, the
problem is more involved and requires, in addition, a calcu-
lation of the energy loss during the collision. Here, only
numerical methods are available. In the present paper we
have treated the latter question using perturbational
methods and derived a simple analytical expression for the
energy loss during the. collision. This enables us to deter-
mine the threshold driving term below which a soliton and
an antisoliton annihilate each other on the infinite line. The
results are used to study soliton dynamics on a line of finite
length. Here, the average velocity of a single fluxon is cal-
culated. This is directly applicable to the current voltage
characteristic of a zero-field step in a Josephson junction.
The results presented here are general in the sense that they
are applicable to other systems described by the nonintegr-
able sine-Gordon equation. Other perturbations than col-
lisions may also be treated, and other systems than the
sine-Gordon system may be treated as long as the soliton-
antisoliton solution in the lossless case is known.

The system under investigation is the perturbed sine-
Gordon system with loss and driving (bias) terms

— bt dptad, +sing=mn . 0y

This may describe, for example, a Josephson junction, a
chain of coupled pendula, or the motion of a domain wall in

a ferromagnetic crystal. Previous analysis! show that the -

simplest nontrivial solution to Eq. (1) is a sine-Gordon soli-
ton

o =4tan"lexp(¢) +sin~ln, é=y(u)(x—ur) ,

where y(u)=(1—u?)"Y2 is the Lorenz factor, and u is
power balance velocity, u.,, determined by

U= [1+ (4a/7m)?]~V2 | )

For the unperturbed case (a=n=0) another solution is the
soliton-antisoliton solution given by

_sinhT_

—4tan-!
¢ tan u coshX

3

where T=uy(u)tand X=vy(u)x. An investigation of Eq.
(3) shows that even in the lossless case, a soliton colliding
- with an antisoliton will experience a phase shift 8 (spatial

30

advance) given by
5=—-2(1—u)V2ny ; 4)

however, no annihilation takes place.

With loss and driving terms included, we use perturba-
tional methods!2 to calculate the time rate of change of the
energy H as

4H _
dt

Here, the first term represents the energy delivered to the
infinite line and the second term the energy dissipated. As-
suming the soliton-antisoliton solution, Eq. (3), the integral
may be evaluated. After some rather lengthy calculations
the result is

2
daH _ . coshT_16ay(u)[coshT] [1+ 2Z

_: (nd,—adp})dx . )

dt 7 coshZ coshZ sinh2Z]' ©

where, for convenience, the variable Z, defined by
sinhZ = (sinh T')/u, has been introduced. Thus, the change
in energy during time 2¢ may be written

dH

_(?]| 47 coshT 27
J"Z[y(u)n 16Ow(u)[coshZ][l_f_sinh2Z”dZ ’

)]

In the limit t— oo, the soliton-antisoliton solution, Eq. (5),
tends to single soliton and antisoliton solutions, the velocity
of which is given by the power balance velocity u, of Eq.
(2). Inserting u, in Eq. (7) removes the divergence of the
integral as ¢ goes to infinity. The result for the energy dissi-
pated during the collision is then

AH=16a [~ _coshT  (coshT)2Z ‘ ‘
. [“” coshZ ~ GoshZ)sinnzz| % = ®
For u =1 one obtains

AH =47 . )

For u <1, the integral cannot readily be evaluated by
analytical methods. A numerical investigation shows that
the right-hand side of Eq. (9) should be multiplied by a
function f(u), which decreases smoothly from 2 at u=0 to
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1 at u=1. A linear expansion of Eq. (8) around u=1 is

possible and gives a good approximation down to u =0.5.

The result is
AH=4n%af(u) =4m’a

1+ a-w (10)
aw

So far we have considered a soliton and an antisoliton on an
infinite line. This problem is mathematically equivalent to
having a single soliton on a semi-infinite line colliding with
a boundary condition ¢,=0 at x=0. In any case, the
threshold driving term, my,, corresponding to annihilation
may be calculated by expressing that the incident soliton en-
ergy,2 E;=8y(u,,) is equal to the energy loss [one-half of
Eq. (9) for a single soliton] plus the soliton rest energy, i.e.,

8y (1) =2m2a+8y(0) . 11

With the use of Eq. (2) for u., the surprisingly simple ap-
proximate result (valid for small velocities) is

e = Qa)¥? . (12)

Figure 1 shows a comparison of Eq. (12) with numerical
simulation (both our own and those of Ref. 1). The agree-
ment, especially for a < 0.1, is excellent. A further ques-
tion is to what extent Eq. (12) is applicable to a line of fin-
ite length. Figure 1 also shows numerical results for /=20
(Ref. 3) and new results for /=10. We observe that ny, is
increased typically for a/ < 1, but that Eq. (12) is applicable
when a/ > 1. This is reasonable, since the condition a/ > 1
ensures that the soliton being slowed down from a collision
has obtained the power balance velocity again before the
new collision.

The dynamics of a single soliton moving on a line of fin-
ite length / may be treated using the methods described in
Ref. 2 by noting that the energy loss at each boundary is
27,

The equation of motion for the soliton momentum,!?
P=8uy(u), is

dP

—Z=—aP+2*rr~q . 13)

o1}

001}

FIG. 1. Threshold annihilation curves. Circles: numerical simu-
lation for the infinite line, full curve, theory, Eq. (12). Squares and
triangles: numerical simulation for /=10 and /=20 (from Ref. 3).
Dashed and dash-dotted curves are smooth curves through the data
points.

The soliton trajectories are qualitatively shown in the in-
set of Fig. 2. Adjusting the methods of Ref. 2 to those tra-
jectories, and using AEy;=AE4 = —2m2a instead of 4wk,
we find, after some trivial but rather lengthy calculations,
that the average velocity u,, is given by

1 _ 1 ()= 1
Uy Uoo 13 2[]A(1+A2)
MY i al coth-2L —2:+34° 14)
812/ 2u, 2u, [A(1+4)]2]

where A =mn/4a and n > (2a)¥2,

Note that Eq. (14) gives the average velocity calculated
on the basis of the energy loss alone. The true average
velocity, u,,, must be corrected with the ‘‘structural’’ phase
shift from Eq. (4). Introducing the parameter 4 from Eq.
(14) the result is

Uy =gy {1 —In(1+ A=)/ [(1+ 4DV} T . a15)

A simple improvement of Egs. (14) and (15) may be done
by retaining the velocity-dependent reflection loss [f(u)
from Eq. (10)]. The factor f(u,) from Eq. (10) will then
appear as a factor to the expansion parameter* 72/2/ in Eq.
(14). Figure 2 shows a typical example («=0.1,/=10) of
the importance of the various contributions discussed
above. It is noted that with phase-shift- and velocity-
dependent reflection loss included [curve. (c)], the agree-
ment with the numerical simulation (dots) is excellent. The
increase in the average velocity due to the phase shift is im-
portant, and the velocity dependence of the reflection loss
should be included for small values of n. A fine structure
in the numerical simulation visible in Fig. 2 for low values
of m cannot be accounted for by the present theory.

There exists a somewhat qualitative and much simpler
way to derive Eq. (14). According to Eq. (13), the power
delivered to a line of length /is 27rml For the purpose of
calculating the average velocity, this power is reduced by the

02

01

FIG. 2. Average soliton velocity, «=0.1, /=10. Curve (a) u,
curve (b) Eq. (15), curve (c) Eq. (15) with velocity-dependent
damping from Eq. (10). Curve (d), curve (b) neglecting the phase
shift. Dots are a full numerical simulation. The arrows correspond
to nyp = 2a)¥2.
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loss in one end of the line which is 272« from Eq. (9).
Hence, an effective driving term, m’, may be defined by
27l =2wml—2n%a, ie., n'=m—ma/l It may be shown’
that changing the spatial distribution of the driving term
gives rise to a velocity change which is only of second order
in « as long as the total power 27! is not changed. Hence,
the average velocity may be obtained by simply substituting
n'in Eq. (2), i.e.,

4 21-1/2
{24
—————”(n_mm” . (16)

If desirable the velocity-dependent loss [Eq. (10)] may be
included in ' and Eq. (16). It is readily verified that a
second-order expansion of Eq. (16) in the quantity m%/2/
gives a result identical to Eq. (14) except for the factor
(al/2u,) coth(al/2u,,) in the second-order term. (This
factor is of order unity, if a/is small.)

1+

4 _
Ugy =

Summarizing the results discussed here we may, as an ex-
ample, give a simple analytic expression for the zero-field
step in a Josephson junction of finite length I This is
directly applicable for comparison with experiments. Using
Egs. (15) and (16), the result for the (normalized) voltage
is

po2m, 2w (1-In(1+ 472/ + 42!
] I [1+ (4 —w¥41)-2]2 , .
A=mn/4a, 1> Q2a)¥? |

The results obtained here are of wider interest. First, the
methods and the relatively simple result of Eq. (14) may be
generalized to a nonuniform driving term, n(x). Secondly,
the method is applicable to other nonlinear systems close to
a system where a soliton-antisoliton solution is known.
Thirdly, in addition to the Josephson junction, the results
may—possibly with small modifications—be applied to any
lossy sine-Gordon system of finite size.
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