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Phonons and solitons in the “thermal’ sine-Gordon system
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Standard methods of stochastic processes are used to study the coupling of the sine-Gordon sys-
tem with a heat reservoir. As a result we find thermal phonons with an average energy of kzT per
mode. The translational mode (zero mode) is found to carry an average energy of %kB T. This last

value is just the energy in the Brownian motion of a thermal soliton. These results are in agreement
with those obtained by the use of a statistical-mechanical description of a dilute soliton gas. Con-
nection of the above results with Josephson junctions and the extension of the analysis to more gen-

eral equations is also discussed.

I. INTRODUCTION

The sine-Gordon equation has recently been used to
model several physical systems in contact with a heat
reservoir at a given temperature.' ~° The effect of the cou-
pling of the sine-Gordon system to the heat reservoir pro-
vides a twofold mechanism:

(i) a dissipation of energy in the system due to an ener-
gy flow from the system to the heat reservoir,

(i) a disordered input of energy into the system due to a
flow back of energy from the reservoir.

A loss term in the sine-Gordon equation is then intrinsi-
cally connected to a thermal noise term, suggesting a
modeling of the interaction between the system and the
reservoir with a driving stochastic force (temperature
dependent) in the pure sine-Gordon equation:"*~>’

byx — Py —sing=ad, +n(x,t) . (1.1)
The first term on the right-hand side (rhs) of Eq. (1.1) is
the loss term representing the energy flow to the reservoir,
while the second term is the noise associated with «a, giv-
ing the disordered thermal-energy input to the system.
The noise term is assumed to be “white” both in space
and time with the autocorrelation function:

(n(x,t)n(x',t')) =16alkg T /E)8(x —x")8(t —t') . (1.2)

Here ( - - - ) means ensemble average, while the constant
16a(kz T /E,) is determined by applying the fluctuation
dissipation theorem for a soliton with small velocity"»*"1°
(E, is the rest energy of a soliton and is used to fix the
scale of energy in the system, kp is the Boltzmann con-
stant, and T is the temperature).
When a=0, n(x,t)=0, Eq. (1.1) reduces to the pure
sine-Gordon equation with the exact soliton solution
¢=4tan™! _ X ] ]
(1— v2)1/2

expt (1.3)

and Hamiltonian density

E
H=—§[’;‘(¢i+¢%)+l—cos¢] . (1.4)

Small oscillations around a ground state @, of the system
are obtained by linearizing the sine-Gordon equation with

d=do+7, (1.5)

this providing a linear equation for ¥:

Yrx — P — P cOsPp=0 ,

with an associated energy density given by

(1.6)

E
Hy= —1—6"—(¢§ + 2+ PPcosdo) - (1.7)
When the ground state of the system is given by (1.3), a
“zero mode” (translational mode) is found from Eq. (1.6).
In addition to this mode, there exists a continuum set of
states (phonon modes) which satisfy the linear dispersion
relation:!!

o*=1+k2. (1.8)

For practical applications to Josephson junctions, it is of
interest to include also in the rhs of Eq. (1.1) a constant
bias term 17, representing an ordered energy input into the
system (work on the system). In this case (in the absence
of solitons), phonons (also called “plasmons”) are seen
as small oscillations around the ground state ¢,
= —sin~!y.12

In this paper we study the effect of the heat reservoir
both on solitons and phonons by using standard methods
of stochastic processes. This will be done in the following
cases.

In Sec. II we study thermal phonons in the presence of
a static “exact” sine-Gordon soliton. In Sec. III we in-
clude a 7 bias term in the rhs of (1.1) and study the
thermally excited plasmons around ¢o= —sin~'n (no soli-
tons present in the system).

In both cases we find that as long as kpT <<E,, the
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phonon modes have an average energy of kT per mode.
In the case when a soliton is in the system, however, we
find that the corresponding extra mode (zero mode), has
an average energy of %kB T. All these results are in agree-
ment with a statistical-mechanical description of the
sine-Gordon system. In Sec. IV we concentrate on the ef-
fect of both the bias term (7) and the heat reservoir [a
and n(x,t)] on the soliton motion. As result of the
“thermalization” the soliton will execute a Brownian
motion with average energy of 5k T (the zero-mode ener-
gy). In Sec. V we relate the above results to a practical
Josephson junction and, finally, in Sec. VI we give a short
summary of the main results of the paper including a
brief discussion of the possibility of extending the analysis
to other equations of the nonlinear Klein-Gordon class.

II. THERMAL PHONONS IN THE PRESENCE
OF A SOLITON

We consider as an “unthermalized” system the pure
sine-Gordon equation

Oxx — Py —sing=0 (2.1)

and assume that only a static soliton is present (dilute-gas
limit). Phonon modes 1 are obtained as solutions of Eq.
(1.6) with ¢, given by (1.3) with v =0. Assuming ¥; as

llfk(x,t):fk(x)eiw"' , (2.2)
we obtain from Eq. (1.6) that
(—Bx + 1 —2sech?x)fi (x) =0} fr(x) . (2.3)

As is well known, (2.3) admits a continuum set of eigen-
functions:

filx)=—

(277.)1/2

together with a zero mode:

e (1 +k%)~2(k +i tanhx) (2.4)

fp(x)= Vlisechx (2.5)

which restores the translational symmetry broken by the
introduction of the soliton into the system (Goldstone
mode).!! Equations (2.4) and (2.5) together form a com-
plete set of orthonormal eigenfunctions:

+ 2 + o0
[ Rmax =1, [ fix)fulx)dx=0
+ o0
[ A fexdx =8k —k') (2.6)

Lo ol [ RGOSl Yk =8(x —x")

where * in the superscript means complex conjugate.

By coupling the sine-Gordon system with the heat
reservoir, we change Eq. (2.1) into Eq. (1.1). Thermal
phonons are then found to satisfy

VYrx — Py — P cOspo=ath; +n (x,1) (2.7

for which the general solution can be expanded in terms
of the complete set (2.6) as

et = S Au(Dfi () + Ay (0)f(x) (2.8)

n=0

(here we assume the system to be in a box of length L,
and then let L — o). Substituting (2.8) in (2.7) and using
Eq. (2.3), we obtain

> [Apnfi(X)+ady  fr(x)+ Aror fr(x)]
n=0

+(Ab,n+aAb,g)fb(X)=-—n(x,t) . (2.9)

Equation (2.9) is easily studied once projected, respective-
ly, along the fi(x)’s and the f,(x) eigenfunctions, this
giving [using (2.6)]

A+ Ay, + Apor =€ (1) (2.10)

and

Ap o +ady, =€(2) (2.11)

with
+ o0
e(=— [ fylx)n(x,ndx

€(t)=— f_Jr:f;:(x)n (x,t)dx .

By using (1.2) and (2.6) we find, for the autocorrelation
function R (¢t —t') and for the power spectrum S (w) of
the normal processes € (¢) and €,(¢), that

Rek(t—t')=REb(t—t')

=16a(kyT/Eo)8(t —t') 2.12)

Se, (@)=5,, (0)=16a(kyT/Eo) . (2.13)

Equations (2.10) and (2.11) are then integrated by the
standard theory of stochastic processes,'® giving the fol-
lowing expressions for the power spectrum of A,(¢) and
Ak’,(t ):

1
(0*—wi)P+a%? ’

Sy (@)=16a(kpT/Ey) (2.14)

Sa, (@) =078y () . (2.15)

[SAb(“’) and SA:,,(“’) are obtained from (2.14) and (2.15)

with the substitution oy =0.] If we assume ergodicity, the
time averages of the processes | Ax(2)|? and | A4y ,(2)]>
are evaluated as

(| 4k()|*)=R4,(0)

_ +°°31_w_SA (0)=8(kzT/wiEy) , (2.16)
—w 21 k
(| Aie()|2) =Ry, (0)
_[t790g  (0)=8(ksT/E,), (.17
27 ket

where contour integration has been used in evaluating the
integrals in (2.16) and (2.17). In the same way we obtain
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for (| 4,,(2)]?)
(| Ap((8)|2)=8(kpgT/E,) .

From (1.7) and (2.8) we have that the average energies of
the kth phonon mode A (?)fx(x) and of the translational
mode A, (t)f,(x) are given, respectively, by

(2.18)

E
(H) =22 40D +0k (| 40 )] 2.19)
and
E
(Hyy=—g( [ 45,]?) . (2.20)
Using (2.16)—(2.18), we finally have
(H,)=kgT (2.21)
and
(Hy)=5kpT 2.22)

in complete agreement with the classical statistical-
mechanics analysis of a dilute soliton gas derived in Ref.
8.

III. THERMAL PHONONS IN THE ABSENCE
OF SOLITONS WITH BIAS

In this section we consider the unthermalized system to
be the pure sine-Gordon system of finite length L, with a
constant driving force 7 < 1:

Gxx — Py —sing=17 . (3.1)

Phonon modes 3, are seen as small oscillations around
the classical ground state

$o=—sin"'7, (3.2)
satisfying the boundary conditions
¢n,x(07t)=¢n,x(L’t)=0 (3.3)

(no solitons are present in the system). The thermalized
system is obtained from Eq. (3.1) by adding to the rhs the
term a¢, +n(x,t) with rn(x,t) given as in (1.2):

Oyx — by —sing=n+ad, +n(x,t) . (3.4)

Thermal phonons are then solutions of the following sto-
chastic equation:

Vax =0 —(1 =) 2Y=ayy, +n(x,t) : (3.5)

When a=0, n(x,t)=0, these phonons are just classical
Klein-Gordon modes with energy given by

E L
Hp=~¢ [, ax[¥i + i+ 01— . (3.6)

The general solution of Eq. (3.5) satisfying the boundary
conditions (3.3) is of the form

Y=(2/L)'"*3, 4,(t)cos(k,x) (3.7)

with

nm
L

and (2/L)'/? being just a normalization factor (for n=0
it should be read as L ~1/%). Substituting (3.7) in (3.5) and
applying to both sides of the equation the pro-
. . L .

jection operator 0 cos(k,x)dx, we obtain

k, = (3.8)

Apy+adn + 1=+ k714, =€, (1) (3.9

where

L
€n(=(2/L)"2 [ " (x,1)cos(kyx)dx . (3.10

Using (1.2), we find for the autocorrelation function
R, (t —t') and the power spectrum S, (@) the same ex-

pression as in (2.12) and (2.13). By identifying
[(1—7?)!24 k2] with w3, we see that Eq. (3.9) in the lim-
it L— oo coincides with Eq. (2.0), and therefore, follow-
ing the same analysis of the preceding section, we obtain
that the average energy per phonon mode is

(H,)=kT . (3.11)

No zero-mode energy is present in this case, due to the ab-
sence of the soliton in the system. Finally, we remark
that the above results do not depend on the particular
boundary condition (3.3) used (we could have used generic
periodic boundary conditions) as well as on smallness re-
quirements of a and 7. The only approximation that has
been made in obtaining (2.21), (2.22), and (3.11) is the
linearization procedure, which is justified if

kpT << E , (3.12)

as appears evident from Egs. (2.16) and (2.17).

IV. BROWNIAN MOTION AND DIFFUSION
CONSTANT OF A THERMAL SOLITON

We now concentrate on the effect of the a, 7, and
n(x,t) terms in Eq. (3.4) on the soliton motion (here a sol-
iton is a 2m-kink jump from —sin~!n to 27 —sin~ly).
We assume 17/a and kg T /Ej to be small. By introducing
the momentum

+ o0
P=—5 [ "¢:pdx, 4.1)
and differentiating with respect to time, we obtain
dP

——=—aP+m+et), (4.2)

dt

where we have used Eq. (3.4) to eliminate the ¢,, term and
have defined e(z) as

=4 [ 4. 0m (x,0dx . 4.3)

Neglecting the noise term, Eq. (4.2) describes the “power
balance” motion of a 27-kink with velocity'
21-1/2

™

up== |14 (4.4)
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and momentum

Uo
Py=——e (4.5)
Y (l_ug)l/Z

The noise term n(x,t) in Eq. (4.2) introduces fluctuations
in the momentum and, from (4.5), in the velocity of the
kink. Such fluctuations are readily evaluated by standard
techniques (for details see Ref. 7), giving the following for
the power spectrum of the process Au (¢)=u () —ug:

(1—ug)*”

SA“(w)=2a(kBT/EO)—;3::;2“‘— (4.6)

By assuming u << 1, Eq. (4.6) reduces to
1

Su(w)=2a(kBT/E0)m 4.7)

from which we obtain
+
(=" %:‘Tis,,(w)=(kBT/Eo). 4.8)

The time average of the kinetic energy in the Brownian
motion of the soliton is then given by

(Esol>=%E0(u2>=%‘kBT (4.9)

as expected from soliton statistical-mechanics theory.?
Finally, from Eq. (4.6) a diffusion constant D for the
2sr-kink motion is derived:
—L T/, 4.10)
Ey
which is just the usual Einstein diffusion constant for the
Brownian motion of a particle in a viscous medium (this

is a further confirmation of the particlelike nature of the
soliton). (See also Ref. 3.)

V. THERMAL SOLITONS AND PHONONS
IN JOSEPHSON JUNCTIONS

We will now relate the foregoing sections to a real de-
vice as the Josephson junction. We will find the orders of
magnitude of the quantities of interest and see if the as-
sumption made in the above analysis holds for Josephson
junctions.

The fluxon-rest energy (in laboratory units) for a
Josephson junction is

Eo="%wo=8%AJL /(2¢) , (5.1)

where J is the maximum Josephson current density, L is
the length of the junction, and e is the electron charge. A;
in (5.1) is the Josephson penetration depth given by

)\J=(ﬁ/29‘uodJ)l/2 (5.2)

where d is the magnetic thickness of the oxide layer
(2Ar +1p), and g is the vacuum permeability. From (5.1)

we have that for a typical Josephson junction
(kpT /Eq)~107%—1077, (5.3)

which justifies the assumption (3.12) made in the analysis.
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The Josephson plasma frequency is

wp=2eJty/exe, ), (5.4)

where €, and €, are, respectively, the relative dielectric
constant of the oxide layer and the dielectric constant of
the vacuum, while ¢, is the thickness of the oxide layer.
For a plasmon described in Sec. III we have that the split-
ting of the energy level is

EY=to,0, (5.5)

with o, given by [(1—7)'24+(n7/L)*]"/2. We have
then that the ratio k3T /E}; is of the order of magnitude
1—10, i.e., the quantum energy levels are separated by a
quantity comparable with kzT. To have a rough estimate
of the energy-level separation for a fluxon, we can use the
analogy of a particle in a box. This gives

2 2
— =10, , (5.6)

q
En= 2M, L?

.., for a fluxon the separation in the energy levels is
smaller than kpT by a factor of the order 1073—107%.
This numerical manipulation indicates that for a typical
Josephson junction fluxon quantitation is not necessary,
while it is necessary for plasmons (Ef; being of the same
order of magnitude as kzT). In Ref. 6 the effects of
quantum plasmons on the fluxon motion have been calcu-
lated. It turns out that they are several orders of magni-
tude smaller than the direct influence of the thermal
reservoir on the soliton evaluated in this paper, and there-
fore, in our context, completely negligible.

Finally, in closing this section it is worth noting that if
kpT/E, is very small, a statistical-mechanical description
of fluxons in Josephson junctions is meaningless. Howev-
er, the method used in the preceding section is still useful
to study the interactions between plasmons and fluxons.
(See Ref. 7 for the case of Josephson oscillators.)

VI. CONCLUSION

It has been shown that the effect of a thermal reservoir
on the sine-Gordon system can be studied by using stan-
dard methods of stochastic processes. Both phonons and
solitons are found to be thermalized in a way that the
phonons will have an average energy of kzT per mode,
while solitons will have an energy of —;—kB T. These results
are in agreement with those obtained by using a
statistical-mechanics approach for a ‘“dilute” solution
gas.? The main assumption used in our derivation has
been kpT <<Eq (to justify the linearization procedure).
Second-order effects [in the small quantity (kzT/Eg)],
such as interaction between phonon modes and solitons,®°
have been neglected therefore. Finally, in closing this pa-
per we wish to point out that in spite of the particularity
of the model used, the results obtained are sufficiently
general to be extended to other equations of the nonlinear
Klein-Gordon class, such as ¢4, double sine-Gordon, etc.
As a matter of fact, the only difference in the analysis will
be the presence of additional bound states in the linear
phonon eigenvalue problem. By following arguments
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similar to those used in the present paper, however, it is
easily shown that each of these additional bound states
carries a thermal-average energy of kzT. This energy will
not increase the energy of the center of mass of a soliton-
like solition of these more general models, but it will in-
crease the energy of the internal degrees of freedom
(motion around the center of mass) of these excitations.!*
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