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spectra illustrate clearly the simple “quasiatomic” and
“quasifree electron” models taught at the start of under-
graduate solid state lectures.
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A wave tank experiment (first described by the nineteenth-century engineer and naval architect
John Scott Russell) relates a linear eigenvalue problem from elementary quantum mechanics to a
striking feature of modern nonlinear wave theory: multiple generation of solitons. The tank

experiment is intended for lecture demonstrations.

I. INTRODUCTION

The term “soliton” was coined by Zabusky and Kruskal*
in 1965 in connection with computer studies of solitary
wave solutions for nonlinear partial differential equations.
They showed that certain waves would not destroy them-
selves upon collision with each other (as was generally ex-
pected by applied mathematicians of that day) but would
emerge from a collision having exactly the same shapes and
speeds with which they entered. Such waves were recog-
nized as more than oddities in the attic of science; they
became the primary components in many important prob-
lems of nonlinear wave dynamics. Today an understanding
of soliton theory is essential for research in solid-state phys-
ics; and many other areas of applied science, including
plasma physics, optical communications, polymer dynam-
ics, hydrodynamics, the nature of elementary particles, and
biochemistry have been profoundly influenced.

The mystery behind the soliton began to unravel in 1967
when Gardner et al.> demonstrated a totally unexpected
property of the nonlinear wave equation
I _ 6592 TP _,

ot dx ox®
The property is this: If a local solution of (1.1} is taken as the
potential function in the Schrédinger equation

(1.1)

P 4 [E—x))g=0, (12
ax

the bound state eigenvalues are independent of time. More-
over, each bound state eigenvalue E, of (1.2) corresponds
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to a particular soliton component

D, (x,t)= —}v, sech’[}v, (x —v,7)] (1.3)

in the general solution of (1.1). The correspondence is given
by

E, = —v,/4 (1.4)

In addition to (1.1) a large family of nonlinear wave equa-
tions has been discovered to share identical properties and
several books have recently been published discussing
these developments in detail®>~*?; thus it is now feasible to
teach soliton theory in the undergraduate physics curricu-
lum. We have been engaged in this activity for several years
and we have found demonstration experiments to be very
helpful in convincing the student that soliton mathematics
is related to the real world.'* The aim of this paper is to
describe such a demonstration experiment for Eq. (1.1).

Equation (1.1) was first derived in 1895 by Korteweg and
deVries' to describe observations on shallow water waves
made by the British engineer and naval architect John
Scott Russell'® in the decade from 1834 to 1844. Upon re-
turning to this early work one again encounters a surprise:
The most striking aspects of soliton behavior were seen by
Russell on a water tank which he described as being “A
foot wide, eight or nine inches deep and twenty or thirty
feet long.” In particular, he notes “The genesis... of a com-
pound or double wave of the first order, which immediately
breaks down by spontaneous analysis into two, the greater
going faster and altogether leaving the smaller.” It is pre-
cisely this “spontaneous analysis” that is predicted by
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(1.1)~1.4) when the Schrodinger equation (1.2) has more
than one bound state.'” Merely by following Russell’s
instructions we arrive at the interesting and helpful lecture
demonstration that is described here.

In Sec. II we derive the Korteweg—deVries equation for
waves of moderate amplitude propagating in one direction
in shallow water of uniform depth. We then normalize this
equation to the form given in (1.1) and derive in Sec. III the
solitary wave solution (1.3). In Sec. IV we discuss the rela-
tion of these results to the Schrédinger equation (1.2). Next
(Sec. V) we describe a wave tank design that is suitable for
lecture demonstration, and finally in Sec. VI we present a
variety of experimental results that are readily obtained
from measurements on the wave tank.

II. THE LONG WAVE EQUATION

The long wave or Korteweg—deVries equation describes
waves of small but finite amplitude propagating in one di-
rection in shallow water. In this section we summarize the
physical assumptions underlying the Korteweg—deVries
equation and give the main steps in its derivation. For de-
tails the reader may consult the book by Whitham.'®

We assume the liquid to be incompressible and friction-
less with an irrotational velocity field v satisfying
curl v=0. The resulting potential flow is given by
v = grad ¢, where ¢ is the velocity potential. For incom-
pressible liquids the continuity equation takes the form

divv=0 (2.1)

which in connection with v = grad ¢ yields the Laplace
equation

A4 =0, (2.2)

which must be satisfied by the velocity potential every-
where in the bulk.

Let us consider waves propagating in the x direction in a
water tank of depth 2. We need to specify the boundary
conditions at the bottom of the tank (z = — & )as well as at
the free surface. In equilibrium z = 0 at the free surface.
When waves propagate, the position of the surface is speci-
fied by the function u(x,t ) defined by

z=ulx,t) (2.3)
at the free surface. At the bottom of the tank the velocity
must be zero in the z direction, but not, however, in the x
direction, due to our neglect of viscous effects. Consequent-
ly,

—-—h = a—¢’ =0. (2.4)

At the free surface the boundary condmon 1s specified by
Bernoulli’s equation

9
at

where g is the acceleration due to gravity. The constant
atmospheric pressure p, has been eliminated by the trans-
formation¢ — ¢ + (1/p) pot, pbeingthedensity of thelig-
uid.
Finally, we need the condition that the surface remains
specified by the equation
def

Fix,z,t)=z—u(x,t)=0. (2.6)

+4(grad ¢)* +gu =0, (2.5)

At time f+dt the displaced surface is given by
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F(x + vidt, z + vldt, t + dt) = 0, where v" is the velocity
normal to the surface.

Consequently, since v"+«VF=v-.VF, we have as our
condition

dF _ JF JdF JF

—_— = —_— —=0 27

a o e v 27
or in terms of ¢ and u, using (2.6)

9 9 u _Ju_ (2.8)

dz dx Ox ot

In the linear region Eq. (2.8) simply expresses that the time
derivative of the position of the surface, du/dt, equals the z
component of the velocity d¢ /dz at the surface.

Solitary waves arise as a consequence of balancing the
effects of nonlinearity with dispersion. One performs a si-
multaneous expanswn in two dimensionless variables,
u,,/h, where u, is the maximum elevation, and 4 2/ 2,
where Aisa typ1ca1 horizontal length scale. In order to
perform this expansion we express a solution of (2.2) satis-
fying the boundary condition (2.4) as a wave packet

& (x,t)= —-J dk cosh k (h + z)e™glk,t), (2.9)

where the weight function g(k,t ) has its Fourier transform
f(x,t) given by

_1 (" ihx
f(x,t)—zﬂ_ f—wdke glk,t)

equal to the value of ¢ at the bottom of the tank,z = — A.

The superposition {2.9) may be used to perform a gradi-
ent expansion, using the identity ike™* = (3/dx)e’™, along
with the assumption that g(k, ) falls off sufficiently rapidly
for large k. With the usual convention of writing a deriva-
tivedd /dxas¢,,d°p /dxdtasd,,, etc., we get by expanding
(2.9) for z = u, utilizing cosh x~1 + } x?, that

(2.10)

¢=f—3h+uffu (2.11)
and

$. = — (h+ulfor + 4 A+t s - (2.12)
Thus (2.8) becomes

U, + [+ u)f ] =32 =0 (2.13)

by keeping terms to the given order in our expansion, while
Bernoulli’s equation is

fi+gu—L1hf, +1AF =0 (2.14)
When the nonlinear terms in (2.13) and (2.14) are neglected

the resulting dispersion relation for propagating plane
waves becomes

w* =cok*(1 —1kh?), (2.15)
where ¢, is the velocity of shallow water waves,
co=1gh . (2.16)

The result (2.15) is consistent with our scheme of expan-
sion, which keeps the leading dispersive terms of relative
order h2/A %, where A is the wavelength 27 /k.

Equations (2.13) and (2.14) may be combined to one
equation, the Korteweg—deVries equation, by expanding in
termsofu,,/h and A %/A ?, assuming a disturbance u, which
moves in a definite direction, say along the positive x axis.

To facilitate this procedure we introduce the function
w = f,, which has the dimensions of velocity, and rewrite
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Egs. (2.13) and (2.14) after scaling all variables according to
x —Ax, t — At /cy, u—> u,,u, and w— wgu,,/c, where
u,, as before denotes the maximum value of ¥ and 4 de-
notes the horizontal length scale. Then (2.13) and (2.14)
become

U+ [(1 + auw], —§Bw,,, =0, (2.17)

w, +u, —3pw,,, +aww, =0, (2.18)
wherea = u,,/h and = h*/A % Whena = 8 = O the lin-
ear equations have a solution, corresponding to a distur-
bance moving in the direction of positive x, given by
(2.19)

In order to determine an equation for , valid to first order
in a and 3, we write w = u + a4 + BB and insert in (2.17)
and (2.18). The two equations (2.17) and (2.18) become con-
sistent (to linear order), if 4 = —}«4*and B=1}u,_,, and
yield the Korteweg~deVries equation

u, +u, +3auu, +4%pu,. =0. (2.20)

With the time and space variables restored this equation
becomes the long wave or Korteweg—deVries equation in
its usual form,

w=u, where u, +u, =0.

U, + Colt,, +—3—£2 uu, +ihzcoum =0, (2.21)

2 h 6
which forms the basis for the subsequent discussion.

HI. THE SOLITARY WAVE

Starting with Eq. (2.21) where x and ¢ are laboratory
space and time, u is the wave height and 4 is the depth of
still water, it is convenient to transform to a moving frame
for which

SP=—u,

x’=\/§h’3/2(x—cot), (3.1)
(- _3_ ~5/2 )
t_(\/Zcoh /4 )t .

After the primes have been dropped, one sees that (2.21)
takes the form of (1.1). A solitary wave solution is obtained
by assuming that

D(x,t)=D(x —vt), (3.2)

where v is an undetermined traveling wave speed. This as-
sumption simplifies (1.1) from a partial differential equa-
tion to the ordinary differential equation

& =vd+3D2, (3.3)

which is immediately recognized as a nonlinear pendulum
problem which can be easily integrated to obtain (1.3).

IV. THE ASSOCIATED LINEAR PROBLEM

Associated with the Korteweg—deVries equation

D, -6, +D .. =0 4.1)
are evolution equations for the linear scattering problem

Ve + [E—P(x,2)]Y=0 (4.2)

Yo = — Whux +3[PY; +(PY), ] (4.3)

Eigenvalues (E,) for solutions (#,) of this linear problem
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are constant. This can be seen by checking directly that

o 0. (4.4)
This surprising analytical fact was put to use in Ref. 2 as the
basis of a linear method for finding the solution of (4.1)
evolving from an arbitrary initial disturbance & (x,0). The
method proceeds as follows.

Step 1. Use @ (x,0) in (4.2) to calculate the scattering data
at t = 0. [These data consist of three parts: (i) the bound
state eigenvalues, (ii) the reflection coefficient for E >0,
and (iii) residues of poles of the reflection coefficient at the
bound states.]

Step 2. Find the evolution of these scattering data with
time. (This is easy because as x — + o, ¢, + EYy=0
and ¢, + 49, =0.)

Step 3. From the scattering data at time ¢ perform an
inverse scattering calculation to obtain @ (x,z ). (This is dis-
cussed in detail in Refs. 3-13.)

For an experimental demonstration it is sufficient to
note that each bound state of (4.2) corresponds to a soliton
component

D, (x.t)= —Lv, sech’[} v, (x —v,t)], (4.5)
where
E = —uv,/4 (4.6)

is the associated bound state eigenvalue of (4.2).
Suppose @ (x,0) is initially the square-well potential

P (x,00=0 for |x|>1x,
= —u, for |x|<]x, 4.7)

Then, from a standard reference on elementary quantum
theory,'? the condition for finding at least # bound states is

upxs >(n — 1727 (4.8)

Using the scaling (3.1) to translate back into the laboratory
system, this condition becomes

()0 14

As we shall see in the following sections, it is not difficult

Fig. 1. The wave tank on its wood support, seen from the tap end. The step
is 10 cm long, the level difference 5 cm, and the basic level 5 cm. Note the
connection in the middle.
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Fig. 2. A single wave going right. The scale on top is 20 cm.

to demonstrate experimentally that this is a condition for
generating at least » solitons in our wave tank experiment.

V. THE DEMONSTRATION APPARATUS

The wave tank (see Fig. 1) is 5.5 m long, 0.6 m deep, and
0.4 m wide. Except for the back side, which is white
(opaque) Perspex, the building material is transparent Per-
spex glued together. The thickness of the wall is 5 mm,
while that of the bottom is 8.5 mm. The front and the back
side of the tank are connected by a number of 5 1.5 cm?
beams placed 30 cm apart. To be able to move the tank it is
possible to disconnect it in the middle, where there is a soft
rubberpacking in a 5-mm groove. The groove is construct-
ed of two layers of Perspex plates glued on the outer surface
of the tank, the inner one a little shorter than the one out-
side. The system is closed together by four snap locks with
variable force calibration. The tank has a smooth inner sur-
face except for the tiny grooves described below. With
moderate pressure a basic water level up to 20 cm is possi-
ble corresponding to a total volume of 500 liters. The whole
tank is on wooden bars, placed on a wooden plate, and
adjusted horizontally with wedges to ensure a constant wa-
ter level in the whole tank. To be able to take water out of
the tank, a tap (} in.) is placed in one of the end surfaces near
the bottom.

Fig. 3. A double wave going right.
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Fig. 4. A triple wave going right.

For distances 10, 20, 30, 40, 50, and 60 cm from both
ends vertical grooves are cut in the sides (and the bottom) to
guide a 2-mm aluminum plate. The grooves are a little
more than 2 mm wide in order to make the plates move
easy. To create waves a certain amount of water is poured
into the small space separated by the aluminum plate (see
Fig. 1). Before filling water in the channel, a little silicone
grease is filled in the grooves to keep the space defined by
the plate reasonably tight.

To perform an experiment the tank and a 10-liter bucket
are filled up with water colored with a small amount of
fluorescein dissolved in ethanol to give a contrast from the
opaque back side of the tank. The basic level in the tank is
typically 5 cm (corresponding to a total water volume of
approximately 100 liters). An aluminum plate is pushed
down in one of the grooves and the level in this space is
increased by 2-15 cm relative to the level on the other side
of the plate. In our experiments this level difference was
constant for several minutes. After a quick removal of the
plate, the step in the small space creates one or several
waves running along the tank. At the opposite end of the
tank the wave is reflected, and in this way goes back and
forth 10-20 times without changing its shape. Steps smaller
than 2 cm are difficult to see, while those bigger than 15 cm
(depending on the basic level) become turbulent. In addi-
tion, a too substantial amount of water adds to the basic
level and disturbs the experiment. To keep a constant basic
level the tap is used between each experiment.

Fig. 5. Three different single waves going right. The solid curves are ex-
perimental, the dots obtained from theory, as explained in the text. Note
that the basic level in the drawings (and calculations) is different on the
two sides because of the water flow coming from the step.
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Fig. 6. A triple and double wave, the first going right, the second after reflection going left. The solid curves are experimental, the dots obtained from theory,

as explained in the text.

VL. RESULTS

For the chosen basic level we use the condition (4.9) to
choose the height of the step, u#,, corresponding to the pos-
sible values of the step width x, = (10, 20,..., 60 cm). Only
results for 2 cm < u, < 12 cm are used, as discussed in Sec.
V. If the basic level # = 5 cm, the parameters (x,,%,) could
according to (4.9) be n=1:(10,8.2), n=2:(20,8.2),
n = 3:(30,4.6), n =4:(40,5.3), and »n = 5:(50,5.7). With
these choices the total amounts of water are kept at a rea-
sonable level. To demonstrate that the same number of
waves are created in several different ways we use forn = 2
the three sets of parameters (20,8.2), (30,3.7), and (40,2.1).
The experiments fully support the condition (4.9), as the
number of waves are in accordance with this criterion. For
high amplitudes new waves are now and then created at the
reflection from the end, otherwise the shape of waves is not
disturbed by the reflection. In some of the experiments, the
expected number of waves only developed after a few me-
ters of propagation. Experiments for 2 =3.5cmto s =10
cm were tried out with results in accordance with theory.
Waves for # = 5 cm are seen on the photos of Figs. 2—4.

It is apparent from the photos that the shape of the soli-
tary waves is similar. By measuring the velocity of the
waves (by a stopwatch) as a function of the amplitude, u,
and level, A, it is possible to calculate the shape from the
formula (4.5) and then draw the theoretical curves on Figs.
5 and 6. The solid curves on Figs. 5 and 6 are drawn from
photographs, the points are calculated from the theory. As
seen on the drawing the basic levels are different on the two
sides of the top, because of the amount of water flowing
from the “step.” To calculate the theoretical points we use
the basic level, the maximum amplitude, and the measured
velocity. No fitting parameters are used. The points are in
this way calculated in two parts from the middle.

The velocity is found to exhibit a dependence on 4 given

by ¢, = v0.89g4 . The calculation of the shape is sensitive
to the numerical factor. A 2% increase in this factor could
be easily distinguished in the drawings on Figs. 5 and 6.
The different surface levels, as indicated on Figs. 5 and 6,
are also easily detectable, down to a difference of 1 mm.
The consistency between theory and experiment is general-
ly excellent for a demonstration experiment.

VII. CONCLUSION

We have seen how one may illustrate some important
features of nonlinear wave propagation in a water tank ex-
periment. The simple relation between the number of soli-
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tary waves and the linear dimensions of the step and the
basic water level is convincingly demonstrated in our ex-
periment. The characteristic shape of a soliton and its re-
markable stability is also brought out very well. The de-
monstration apparatus is simple to construct, reliable, and
can be used for a number of other wave experiments.

As a practical illustration of the powerful inverse scat-
tering method, such a water tank experiment is of interest
to students of both mathematics and physics. As a lecture
room demonstration, the experiment described in this pa-
per connects the relation between soliton number and ge-
ometry with a linear eigenvalue problem well known from
elementary quantum mechanics, and it gives the student
some appreciation of the peculiar properties of propagat-
ing, reflecting, and interacting solitary waves.
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