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The occurrence of kab to  the inverse second 
power in formula (10) is a consequence of the 
fact  that  the quasi-static electric field  is al- 
most  entirely responsible for the ohmic heat- 
ing losses, and  that  this field is proportional 
to 1 - 3  for the electric dipole and r 2  for the 
magnetic dipole. In a recent  paper  Galejs2 
examined the relative ohmic losses for small 
capacitor type  and loop antennas con- 
structed on spherical cores of conducting  di- 
electric. He found that  the relative core 
losses for the two types  are proportional to 
(kob)-2 for of course the same reason as ad- 
vanced above. 

The simple formuias for +m hold only 
when o~a/o~<<l and kob<<l; hence for  values 
of b/d such that $'* is substantially less than 
unity  the  input power to these antennas m-ill 
be very nearly equal to  the power dissipated. 
Under these  conditions can  be  taken  as 
the radiation efficiency of the electric or 
magnetic dipole surrounded by a shell of 
lossy dielectric. 

By equating q e  and p for the same size 
shell but different conductivities, the results 
of this paper and those of Galejs show that 
for a given radiation efficiency it is possible 
to tolerate  a much higher conductivity di- 
electric in the near zone of a small  magnetic 
type  antenna  than with an electric type. 

ROK-ALD V. Row 
Applied Research Lab. 

Sylvania  Electronic Systems 
A Div. of Sylvania  Electric Products Inc. 

LValtham, Mass. 

2 J. Galejs, "Small electric and magnetic  antennas 
with cores of a lossy dielectric," J .  Research .?'all. 
Bur. Stds., vol. 67D, p. 445; July-August. 1963. 

2-Transform  Theory in  General 
Array Analysis 

In a  recent communication' Cheng has 
stated  that  arrays with nonuniform spacing 
can be studied by means of a complex en- 
velope function. In  this communication the 
array factor G(0, +) for an  arbitrary  array 
with n elements is written as a  Z  transform, 
and  the usefulness of 2-transform theory in 
general array analysis is discussed. 

Let the real vector envelope function  for 
the positions of the elements and  the com- 
plex scalar envelope function for the  currents 
on them, be defined as 

? ( x )  = xg + ?(x) (1) 

and 

. (X)  = A @ ( % ) )  

Manuscript received April 6, 1964. 
1 D.  K. Cheng. 'Z-transform theory  for  linear 

PROPAGATION (Commun.), vol. AP-11, P. 593; 
array analysis." IEEE TRAKS. ON  4NTENN.4S  AND 

September, 1963. 

Root loci of (7) in the i'e"-plane for  p = l  and n=2,3, ..., 25. 1 

f complex root (the complex conjugate roots are not shown), 
* real root. 

Fig. 1. 

respectively, where s = v d  on the vth element, 
? ( x )  and +(?(x)) are nonlinear functions of x 
and 5, respectively, and A(?(%))  is the 
amplitude of &). E =  (1, 0, 0) and 

~ = i s i n ~ c o s ~ + r ; s i n ~ s i n + + ~ c o s ~ .  (3) 

If S(x)=O, d is the distance between the 
elements and (I is the linear phase progres- 
sion. We then  obtain 

G(0, +) = A(?(vd))  

A 

P=O 

where k is the propagation constant, m(r) is 
the  unit  gate  function,2  and  the following 
transformation3  has been used: 

exp { j [ a  + Kdi .21 )  = z-I. (5) 

In (4) the  array factor is written as a 
polynomial of (n-1)th degree in 2-1. Only 
two classes of polynomials in which the num- 
ber of terms depends on the degree appear 
to have been given in a closed form ( i e . ,  a 
form in which the number of terms does not 
depend on the degree): 

1) Polynomials where new roots do not 
enter when the degree is increased beyond a 
certain  value, e.g., the binomial distribution4 

2 P. L. Christiansen. 'On the closed form of the 
array  factor for linear  arrays," IEEE TRASS. ON 
ANTENXAS AND PROPAWTIOX (Cummm.). vol. AP-11. 
p. 198; March, 1963. 

linear  amays," Bell Sys. Tech. J . .  vol. 22. pp. 80-107; 
a S. A. Schelkunoff. "A mathematical  theory of 

January. 1943. 
4 John  Stone  Stone, U. S. Patents 1,643.323 and 

1,715.433. 

in which B denotes Euler's beta  function, 
and  the  unit  gate function does not appear 
explicitly. In general, however, it is difficult 
to give analytical expressions for the  en- 
velope functions and Z-transform  theory is 
not helpful. This is also the case when the 
principle of pattern multiplication' is 
applied. 

2 )  Polynomials nhich can be obtained 
from the formula 

z { (ox)pe-Tn(x) j 
d p  1 - e - m d p z  

= (+P- 
a@ 1 - e-adz-' 

(7) 

which  is given in a previous communication* 
and derived in a report6 by means of Z-trans- 
form theory. In this case new roots  enter in 
an interesting n a y  when n is increased. 
For p=O they will all lie on the circle 
I e--a<:-l! = 1 ; (e-dz-lf 1). For p= 1 all  roots 
w1ll lie Inside the circle e-%-]= 1 (this case 
is shown in Fig. 1 for 72.=2,3, , 25). The 
root configuration for higher values of p can 
be studied by means of the Schur-Cohn 
criterion.? 

\Ve have thus considered coefficients and 
roots in the two classes of polynomials which 
can be given in a closed form.  Z-transform 
theory was only relevant in the second class. 
Also, since very special requirements  must be 
placed on the position and  the  current en- 
velope functions before (7) can be applied to 
(4),  severe limitations are imposed on the 
applicability of 2-transform  theory in ob- 
taining  a closed form for the  array factor in 
general array analysis. 
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