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field pattern side-lobe level. I n  a radar sys- 
tem,  the  high-resolution  and  reduction  in 
ambiguity is achieved at the  expense of a 
reduction in power in the main  beam  when 
compared with a densely packed  array of 
the  same  aperture  length. 
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On the Closed  Form of the Array 
Factor for Linear Arrays* 

Recently  Cheng  and  Ma1  have  shown 
that  known  relations  in  2-transform  theory 
developed for sampled-data  q-stems  can  be 
used to express  the  array polynomial  for  a 
linear  array in a closed form. 

The  2-transform of a real  function f(t) 
is defined by 

e 

Z ( f ( t ) }  = Cf(u2")z -V = F ( s ) .  (1) 
"-0 

The  array  factor for a x-element array is 

"-0 

where u ( x )  is  the  envelope  function for the 
current  distribution,  and d is the  distance 
between  adjacent  elements. 

b-hen a nonlinear  phase en\-elope func- 
tion is not included in u(x), u(x) becomes 
real,  and  the  analogy is established  by re- 
placing t by x ,  T by d andf(t)  by u ( x ) .  How- 
ever,  the  summation is extended  to  infinity 
in ( l ) ,  but  not  in ( 2 ) .  

Cheng  and  Ma1  have  overcome  this diffi- 
culty  by  assuming 

u(x) = u(.v + (It - 1)d) (34 

or 

U(X) = - U ( X  + (it - 1)d)  (3b) 

yielding,  respectively, 

G(z) = (1 - z-(n-l)) 

.Z (U(.Y); + u(O)s-(n-') ($a) 

and 

G(z) = (1 +z-(n-1)).2{u(~)] 
- g(o)z-(n-l) .  (4b) 

This  assumption, however, restricts  the 
envelope  functions to periodic ones. 

The following alternative  procedure re- 
moves this  limitation. \\-e introduce a unit 
gate  function m(r) defined by 

r.(x) = i 0 x < O  and x > ( n -  l ) d  
1 O < x < ( t z - l ) d  (5) 
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thereby  obtaining  the  more  general  fornlula 

G(B) = Z(U(.Y)~,(S))  (6) 

ill which the  array  factor  is expressed as a 
Z-transform. 

The usefulness of formula (6) can  be 
illustrated  by an example. Consider the  en- 
velope function 

U ( S )  = (wx)Pe-ar (7) 

\vhere p is a nonnegative  integer, m a real 
number,  and a is any real  or complex nunl- 
ber (yielding  envelope  functions  including 
trigonometric  sine  and  cosine). 

For this  envelope  function  formula (6) 
yields the  array  factor 

G(s) = Z {  (o.v)pe7uy,(a)] 

( - w ) P -  ~~ (8)  
a p  1 - e-ondg-n 

aap 1 - e-ad2-1 

which is closed i n  w ,  but  not in p.  By means 
of (8) man!- useful current  distributions  can 
be  investigated. 

Cheng  and  Ma'  have  shown  that  when 
the  current  distribution  does  not  involve a 
nonlinear  phase  envelope  function  the 
numerator and the  denominator in the ex- 
pression  for ! G ( z ) l ?  always  contain  the 
terms z"1 and z- in pairs zm+z-. 

Using 
e-;* (9) 

they  introduce 

4' = a + 2-1 = 2 cos $ (10) 

and  make use of the  fact  that  every  pair 
z"'+-e- can be  evaluated as a polynomial 
in y. 

In  the  more  general case (not considered 
bl- Cheng  and  kIa),l  where  the  current  en- 
velope function .(x) includes an  amplitude 
en\-elope function r ( x )  and a nonlinear 
phase  envelope  function +(x), 

.(.I.) = F(.Y)eJ*(=) = a h )  +jbf.Y). (11) 

Eq. (2)  can be  written 

It  turns  out  that in this case the  de- 
nominator  in  the expression  for / G ( e )  I ? still 
ma>- be  written  as a linear combination of 
Chebl-shev  functions of the first kind, while 
the  numerator now also contains  linear com- 
binations of Cheb>-shev  functions of the 
second kind. 

I t  can  be shown that if one of the follom- 
ing two conditions, 

r ( x )  = .(!n - l ) d  - x) (154 
T ( X )  = - r ( ( a  - 1)d - X ) ,  (15b) 

and  the  condition 

,+(x) = + ( ( , a  - 1)d - x) (16) 

are  satisfied, I G(a) contains no Chebyshev 
functions of the  second  kind. 

iVe have  investigated  several  distribu- 
tions  with complex envelope  functions as in 
( 11 1, ex., 

(1 + sin2 WX) .ei? tan-' s i n w  

= cos?wx f j . 2  sinwx (17) 
(no Q,,-functions are  invoked in I G(a) I * in 
this case, if w ( a - l ) d = l ,  because  (15a)  and 
(16) are  both  satisfied)  and 

u(x) = cosh (wx -+ $)efod(wz+@) 
= 1 +jsinh (wx + B ) ,  (18) 

where gd is  the  Gudermannian  angle. 
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Designing for Desired Aperture 
Illummations in Cassegrain 
Antennas* 

Ii-hen  designing  microwave reflector an- 
tennas,  one of the  major  goals is to  obtain 
the  desired  illumination  in  the  antenna  aper- 
ture.  In  Cassegrain  antennas,  the  aperture 
field distribution  depends on shape  and size 
of both  horn  and  subreflector,  and  this  ap- 
parently  makes  the design of a desired illum- 
ination  more involved than in a conventional 
antenna  system  using a simple feed horn at 
the focus. However, a closer look at this 
problem reveals a possibility t o  determine 
the  aperture field (and  thus also the  radia- 
tion  pattern)  without  detailed  information 
about  horn  and subreflector. The  only infor- 
mation needed is the  type of horn  that is to  
be used, as will be shown below. 

The basic  geometrl- of the  Cassegrain 
system is shown  in  Figs. 1 and 2, as well as 
the  notations used. For  simplicity, we as- 
sume  the  horn  pattern g ( 6 )  to  be sym- 
metrical,  in which case  the  illumination 
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